AutoGPT / autogpt /memory /milvus.py
vs4vijay's picture
Duplicate from aliabid94/AutoGPT
d9a8c9e
""" Milvus memory storage provider."""
from pymilvus import Collection, CollectionSchema, DataType, FieldSchema, connections
from autogpt.memory.base import MemoryProviderSingleton, get_ada_embedding
class MilvusMemory(MemoryProviderSingleton):
"""Milvus memory storage provider."""
def __init__(self, cfg) -> None:
"""Construct a milvus memory storage connection.
Args:
cfg (Config): Auto-GPT global config.
"""
# connect to milvus server.
connections.connect(address=cfg.milvus_addr)
fields = [
FieldSchema(name="pk", dtype=DataType.INT64, is_primary=True, auto_id=True),
FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=1536),
FieldSchema(name="raw_text", dtype=DataType.VARCHAR, max_length=65535),
]
# create collection if not exist and load it.
self.milvus_collection = cfg.milvus_collection
self.schema = CollectionSchema(fields, "auto-gpt memory storage")
self.collection = Collection(self.milvus_collection, self.schema)
# create index if not exist.
if not self.collection.has_index():
self.collection.release()
self.collection.create_index(
"embeddings",
{
"metric_type": "IP",
"index_type": "HNSW",
"params": {"M": 8, "efConstruction": 64},
},
index_name="embeddings",
)
self.collection.load()
def add(self, data) -> str:
"""Add an embedding of data into memory.
Args:
data (str): The raw text to construct embedding index.
Returns:
str: log.
"""
embedding = get_ada_embedding(data)
result = self.collection.insert([[embedding], [data]])
_text = (
"Inserting data into memory at primary key: "
f"{result.primary_keys[0]}:\n data: {data}"
)
return _text
def get(self, data):
"""Return the most relevant data in memory.
Args:
data: The data to compare to.
"""
return self.get_relevant(data, 1)
def clear(self) -> str:
"""Drop the index in memory.
Returns:
str: log.
"""
self.collection.drop()
self.collection = Collection(self.milvus_collection, self.schema)
self.collection.create_index(
"embeddings",
{
"metric_type": "IP",
"index_type": "HNSW",
"params": {"M": 8, "efConstruction": 64},
},
index_name="embeddings",
)
self.collection.load()
return "Obliviated"
def get_relevant(self, data: str, num_relevant: int = 5):
"""Return the top-k relevant data in memory.
Args:
data: The data to compare to.
num_relevant (int, optional): The max number of relevant data.
Defaults to 5.
Returns:
list: The top-k relevant data.
"""
# search the embedding and return the most relevant text.
embedding = get_ada_embedding(data)
search_params = {
"metrics_type": "IP",
"params": {"nprobe": 8},
}
result = self.collection.search(
[embedding],
"embeddings",
search_params,
num_relevant,
output_fields=["raw_text"],
)
return [item.entity.value_of_field("raw_text") for item in result[0]]
def get_stats(self) -> str:
"""
Returns: The stats of the milvus cache.
"""
return f"Entities num: {self.collection.num_entities}"