Spaces:
Running
Running
import gradio as gr | |
from transformers import AutoProcessor, AutoModelForCausalLM | |
import re | |
from PIL import Image | |
import subprocess | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
model = AutoModelForCausalLM.from_pretrained('vumichien/Florence-2-FT-Caption', trust_remote_code=True).to("cpu").eval() | |
processor = AutoProcessor.from_pretrained('vumichien/Florence-2-FT-Caption', trust_remote_code=True) | |
TITLE = "# [Florence-2 Captioner](https://huggingface.co/vumichien/Florence-2-FT-Caption)" | |
def modify_caption(caption: str) -> str: | |
""" | |
Removes specific prefixes from captions if present, otherwise returns the original caption. | |
Args: | |
caption (str): A string containing a caption. | |
Returns: | |
str: The caption with the prefix removed if it was present, or the original caption. | |
""" | |
# Define the prefixes to remove | |
prefix_substrings = [ | |
('captured from ', ''), | |
('captured at ', '') | |
] | |
# Create a regex pattern to match any of the prefixes | |
pattern = '|'.join([re.escape(opening) for opening, _ in prefix_substrings]) | |
replacers = {opening.lower(): replacer for opening, replacer in prefix_substrings} | |
# Function to replace matched prefix with its corresponding replacement | |
def replace_fn(match): | |
return replacers[match.group(0).lower()] | |
# Apply the regex to the caption | |
modified_caption = re.sub(pattern, replace_fn, caption, count=1, flags=re.IGNORECASE) | |
# If the caption was modified, return the modified version; otherwise, return the original | |
return modified_caption if modified_caption != caption else caption | |
#@spaces.GPU | |
def run_example(image): | |
image = Image.fromarray(image) | |
task_prompt = "<CAPTION>" | |
prompt = task_prompt | |
# Ensure the image is in RGB mode | |
if image.mode != "RGB": | |
image = image.convert("RGB") | |
inputs = processor(text=prompt, images=image, return_tensors="pt").to("cpu") | |
generated_ids = model.generate( | |
input_ids=inputs["input_ids"], | |
pixel_values=inputs["pixel_values"], | |
max_new_tokens=1024, | |
num_beams=3 | |
) | |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] | |
parsed_answer = processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height)) | |
return modify_caption(parsed_answer["<CAPTION>"]) | |
css = """ | |
#output { | |
height: 500px; | |
overflow: auto; | |
border: 1px solid #ccc; | |
} | |
""" | |
examples = ["240617143250078.JPG", "240617144124216.JPG", "240617144154631.JPG", "240617143227939.JPG"] | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown(TITLE) | |
with gr.Tab(label="Florence-2 SD3 Prompts"): | |
with gr.Row(): | |
with gr.Column(): | |
input_img = gr.Image(label="Input Picture",height=400) | |
submit_btn = gr.Button(value="Submit") | |
with gr.Column(): | |
output_text = gr.Textbox(label="Output Text") | |
submit_btn.click(run_example, [input_img], [output_text]) | |
examples = gr.Examples( | |
examples, | |
fn=run_example, | |
inputs=[input_img], | |
outputs=output_text, | |
cache_examples=True, | |
) | |
demo.launch(debug=True) |