Spaces:
Running
Running
File size: 12,620 Bytes
e23742d 90440c8 e23742d 53efdc2 e23742d 90440c8 c181c85 90440c8 c181c85 90440c8 af04ad9 18e4ba8 f819f0f 90440c8 b564786 90440c8 e23742d 53efdc2 e23742d 53efdc2 e23742d 53efdc2 e23742d 53efdc2 e23742d 53efdc2 e23742d af04ad9 e23742d f819f0f e23742d 90440c8 af04ad9 e23742d 692eee7 e23742d 376286c e23742d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
import os
import gradio as gr
import requests
import langid
import base64
import json
import time
import re
import hashlib
import hash_code_for_cached_output
API_URL = os.environ.get("API_URL")
TOKEN = os.environ.get("TOKEN")
RESULT_URL = os.environ.get("RESULT_URL")
supported_languages = ['zh', 'en', 'ja', 'ko', 'es', 'fr']
supported_styles = {
'zh': "zh_default",
'en': [
"en_default",
"en_us",
"en_br",
"en_au",
"en_in"
],
"es": "es_default",
"fr": "fr_default",
"ja": "jp_default",
"ko": "kr_default"
}
output_dir = 'outputs'
os.makedirs(output_dir, exist_ok=True)
def audio_to_base64(audio_file):
with open(audio_file, "rb") as audio_file:
audio_data = audio_file.read()
base64_data = base64.b64encode(audio_data).decode("utf-8")
return base64_data
def count_chars_words(sentence):
segments = re.findall(r'[\u4e00-\u9fa5]+|\w+', sentence)
char_count = 0
word_count = 0
for segment in segments:
if re.match(r'[\u4e00-\u9fa5]+', segment):
char_count += len(segment)
else:
word_count += len(segment.split())
return char_count + word_count
def predict(prompt, style, audio_file_pth, speed, agree):
# initialize a empty info
text_hint = ''
# agree with the terms
if agree == False:
text_hint += '[ERROR] Please accept the Terms & Condition!\n'
gr.Warning("Please accept the Terms & Condition!")
return (
text_hint,
None,
None,
)
# Before we get into inference, we will detect if it is from example table or default value
# If so, we use a cached Audio. Noted that, it is just for demo efficiency.
# hash code were generated by `hash_code_for_cached_output.py`
# this hash get from gradio console
cached_outputs = {
"af39e1f1ff_60565a5c20_en_us" : "cached_outputs/0.wav",
"af39e1f1ff_420ab8211d_en_us" : "cached_outputs/1.wav",
"ced034cc22_0f96bf44f5_es_default" : "cached_outputs/2.wav",
"d3172b178d_3fef5adc6f_zh_default" : "cached_outputs/3.wav",
"cda6998e1a_9897b60a4e_jp_default" : "cached_outputs/4.wav"
}
unique_code = hash_code_for_cached_output.get_unique_code(audio_file_pth, prompt, style)
print("audio_file_pth is", audio_file_pth)
print("unique_code is", unique_code)
if unique_code in list(cached_outputs.keys()):
return (
'We get the cached output for you, since you are trying to generate an example cloning.',
cached_outputs[unique_code],
audio_file_pth,
)
# first detect the input language
language_predicted = langid.classify(prompt)[0].strip()
print(f"Detected language:{language_predicted}")
if language_predicted not in supported_languages:
text_hint += f"[ERROR] The detected language {language_predicted} for your input text is not in our Supported Languages: {supported_languages}\n"
gr.Warning(
f"The detected language {language_predicted} for your input text is not in our Supported Languages: {supported_languages}"
)
return (
text_hint,
None,
None,
)
# check the style
if style not in supported_styles[language_predicted]:
text_hint += f"[Warming] The style {style} is not supported for detected language {language_predicted}. For language {language_predicted}, we support styles: {supported_styles[language_predicted]}. Using the wrong style may result in unexpected behavior.\n"
gr.Warning(f"[Warming] The style {style} is not supported for detected language {language_predicted}. For language {language_predicted}, we support styles: {supported_styles[language_predicted]}. Using the wrong style may result in unexpected behavior.")
prompt_length = count_chars_words(prompt)
speaker_wav = audio_file_pth
if prompt_length < 2:
text_hint += f"[ERROR] Please give a longer prompt text \n"
gr.Warning("Please give a longer prompt text")
return (
text_hint,
None,
None,
)
if prompt_length > 50:
text_hint += f"[ERROR] Text length limited to 50 words for this demo, please try shorter text. You can clone our open-source repo or try it on our website https://app.myshell.ai/robot-workshop/widget/174760057433406749 \n"
gr.Warning(
"Text length limited to 50 words for this demo, please try shorter text. You can clone our open-source repo or try it on our website https://app.myshell.ai/robot-workshop/widget/174760057433406749"
)
return (
text_hint,
None,
None,
)
save_path = f'{output_dir}/output.wav'
speaker_audio_base64 = audio_to_base64(speaker_wav)
if style == 'en_us': # we update us accent
style = 'en_newest'
data = {
"text": prompt,
"reference_speaker": speaker_audio_base64,
"language": style,
"speed": speed
}
start = time.time()
headers = {
"Authorization": f"Bearer {TOKEN}"
}
response = requests.post(API_URL, json=data, headers=headers, timeout=60)
print(f'Get response successfully within {time.time() - start}')
task_id = response.json()['task_id']
while True:
response = requests.post(RESULT_URL, json={'task_id': task_id}, headers=headers)
json_data = response.json()
status = json_data['status']
if status in ["CREATED", "RUNNING"]:
time.sleep(1)
continue
if status == 'FAILED':
text_hint += f"[HTTP ERROR] {json_data['error']} \n"
gr.Warning(
f"[HTTP ERROR] {json_data['error']} \n"
)
return (
text_hint,
None,
None,
)
else:
decoded_bytes = base64.b64decode(json_data['result']['base64'].encode('utf-8'))
with open(save_path, 'wb') as f:
f.write(decoded_bytes)
text_hint += f'''Get response successfully \n'''
return (
text_hint,
save_path,
speaker_wav,
)
title = "MyShell OpenVoice V2"
description = """
In December 2023, we released [OpenVoice V1](https://huggingface.co/spaces/myshell-ai/OpenVoice), an instant voice cloning approach that replicates a speaker's voice and generates speech in multiple languages using only a short audio clip. OpenVoice V1 enables granular control over voice styles, replicates the tone color of the reference speaker and achieves zero-shot cross-lingual voice cloning.
"""
description_v2 = """
In April 2024, we released **OpenVoice V2**, which includes all features in V1 and has:
- **Better Audio Quality**. OpenVoice V2 adopts a different training strategy that delivers better audio quality.
- **Native Multi-lingual Support**. English, Spanish, French, Chinese, Japanese and Korean are natively supported in OpenVoice V2.
- **Free Commercial Use**. Starting from April 2024, both V2 and V1 are released under MIT License. Free for commercial use.
"""
markdown_table = """
<div align="center" style="margin-bottom: 10px;">
| | | |
| :-----------: | :-----------: | :-----------: |
| **OpenSource Repo** | **Project Page** | **Join the Community** |
| <div style='text-align: center;'><a style="display:inline-block,align:center" href='https://github.com/myshell-ai/OpenVoice'><img src='https://img.shields.io/github/stars/myshell-ai/OpenVoice?style=social' /></a></div> | [OpenVoice](https://research.myshell.ai/open-voice) | [![Discord](https://img.shields.io/discord/1122227993805336617?color=%239B59B6&label=%20Discord%20)](https://discord.gg/myshell) |
</div>
"""
markdown_table_v2 = """
<div align="center" style="margin-bottom: 2px;">
| | | | |
| :-----------: | :-----------: | :-----------: | :-----------: |
| **Github Repo** | <div style='text-align: center;'><a style="display:inline-block,align:center" href='https://github.com/myshell-ai/OpenVoice'><img src='https://img.shields.io/github/stars/myshell-ai/OpenVoice?style=social' /></a></div> | **Project Page** | [OpenVoice](https://research.myshell.ai/open-voice) |
| | |
| :-----------: | :-----------: |
**Join the Community** | [![Discord](https://img.shields.io/discord/1122227993805336617?color=%239B59B6&label=%20Discord%20)](https://discord.gg/myshell) |
</div>
"""
content = """
<div>
<strong>If the generated voice does not sound like the reference voice, please refer to <a href='https://github.com/myshell-ai/OpenVoice/blob/main/docs/QA.md'>this QnA</a>.</strong> <strong>If you want to deploy the model by yourself and perform inference, please refer to <a href='https://github.com/myshell-ai/OpenVoice/blob/main/demo_part3.ipynb'>this jupyter notebook</a>.</strong>
</div>
"""
wrapped_markdown_content = f"<div style='border: 1px solid #000; padding: 10px;'>{content}</div>"
examples = [
[
"Did you ever hear a folk tale about a giant turtle?",
'en_us',
"examples/speaker0.mp3",
True,
],[
"El resplandor del sol acaricia las olas, pintando el cielo con una paleta deslumbrante.",
'es_default',
"examples/speaker1.mp3",
True,
],[
"我最近在学习machine learning,希望能够在未来的artificial intelligence领域有所建树。",
'zh_default',
"examples/speaker2.mp3",
True,
],[
"彼は毎朝ジョギングをして体を健康に保っています。",
'jp_default',
"examples/speaker3.mp3",
True,
],
]
with gr.Blocks(analytics_enabled=False) as demo:
with gr.Row():
with gr.Column():
with gr.Row():
gr.Markdown(
"""
## <img src="https://huggingface.co/spaces/myshell-ai/OpenVoice/raw/main/logo.jpg" height="40"/>
"""
)
with gr.Row():
gr.Markdown(markdown_table_v2)
with gr.Row():
gr.Markdown(description)
with gr.Column():
gr.Video('./openvoicev2.mp4', autoplay=True)
with gr.Row():
gr.Markdown(description_v2)
with gr.Row():
gr.HTML(wrapped_markdown_content)
with gr.Row():
with gr.Column():
input_text_gr = gr.Textbox(
label="Text Prompt",
info="One or two sentences at a time is better. Up to 200 text characters.",
value="The bustling city square bustled with street performers, tourists, and local vendors.",
)
style_gr = gr.Dropdown(
label="Style",
info="Select a style of output audio for the synthesised speech. (Chinese only support 'default' now)",
choices=["en_default", "en_us", "en_br", "en_au", "en_in", "es_default", "fr_default", "jp_default", "zh_default", "kr_default",],
max_choices=1,
value="en_us",
)
ref_gr = gr.Audio(
label="Reference Audio",
info="Click on the ✎ button to upload your own target speaker audio",
type="filepath",
value="examples/speaker0.mp3",
)
tos_gr = gr.Checkbox(
label="Agree",
value=False,
info="I agree to the terms of the MIT license-: https://github.com/myshell-ai/OpenVoice/blob/main/LICENSE",
)
tts_button = gr.Button("Send", elem_id="send-btn", visible=True)
with gr.Column():
out_text_gr = gr.Text(label="Info")
audio_gr = gr.Audio(label="Synthesised Audio", autoplay=True)
ref_audio_gr = gr.Audio(label="Reference Audio Used")
gr.Examples(examples,
label="Examples",
inputs=[input_text_gr, style_gr, ref_gr, tos_gr],
outputs=[out_text_gr, audio_gr, ref_audio_gr],
fn=predict,
cache_examples=False,)
tts_button.click(predict, [input_text_gr, style_gr, ref_gr, tos_gr], outputs=[out_text_gr, audio_gr, ref_audio_gr])
demo.queue(concurrency_count=6)
demo.launch(debug=True, show_api=True) |