Spaces:
Build error
Build error
init
Browse files- U-2-Net/__pycache__/data_loader.cpython-38.pyc +0 -0
- U-2-Net/data_loader.py +266 -0
- U-2-Net/gradio/demo.py +37 -0
- U-2-Net/model/__init__.py +2 -0
- U-2-Net/model/__pycache__/__init__.cpython-36.pyc +0 -0
- U-2-Net/model/__pycache__/__init__.cpython-37.pyc +0 -0
- U-2-Net/model/__pycache__/__init__.cpython-38.pyc +0 -0
- U-2-Net/model/__pycache__/u2net.cpython-36.pyc +0 -0
- U-2-Net/model/__pycache__/u2net.cpython-37.pyc +0 -0
- U-2-Net/model/__pycache__/u2net.cpython-38.pyc +0 -0
- U-2-Net/model/u2net.py +525 -0
- U-2-Net/model/u2net_refactor.py +168 -0
- U-2-Net/requirements.txt +9 -0
- U-2-Net/saved_models/face_detection_cv2/haarcascade_frontalface_default.xml +0 -0
- U-2-Net/saved_models/u2net_portrait/u2net_portrait.pth +3 -0
- U-2-Net/setup_model_weights.py +13 -0
- U-2-Net/u2net_human_seg_test.py +117 -0
- U-2-Net/u2net_portrait_composite.py +141 -0
- U-2-Net/u2net_portrait_demo.py +175 -0
- U-2-Net/u2net_portrait_test.py +117 -0
- U-2-Net/u2net_test.py +122 -0
- U-2-Net/u2net_train.py +164 -0
U-2-Net/__pycache__/data_loader.cpython-38.pyc
ADDED
Binary file (8.75 kB). View file
|
|
U-2-Net/data_loader.py
ADDED
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# data loader
|
2 |
+
from __future__ import print_function, division
|
3 |
+
import glob
|
4 |
+
import torch
|
5 |
+
from skimage import io, transform, color
|
6 |
+
import numpy as np
|
7 |
+
import random
|
8 |
+
import math
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
from torch.utils.data import Dataset, DataLoader
|
11 |
+
from torchvision import transforms, utils
|
12 |
+
from PIL import Image
|
13 |
+
|
14 |
+
#==========================dataset load==========================
|
15 |
+
class RescaleT(object):
|
16 |
+
|
17 |
+
def __init__(self,output_size):
|
18 |
+
assert isinstance(output_size,(int,tuple))
|
19 |
+
self.output_size = output_size
|
20 |
+
|
21 |
+
def __call__(self,sample):
|
22 |
+
imidx, image, label = sample['imidx'], sample['image'],sample['label']
|
23 |
+
|
24 |
+
h, w = image.shape[:2]
|
25 |
+
|
26 |
+
if isinstance(self.output_size,int):
|
27 |
+
if h > w:
|
28 |
+
new_h, new_w = self.output_size*h/w,self.output_size
|
29 |
+
else:
|
30 |
+
new_h, new_w = self.output_size,self.output_size*w/h
|
31 |
+
else:
|
32 |
+
new_h, new_w = self.output_size
|
33 |
+
|
34 |
+
new_h, new_w = int(new_h), int(new_w)
|
35 |
+
|
36 |
+
# #resize the image to new_h x new_w and convert image from range [0,255] to [0,1]
|
37 |
+
# img = transform.resize(image,(new_h,new_w),mode='constant')
|
38 |
+
# lbl = transform.resize(label,(new_h,new_w),mode='constant', order=0, preserve_range=True)
|
39 |
+
|
40 |
+
img = transform.resize(image,(self.output_size,self.output_size),mode='constant')
|
41 |
+
lbl = transform.resize(label,(self.output_size,self.output_size),mode='constant', order=0, preserve_range=True)
|
42 |
+
|
43 |
+
return {'imidx':imidx, 'image':img,'label':lbl}
|
44 |
+
|
45 |
+
class Rescale(object):
|
46 |
+
|
47 |
+
def __init__(self,output_size):
|
48 |
+
assert isinstance(output_size,(int,tuple))
|
49 |
+
self.output_size = output_size
|
50 |
+
|
51 |
+
def __call__(self,sample):
|
52 |
+
imidx, image, label = sample['imidx'], sample['image'],sample['label']
|
53 |
+
|
54 |
+
if random.random() >= 0.5:
|
55 |
+
image = image[::-1]
|
56 |
+
label = label[::-1]
|
57 |
+
|
58 |
+
h, w = image.shape[:2]
|
59 |
+
|
60 |
+
if isinstance(self.output_size,int):
|
61 |
+
if h > w:
|
62 |
+
new_h, new_w = self.output_size*h/w,self.output_size
|
63 |
+
else:
|
64 |
+
new_h, new_w = self.output_size,self.output_size*w/h
|
65 |
+
else:
|
66 |
+
new_h, new_w = self.output_size
|
67 |
+
|
68 |
+
new_h, new_w = int(new_h), int(new_w)
|
69 |
+
|
70 |
+
# #resize the image to new_h x new_w and convert image from range [0,255] to [0,1]
|
71 |
+
img = transform.resize(image,(new_h,new_w),mode='constant')
|
72 |
+
lbl = transform.resize(label,(new_h,new_w),mode='constant', order=0, preserve_range=True)
|
73 |
+
|
74 |
+
return {'imidx':imidx, 'image':img,'label':lbl}
|
75 |
+
|
76 |
+
class RandomCrop(object):
|
77 |
+
|
78 |
+
def __init__(self,output_size):
|
79 |
+
assert isinstance(output_size, (int, tuple))
|
80 |
+
if isinstance(output_size, int):
|
81 |
+
self.output_size = (output_size, output_size)
|
82 |
+
else:
|
83 |
+
assert len(output_size) == 2
|
84 |
+
self.output_size = output_size
|
85 |
+
def __call__(self,sample):
|
86 |
+
imidx, image, label = sample['imidx'], sample['image'], sample['label']
|
87 |
+
|
88 |
+
if random.random() >= 0.5:
|
89 |
+
image = image[::-1]
|
90 |
+
label = label[::-1]
|
91 |
+
|
92 |
+
h, w = image.shape[:2]
|
93 |
+
new_h, new_w = self.output_size
|
94 |
+
|
95 |
+
top = np.random.randint(0, h - new_h)
|
96 |
+
left = np.random.randint(0, w - new_w)
|
97 |
+
|
98 |
+
image = image[top: top + new_h, left: left + new_w]
|
99 |
+
label = label[top: top + new_h, left: left + new_w]
|
100 |
+
|
101 |
+
return {'imidx':imidx,'image':image, 'label':label}
|
102 |
+
|
103 |
+
class ToTensor(object):
|
104 |
+
"""Convert ndarrays in sample to Tensors."""
|
105 |
+
|
106 |
+
def __call__(self, sample):
|
107 |
+
|
108 |
+
imidx, image, label = sample['imidx'], sample['image'], sample['label']
|
109 |
+
|
110 |
+
tmpImg = np.zeros((image.shape[0],image.shape[1],3))
|
111 |
+
tmpLbl = np.zeros(label.shape)
|
112 |
+
|
113 |
+
image = image/np.max(image)
|
114 |
+
if(np.max(label)<1e-6):
|
115 |
+
label = label
|
116 |
+
else:
|
117 |
+
label = label/np.max(label)
|
118 |
+
|
119 |
+
if image.shape[2]==1:
|
120 |
+
tmpImg[:,:,0] = (image[:,:,0]-0.485)/0.229
|
121 |
+
tmpImg[:,:,1] = (image[:,:,0]-0.485)/0.229
|
122 |
+
tmpImg[:,:,2] = (image[:,:,0]-0.485)/0.229
|
123 |
+
else:
|
124 |
+
tmpImg[:,:,0] = (image[:,:,0]-0.485)/0.229
|
125 |
+
tmpImg[:,:,1] = (image[:,:,1]-0.456)/0.224
|
126 |
+
tmpImg[:,:,2] = (image[:,:,2]-0.406)/0.225
|
127 |
+
|
128 |
+
tmpLbl[:,:,0] = label[:,:,0]
|
129 |
+
|
130 |
+
|
131 |
+
tmpImg = tmpImg.transpose((2, 0, 1))
|
132 |
+
tmpLbl = label.transpose((2, 0, 1))
|
133 |
+
|
134 |
+
return {'imidx':torch.from_numpy(imidx), 'image': torch.from_numpy(tmpImg), 'label': torch.from_numpy(tmpLbl)}
|
135 |
+
|
136 |
+
class ToTensorLab(object):
|
137 |
+
"""Convert ndarrays in sample to Tensors."""
|
138 |
+
def __init__(self,flag=0):
|
139 |
+
self.flag = flag
|
140 |
+
|
141 |
+
def __call__(self, sample):
|
142 |
+
|
143 |
+
imidx, image, label =sample['imidx'], sample['image'], sample['label']
|
144 |
+
|
145 |
+
tmpLbl = np.zeros(label.shape)
|
146 |
+
|
147 |
+
if(np.max(label)<1e-6):
|
148 |
+
label = label
|
149 |
+
else:
|
150 |
+
label = label/np.max(label)
|
151 |
+
|
152 |
+
# change the color space
|
153 |
+
if self.flag == 2: # with rgb and Lab colors
|
154 |
+
tmpImg = np.zeros((image.shape[0],image.shape[1],6))
|
155 |
+
tmpImgt = np.zeros((image.shape[0],image.shape[1],3))
|
156 |
+
if image.shape[2]==1:
|
157 |
+
tmpImgt[:,:,0] = image[:,:,0]
|
158 |
+
tmpImgt[:,:,1] = image[:,:,0]
|
159 |
+
tmpImgt[:,:,2] = image[:,:,0]
|
160 |
+
else:
|
161 |
+
tmpImgt = image
|
162 |
+
tmpImgtl = color.rgb2lab(tmpImgt)
|
163 |
+
|
164 |
+
# nomalize image to range [0,1]
|
165 |
+
tmpImg[:,:,0] = (tmpImgt[:,:,0]-np.min(tmpImgt[:,:,0]))/(np.max(tmpImgt[:,:,0])-np.min(tmpImgt[:,:,0]))
|
166 |
+
tmpImg[:,:,1] = (tmpImgt[:,:,1]-np.min(tmpImgt[:,:,1]))/(np.max(tmpImgt[:,:,1])-np.min(tmpImgt[:,:,1]))
|
167 |
+
tmpImg[:,:,2] = (tmpImgt[:,:,2]-np.min(tmpImgt[:,:,2]))/(np.max(tmpImgt[:,:,2])-np.min(tmpImgt[:,:,2]))
|
168 |
+
tmpImg[:,:,3] = (tmpImgtl[:,:,0]-np.min(tmpImgtl[:,:,0]))/(np.max(tmpImgtl[:,:,0])-np.min(tmpImgtl[:,:,0]))
|
169 |
+
tmpImg[:,:,4] = (tmpImgtl[:,:,1]-np.min(tmpImgtl[:,:,1]))/(np.max(tmpImgtl[:,:,1])-np.min(tmpImgtl[:,:,1]))
|
170 |
+
tmpImg[:,:,5] = (tmpImgtl[:,:,2]-np.min(tmpImgtl[:,:,2]))/(np.max(tmpImgtl[:,:,2])-np.min(tmpImgtl[:,:,2]))
|
171 |
+
|
172 |
+
# tmpImg = tmpImg/(np.max(tmpImg)-np.min(tmpImg))
|
173 |
+
|
174 |
+
tmpImg[:,:,0] = (tmpImg[:,:,0]-np.mean(tmpImg[:,:,0]))/np.std(tmpImg[:,:,0])
|
175 |
+
tmpImg[:,:,1] = (tmpImg[:,:,1]-np.mean(tmpImg[:,:,1]))/np.std(tmpImg[:,:,1])
|
176 |
+
tmpImg[:,:,2] = (tmpImg[:,:,2]-np.mean(tmpImg[:,:,2]))/np.std(tmpImg[:,:,2])
|
177 |
+
tmpImg[:,:,3] = (tmpImg[:,:,3]-np.mean(tmpImg[:,:,3]))/np.std(tmpImg[:,:,3])
|
178 |
+
tmpImg[:,:,4] = (tmpImg[:,:,4]-np.mean(tmpImg[:,:,4]))/np.std(tmpImg[:,:,4])
|
179 |
+
tmpImg[:,:,5] = (tmpImg[:,:,5]-np.mean(tmpImg[:,:,5]))/np.std(tmpImg[:,:,5])
|
180 |
+
|
181 |
+
elif self.flag == 1: #with Lab color
|
182 |
+
tmpImg = np.zeros((image.shape[0],image.shape[1],3))
|
183 |
+
|
184 |
+
if image.shape[2]==1:
|
185 |
+
tmpImg[:,:,0] = image[:,:,0]
|
186 |
+
tmpImg[:,:,1] = image[:,:,0]
|
187 |
+
tmpImg[:,:,2] = image[:,:,0]
|
188 |
+
else:
|
189 |
+
tmpImg = image
|
190 |
+
|
191 |
+
tmpImg = color.rgb2lab(tmpImg)
|
192 |
+
|
193 |
+
# tmpImg = tmpImg/(np.max(tmpImg)-np.min(tmpImg))
|
194 |
+
|
195 |
+
tmpImg[:,:,0] = (tmpImg[:,:,0]-np.min(tmpImg[:,:,0]))/(np.max(tmpImg[:,:,0])-np.min(tmpImg[:,:,0]))
|
196 |
+
tmpImg[:,:,1] = (tmpImg[:,:,1]-np.min(tmpImg[:,:,1]))/(np.max(tmpImg[:,:,1])-np.min(tmpImg[:,:,1]))
|
197 |
+
tmpImg[:,:,2] = (tmpImg[:,:,2]-np.min(tmpImg[:,:,2]))/(np.max(tmpImg[:,:,2])-np.min(tmpImg[:,:,2]))
|
198 |
+
|
199 |
+
tmpImg[:,:,0] = (tmpImg[:,:,0]-np.mean(tmpImg[:,:,0]))/np.std(tmpImg[:,:,0])
|
200 |
+
tmpImg[:,:,1] = (tmpImg[:,:,1]-np.mean(tmpImg[:,:,1]))/np.std(tmpImg[:,:,1])
|
201 |
+
tmpImg[:,:,2] = (tmpImg[:,:,2]-np.mean(tmpImg[:,:,2]))/np.std(tmpImg[:,:,2])
|
202 |
+
|
203 |
+
else: # with rgb color
|
204 |
+
tmpImg = np.zeros((image.shape[0],image.shape[1],3))
|
205 |
+
image = image/np.max(image)
|
206 |
+
if image.shape[2]==1:
|
207 |
+
tmpImg[:,:,0] = (image[:,:,0]-0.485)/0.229
|
208 |
+
tmpImg[:,:,1] = (image[:,:,0]-0.485)/0.229
|
209 |
+
tmpImg[:,:,2] = (image[:,:,0]-0.485)/0.229
|
210 |
+
else:
|
211 |
+
tmpImg[:,:,0] = (image[:,:,0]-0.485)/0.229
|
212 |
+
tmpImg[:,:,1] = (image[:,:,1]-0.456)/0.224
|
213 |
+
tmpImg[:,:,2] = (image[:,:,2]-0.406)/0.225
|
214 |
+
|
215 |
+
tmpLbl[:,:,0] = label[:,:,0]
|
216 |
+
|
217 |
+
|
218 |
+
tmpImg = tmpImg.transpose((2, 0, 1))
|
219 |
+
tmpLbl = label.transpose((2, 0, 1))
|
220 |
+
|
221 |
+
return {'imidx':torch.from_numpy(imidx), 'image': torch.from_numpy(tmpImg), 'label': torch.from_numpy(tmpLbl)}
|
222 |
+
|
223 |
+
class SalObjDataset(Dataset):
|
224 |
+
def __init__(self,img_name_list,lbl_name_list,transform=None):
|
225 |
+
# self.root_dir = root_dir
|
226 |
+
# self.image_name_list = glob.glob(image_dir+'*.png')
|
227 |
+
# self.label_name_list = glob.glob(label_dir+'*.png')
|
228 |
+
self.image_name_list = img_name_list
|
229 |
+
self.label_name_list = lbl_name_list
|
230 |
+
self.transform = transform
|
231 |
+
|
232 |
+
def __len__(self):
|
233 |
+
return len(self.image_name_list)
|
234 |
+
|
235 |
+
def __getitem__(self,idx):
|
236 |
+
|
237 |
+
# image = Image.open(self.image_name_list[idx])#io.imread(self.image_name_list[idx])
|
238 |
+
# label = Image.open(self.label_name_list[idx])#io.imread(self.label_name_list[idx])
|
239 |
+
|
240 |
+
image = io.imread(self.image_name_list[idx])
|
241 |
+
imname = self.image_name_list[idx]
|
242 |
+
imidx = np.array([idx])
|
243 |
+
|
244 |
+
if(0==len(self.label_name_list)):
|
245 |
+
label_3 = np.zeros(image.shape)
|
246 |
+
else:
|
247 |
+
label_3 = io.imread(self.label_name_list[idx])
|
248 |
+
|
249 |
+
label = np.zeros(label_3.shape[0:2])
|
250 |
+
if(3==len(label_3.shape)):
|
251 |
+
label = label_3[:,:,0]
|
252 |
+
elif(2==len(label_3.shape)):
|
253 |
+
label = label_3
|
254 |
+
|
255 |
+
if(3==len(image.shape) and 2==len(label.shape)):
|
256 |
+
label = label[:,:,np.newaxis]
|
257 |
+
elif(2==len(image.shape) and 2==len(label.shape)):
|
258 |
+
image = image[:,:,np.newaxis]
|
259 |
+
label = label[:,:,np.newaxis]
|
260 |
+
|
261 |
+
sample = {'imidx':imidx, 'image':image, 'label':label}
|
262 |
+
|
263 |
+
if self.transform:
|
264 |
+
sample = self.transform(sample)
|
265 |
+
|
266 |
+
return sample
|
U-2-Net/gradio/demo.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import paddlehub as hub
|
3 |
+
import gradio as gr
|
4 |
+
import torch
|
5 |
+
|
6 |
+
# Images
|
7 |
+
torch.hub.download_url_to_file('https://cdn.pixabay.com/photo/2018/08/12/16/59/ara-3601194_1280.jpg', 'parrot.jpg')
|
8 |
+
torch.hub.download_url_to_file('https://cdn.pixabay.com/photo/2016/10/21/14/46/fox-1758183_1280.jpg', 'fox.jpg')
|
9 |
+
|
10 |
+
model = hub.Module(name='U2Net')
|
11 |
+
|
12 |
+
def infer(img):
|
13 |
+
result = model.Segmentation(
|
14 |
+
images=[cv2.imread(img.name)],
|
15 |
+
paths=None,
|
16 |
+
batch_size=1,
|
17 |
+
input_size=320,
|
18 |
+
output_dir='output',
|
19 |
+
visualization=True)
|
20 |
+
return result[0]['front'][:,:,::-1], result[0]['mask']
|
21 |
+
|
22 |
+
inputs = gr.inputs.Image(type='file', label="Original Image")
|
23 |
+
outputs = [
|
24 |
+
gr.outputs.Image(type="numpy",label="Front"),
|
25 |
+
gr.outputs.Image(type="numpy",label="Mask")
|
26 |
+
]
|
27 |
+
|
28 |
+
title = "U^2-Net"
|
29 |
+
description = "demo for U^2-Net. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
|
30 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2005.09007'>U^2-Net: Going Deeper with Nested U-Structure for Salient Object Detection</a> | <a href='https://github.com/xuebinqin/U-2-Net'>Github Repo</a></p>"
|
31 |
+
|
32 |
+
examples = [
|
33 |
+
['fox.jpg'],
|
34 |
+
['parrot.jpg']
|
35 |
+
]
|
36 |
+
|
37 |
+
gr.Interface(infer, inputs, outputs, title=title, description=description, article=article, examples=examples).launch()
|
U-2-Net/model/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .u2net import U2NET
|
2 |
+
from .u2net import U2NETP
|
U-2-Net/model/__pycache__/__init__.cpython-36.pyc
ADDED
Binary file (257 Bytes). View file
|
|
U-2-Net/model/__pycache__/__init__.cpython-37.pyc
ADDED
Binary file (190 Bytes). View file
|
|
U-2-Net/model/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (203 Bytes). View file
|
|
U-2-Net/model/__pycache__/u2net.cpython-36.pyc
ADDED
Binary file (11.6 kB). View file
|
|
U-2-Net/model/__pycache__/u2net.cpython-37.pyc
ADDED
Binary file (11.1 kB). View file
|
|
U-2-Net/model/__pycache__/u2net.cpython-38.pyc
ADDED
Binary file (10.5 kB). View file
|
|
U-2-Net/model/u2net.py
ADDED
@@ -0,0 +1,525 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
class REBNCONV(nn.Module):
|
6 |
+
def __init__(self,in_ch=3,out_ch=3,dirate=1):
|
7 |
+
super(REBNCONV,self).__init__()
|
8 |
+
|
9 |
+
self.conv_s1 = nn.Conv2d(in_ch,out_ch,3,padding=1*dirate,dilation=1*dirate)
|
10 |
+
self.bn_s1 = nn.BatchNorm2d(out_ch)
|
11 |
+
self.relu_s1 = nn.ReLU(inplace=True)
|
12 |
+
|
13 |
+
def forward(self,x):
|
14 |
+
|
15 |
+
hx = x
|
16 |
+
xout = self.relu_s1(self.bn_s1(self.conv_s1(hx)))
|
17 |
+
|
18 |
+
return xout
|
19 |
+
|
20 |
+
## upsample tensor 'src' to have the same spatial size with tensor 'tar'
|
21 |
+
def _upsample_like(src,tar):
|
22 |
+
|
23 |
+
src = F.upsample(src,size=tar.shape[2:],mode='bilinear')
|
24 |
+
|
25 |
+
return src
|
26 |
+
|
27 |
+
|
28 |
+
### RSU-7 ###
|
29 |
+
class RSU7(nn.Module):#UNet07DRES(nn.Module):
|
30 |
+
|
31 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
32 |
+
super(RSU7,self).__init__()
|
33 |
+
|
34 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
35 |
+
|
36 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
37 |
+
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
38 |
+
|
39 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
40 |
+
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
41 |
+
|
42 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
43 |
+
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
44 |
+
|
45 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
46 |
+
self.pool4 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
47 |
+
|
48 |
+
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
49 |
+
self.pool5 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
50 |
+
|
51 |
+
self.rebnconv6 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
52 |
+
|
53 |
+
self.rebnconv7 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
54 |
+
|
55 |
+
self.rebnconv6d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
56 |
+
self.rebnconv5d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
57 |
+
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
58 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
59 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
60 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
61 |
+
|
62 |
+
def forward(self,x):
|
63 |
+
|
64 |
+
hx = x
|
65 |
+
hxin = self.rebnconvin(hx)
|
66 |
+
|
67 |
+
hx1 = self.rebnconv1(hxin)
|
68 |
+
hx = self.pool1(hx1)
|
69 |
+
|
70 |
+
hx2 = self.rebnconv2(hx)
|
71 |
+
hx = self.pool2(hx2)
|
72 |
+
|
73 |
+
hx3 = self.rebnconv3(hx)
|
74 |
+
hx = self.pool3(hx3)
|
75 |
+
|
76 |
+
hx4 = self.rebnconv4(hx)
|
77 |
+
hx = self.pool4(hx4)
|
78 |
+
|
79 |
+
hx5 = self.rebnconv5(hx)
|
80 |
+
hx = self.pool5(hx5)
|
81 |
+
|
82 |
+
hx6 = self.rebnconv6(hx)
|
83 |
+
|
84 |
+
hx7 = self.rebnconv7(hx6)
|
85 |
+
|
86 |
+
hx6d = self.rebnconv6d(torch.cat((hx7,hx6),1))
|
87 |
+
hx6dup = _upsample_like(hx6d,hx5)
|
88 |
+
|
89 |
+
hx5d = self.rebnconv5d(torch.cat((hx6dup,hx5),1))
|
90 |
+
hx5dup = _upsample_like(hx5d,hx4)
|
91 |
+
|
92 |
+
hx4d = self.rebnconv4d(torch.cat((hx5dup,hx4),1))
|
93 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
94 |
+
|
95 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
|
96 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
97 |
+
|
98 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
99 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
100 |
+
|
101 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
102 |
+
|
103 |
+
return hx1d + hxin
|
104 |
+
|
105 |
+
### RSU-6 ###
|
106 |
+
class RSU6(nn.Module):#UNet06DRES(nn.Module):
|
107 |
+
|
108 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
109 |
+
super(RSU6,self).__init__()
|
110 |
+
|
111 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
112 |
+
|
113 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
114 |
+
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
115 |
+
|
116 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
117 |
+
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
118 |
+
|
119 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
120 |
+
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
121 |
+
|
122 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
123 |
+
self.pool4 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
124 |
+
|
125 |
+
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
126 |
+
|
127 |
+
self.rebnconv6 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
128 |
+
|
129 |
+
self.rebnconv5d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
130 |
+
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
131 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
132 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
133 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
134 |
+
|
135 |
+
def forward(self,x):
|
136 |
+
|
137 |
+
hx = x
|
138 |
+
|
139 |
+
hxin = self.rebnconvin(hx)
|
140 |
+
|
141 |
+
hx1 = self.rebnconv1(hxin)
|
142 |
+
hx = self.pool1(hx1)
|
143 |
+
|
144 |
+
hx2 = self.rebnconv2(hx)
|
145 |
+
hx = self.pool2(hx2)
|
146 |
+
|
147 |
+
hx3 = self.rebnconv3(hx)
|
148 |
+
hx = self.pool3(hx3)
|
149 |
+
|
150 |
+
hx4 = self.rebnconv4(hx)
|
151 |
+
hx = self.pool4(hx4)
|
152 |
+
|
153 |
+
hx5 = self.rebnconv5(hx)
|
154 |
+
|
155 |
+
hx6 = self.rebnconv6(hx5)
|
156 |
+
|
157 |
+
|
158 |
+
hx5d = self.rebnconv5d(torch.cat((hx6,hx5),1))
|
159 |
+
hx5dup = _upsample_like(hx5d,hx4)
|
160 |
+
|
161 |
+
hx4d = self.rebnconv4d(torch.cat((hx5dup,hx4),1))
|
162 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
163 |
+
|
164 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
|
165 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
166 |
+
|
167 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
168 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
169 |
+
|
170 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
171 |
+
|
172 |
+
return hx1d + hxin
|
173 |
+
|
174 |
+
### RSU-5 ###
|
175 |
+
class RSU5(nn.Module):#UNet05DRES(nn.Module):
|
176 |
+
|
177 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
178 |
+
super(RSU5,self).__init__()
|
179 |
+
|
180 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
181 |
+
|
182 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
183 |
+
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
184 |
+
|
185 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
186 |
+
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
187 |
+
|
188 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
189 |
+
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
190 |
+
|
191 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
192 |
+
|
193 |
+
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
194 |
+
|
195 |
+
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
196 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
197 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
198 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
199 |
+
|
200 |
+
def forward(self,x):
|
201 |
+
|
202 |
+
hx = x
|
203 |
+
|
204 |
+
hxin = self.rebnconvin(hx)
|
205 |
+
|
206 |
+
hx1 = self.rebnconv1(hxin)
|
207 |
+
hx = self.pool1(hx1)
|
208 |
+
|
209 |
+
hx2 = self.rebnconv2(hx)
|
210 |
+
hx = self.pool2(hx2)
|
211 |
+
|
212 |
+
hx3 = self.rebnconv3(hx)
|
213 |
+
hx = self.pool3(hx3)
|
214 |
+
|
215 |
+
hx4 = self.rebnconv4(hx)
|
216 |
+
|
217 |
+
hx5 = self.rebnconv5(hx4)
|
218 |
+
|
219 |
+
hx4d = self.rebnconv4d(torch.cat((hx5,hx4),1))
|
220 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
221 |
+
|
222 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
|
223 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
224 |
+
|
225 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
226 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
227 |
+
|
228 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
229 |
+
|
230 |
+
return hx1d + hxin
|
231 |
+
|
232 |
+
### RSU-4 ###
|
233 |
+
class RSU4(nn.Module):#UNet04DRES(nn.Module):
|
234 |
+
|
235 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
236 |
+
super(RSU4,self).__init__()
|
237 |
+
|
238 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
239 |
+
|
240 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
241 |
+
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
242 |
+
|
243 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
244 |
+
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
245 |
+
|
246 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
247 |
+
|
248 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
249 |
+
|
250 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
251 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
252 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
253 |
+
|
254 |
+
def forward(self,x):
|
255 |
+
|
256 |
+
hx = x
|
257 |
+
|
258 |
+
hxin = self.rebnconvin(hx)
|
259 |
+
|
260 |
+
hx1 = self.rebnconv1(hxin)
|
261 |
+
hx = self.pool1(hx1)
|
262 |
+
|
263 |
+
hx2 = self.rebnconv2(hx)
|
264 |
+
hx = self.pool2(hx2)
|
265 |
+
|
266 |
+
hx3 = self.rebnconv3(hx)
|
267 |
+
|
268 |
+
hx4 = self.rebnconv4(hx3)
|
269 |
+
|
270 |
+
hx3d = self.rebnconv3d(torch.cat((hx4,hx3),1))
|
271 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
272 |
+
|
273 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
274 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
275 |
+
|
276 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
277 |
+
|
278 |
+
return hx1d + hxin
|
279 |
+
|
280 |
+
### RSU-4F ###
|
281 |
+
class RSU4F(nn.Module):#UNet04FRES(nn.Module):
|
282 |
+
|
283 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
284 |
+
super(RSU4F,self).__init__()
|
285 |
+
|
286 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
287 |
+
|
288 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
289 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
290 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=4)
|
291 |
+
|
292 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=8)
|
293 |
+
|
294 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=4)
|
295 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=2)
|
296 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
297 |
+
|
298 |
+
def forward(self,x):
|
299 |
+
|
300 |
+
hx = x
|
301 |
+
|
302 |
+
hxin = self.rebnconvin(hx)
|
303 |
+
|
304 |
+
hx1 = self.rebnconv1(hxin)
|
305 |
+
hx2 = self.rebnconv2(hx1)
|
306 |
+
hx3 = self.rebnconv3(hx2)
|
307 |
+
|
308 |
+
hx4 = self.rebnconv4(hx3)
|
309 |
+
|
310 |
+
hx3d = self.rebnconv3d(torch.cat((hx4,hx3),1))
|
311 |
+
hx2d = self.rebnconv2d(torch.cat((hx3d,hx2),1))
|
312 |
+
hx1d = self.rebnconv1d(torch.cat((hx2d,hx1),1))
|
313 |
+
|
314 |
+
return hx1d + hxin
|
315 |
+
|
316 |
+
|
317 |
+
##### U^2-Net ####
|
318 |
+
class U2NET(nn.Module):
|
319 |
+
|
320 |
+
def __init__(self,in_ch=3,out_ch=1):
|
321 |
+
super(U2NET,self).__init__()
|
322 |
+
|
323 |
+
self.stage1 = RSU7(in_ch,32,64)
|
324 |
+
self.pool12 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
325 |
+
|
326 |
+
self.stage2 = RSU6(64,32,128)
|
327 |
+
self.pool23 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
328 |
+
|
329 |
+
self.stage3 = RSU5(128,64,256)
|
330 |
+
self.pool34 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
331 |
+
|
332 |
+
self.stage4 = RSU4(256,128,512)
|
333 |
+
self.pool45 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
334 |
+
|
335 |
+
self.stage5 = RSU4F(512,256,512)
|
336 |
+
self.pool56 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
337 |
+
|
338 |
+
self.stage6 = RSU4F(512,256,512)
|
339 |
+
|
340 |
+
# decoder
|
341 |
+
self.stage5d = RSU4F(1024,256,512)
|
342 |
+
self.stage4d = RSU4(1024,128,256)
|
343 |
+
self.stage3d = RSU5(512,64,128)
|
344 |
+
self.stage2d = RSU6(256,32,64)
|
345 |
+
self.stage1d = RSU7(128,16,64)
|
346 |
+
|
347 |
+
self.side1 = nn.Conv2d(64,out_ch,3,padding=1)
|
348 |
+
self.side2 = nn.Conv2d(64,out_ch,3,padding=1)
|
349 |
+
self.side3 = nn.Conv2d(128,out_ch,3,padding=1)
|
350 |
+
self.side4 = nn.Conv2d(256,out_ch,3,padding=1)
|
351 |
+
self.side5 = nn.Conv2d(512,out_ch,3,padding=1)
|
352 |
+
self.side6 = nn.Conv2d(512,out_ch,3,padding=1)
|
353 |
+
|
354 |
+
self.outconv = nn.Conv2d(6*out_ch,out_ch,1)
|
355 |
+
|
356 |
+
def forward(self,x):
|
357 |
+
|
358 |
+
hx = x
|
359 |
+
|
360 |
+
#stage 1
|
361 |
+
hx1 = self.stage1(hx)
|
362 |
+
hx = self.pool12(hx1)
|
363 |
+
|
364 |
+
#stage 2
|
365 |
+
hx2 = self.stage2(hx)
|
366 |
+
hx = self.pool23(hx2)
|
367 |
+
|
368 |
+
#stage 3
|
369 |
+
hx3 = self.stage3(hx)
|
370 |
+
hx = self.pool34(hx3)
|
371 |
+
|
372 |
+
#stage 4
|
373 |
+
hx4 = self.stage4(hx)
|
374 |
+
hx = self.pool45(hx4)
|
375 |
+
|
376 |
+
#stage 5
|
377 |
+
hx5 = self.stage5(hx)
|
378 |
+
hx = self.pool56(hx5)
|
379 |
+
|
380 |
+
#stage 6
|
381 |
+
hx6 = self.stage6(hx)
|
382 |
+
hx6up = _upsample_like(hx6,hx5)
|
383 |
+
|
384 |
+
#-------------------- decoder --------------------
|
385 |
+
hx5d = self.stage5d(torch.cat((hx6up,hx5),1))
|
386 |
+
hx5dup = _upsample_like(hx5d,hx4)
|
387 |
+
|
388 |
+
hx4d = self.stage4d(torch.cat((hx5dup,hx4),1))
|
389 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
390 |
+
|
391 |
+
hx3d = self.stage3d(torch.cat((hx4dup,hx3),1))
|
392 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
393 |
+
|
394 |
+
hx2d = self.stage2d(torch.cat((hx3dup,hx2),1))
|
395 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
396 |
+
|
397 |
+
hx1d = self.stage1d(torch.cat((hx2dup,hx1),1))
|
398 |
+
|
399 |
+
|
400 |
+
#side output
|
401 |
+
d1 = self.side1(hx1d)
|
402 |
+
|
403 |
+
d2 = self.side2(hx2d)
|
404 |
+
d2 = _upsample_like(d2,d1)
|
405 |
+
|
406 |
+
d3 = self.side3(hx3d)
|
407 |
+
d3 = _upsample_like(d3,d1)
|
408 |
+
|
409 |
+
d4 = self.side4(hx4d)
|
410 |
+
d4 = _upsample_like(d4,d1)
|
411 |
+
|
412 |
+
d5 = self.side5(hx5d)
|
413 |
+
d5 = _upsample_like(d5,d1)
|
414 |
+
|
415 |
+
d6 = self.side6(hx6)
|
416 |
+
d6 = _upsample_like(d6,d1)
|
417 |
+
|
418 |
+
d0 = self.outconv(torch.cat((d1,d2,d3,d4,d5,d6),1))
|
419 |
+
|
420 |
+
return F.sigmoid(d0), F.sigmoid(d1), F.sigmoid(d2), F.sigmoid(d3), F.sigmoid(d4), F.sigmoid(d5), F.sigmoid(d6)
|
421 |
+
|
422 |
+
### U^2-Net small ###
|
423 |
+
class U2NETP(nn.Module):
|
424 |
+
|
425 |
+
def __init__(self,in_ch=3,out_ch=1):
|
426 |
+
super(U2NETP,self).__init__()
|
427 |
+
|
428 |
+
self.stage1 = RSU7(in_ch,16,64)
|
429 |
+
self.pool12 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
430 |
+
|
431 |
+
self.stage2 = RSU6(64,16,64)
|
432 |
+
self.pool23 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
433 |
+
|
434 |
+
self.stage3 = RSU5(64,16,64)
|
435 |
+
self.pool34 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
436 |
+
|
437 |
+
self.stage4 = RSU4(64,16,64)
|
438 |
+
self.pool45 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
439 |
+
|
440 |
+
self.stage5 = RSU4F(64,16,64)
|
441 |
+
self.pool56 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
442 |
+
|
443 |
+
self.stage6 = RSU4F(64,16,64)
|
444 |
+
|
445 |
+
# decoder
|
446 |
+
self.stage5d = RSU4F(128,16,64)
|
447 |
+
self.stage4d = RSU4(128,16,64)
|
448 |
+
self.stage3d = RSU5(128,16,64)
|
449 |
+
self.stage2d = RSU6(128,16,64)
|
450 |
+
self.stage1d = RSU7(128,16,64)
|
451 |
+
|
452 |
+
self.side1 = nn.Conv2d(64,out_ch,3,padding=1)
|
453 |
+
self.side2 = nn.Conv2d(64,out_ch,3,padding=1)
|
454 |
+
self.side3 = nn.Conv2d(64,out_ch,3,padding=1)
|
455 |
+
self.side4 = nn.Conv2d(64,out_ch,3,padding=1)
|
456 |
+
self.side5 = nn.Conv2d(64,out_ch,3,padding=1)
|
457 |
+
self.side6 = nn.Conv2d(64,out_ch,3,padding=1)
|
458 |
+
|
459 |
+
self.outconv = nn.Conv2d(6*out_ch,out_ch,1)
|
460 |
+
|
461 |
+
def forward(self,x):
|
462 |
+
|
463 |
+
hx = x
|
464 |
+
|
465 |
+
#stage 1
|
466 |
+
hx1 = self.stage1(hx)
|
467 |
+
hx = self.pool12(hx1)
|
468 |
+
|
469 |
+
#stage 2
|
470 |
+
hx2 = self.stage2(hx)
|
471 |
+
hx = self.pool23(hx2)
|
472 |
+
|
473 |
+
#stage 3
|
474 |
+
hx3 = self.stage3(hx)
|
475 |
+
hx = self.pool34(hx3)
|
476 |
+
|
477 |
+
#stage 4
|
478 |
+
hx4 = self.stage4(hx)
|
479 |
+
hx = self.pool45(hx4)
|
480 |
+
|
481 |
+
#stage 5
|
482 |
+
hx5 = self.stage5(hx)
|
483 |
+
hx = self.pool56(hx5)
|
484 |
+
|
485 |
+
#stage 6
|
486 |
+
hx6 = self.stage6(hx)
|
487 |
+
hx6up = _upsample_like(hx6,hx5)
|
488 |
+
|
489 |
+
#decoder
|
490 |
+
hx5d = self.stage5d(torch.cat((hx6up,hx5),1))
|
491 |
+
hx5dup = _upsample_like(hx5d,hx4)
|
492 |
+
|
493 |
+
hx4d = self.stage4d(torch.cat((hx5dup,hx4),1))
|
494 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
495 |
+
|
496 |
+
hx3d = self.stage3d(torch.cat((hx4dup,hx3),1))
|
497 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
498 |
+
|
499 |
+
hx2d = self.stage2d(torch.cat((hx3dup,hx2),1))
|
500 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
501 |
+
|
502 |
+
hx1d = self.stage1d(torch.cat((hx2dup,hx1),1))
|
503 |
+
|
504 |
+
|
505 |
+
#side output
|
506 |
+
d1 = self.side1(hx1d)
|
507 |
+
|
508 |
+
d2 = self.side2(hx2d)
|
509 |
+
d2 = _upsample_like(d2,d1)
|
510 |
+
|
511 |
+
d3 = self.side3(hx3d)
|
512 |
+
d3 = _upsample_like(d3,d1)
|
513 |
+
|
514 |
+
d4 = self.side4(hx4d)
|
515 |
+
d4 = _upsample_like(d4,d1)
|
516 |
+
|
517 |
+
d5 = self.side5(hx5d)
|
518 |
+
d5 = _upsample_like(d5,d1)
|
519 |
+
|
520 |
+
d6 = self.side6(hx6)
|
521 |
+
d6 = _upsample_like(d6,d1)
|
522 |
+
|
523 |
+
d0 = self.outconv(torch.cat((d1,d2,d3,d4,d5,d6),1))
|
524 |
+
|
525 |
+
return F.sigmoid(d0), F.sigmoid(d1), F.sigmoid(d2), F.sigmoid(d3), F.sigmoid(d4), F.sigmoid(d5), F.sigmoid(d6)
|
U-2-Net/model/u2net_refactor.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
import math
|
5 |
+
|
6 |
+
__all__ = ['U2NET_full', 'U2NET_lite']
|
7 |
+
|
8 |
+
|
9 |
+
def _upsample_like(x, size):
|
10 |
+
return nn.Upsample(size=size, mode='bilinear', align_corners=False)(x)
|
11 |
+
|
12 |
+
|
13 |
+
def _size_map(x, height):
|
14 |
+
# {height: size} for Upsample
|
15 |
+
size = list(x.shape[-2:])
|
16 |
+
sizes = {}
|
17 |
+
for h in range(1, height):
|
18 |
+
sizes[h] = size
|
19 |
+
size = [math.ceil(w / 2) for w in size]
|
20 |
+
return sizes
|
21 |
+
|
22 |
+
|
23 |
+
class REBNCONV(nn.Module):
|
24 |
+
def __init__(self, in_ch=3, out_ch=3, dilate=1):
|
25 |
+
super(REBNCONV, self).__init__()
|
26 |
+
|
27 |
+
self.conv_s1 = nn.Conv2d(in_ch, out_ch, 3, padding=1 * dilate, dilation=1 * dilate)
|
28 |
+
self.bn_s1 = nn.BatchNorm2d(out_ch)
|
29 |
+
self.relu_s1 = nn.ReLU(inplace=True)
|
30 |
+
|
31 |
+
def forward(self, x):
|
32 |
+
return self.relu_s1(self.bn_s1(self.conv_s1(x)))
|
33 |
+
|
34 |
+
|
35 |
+
class RSU(nn.Module):
|
36 |
+
def __init__(self, name, height, in_ch, mid_ch, out_ch, dilated=False):
|
37 |
+
super(RSU, self).__init__()
|
38 |
+
self.name = name
|
39 |
+
self.height = height
|
40 |
+
self.dilated = dilated
|
41 |
+
self._make_layers(height, in_ch, mid_ch, out_ch, dilated)
|
42 |
+
|
43 |
+
def forward(self, x):
|
44 |
+
sizes = _size_map(x, self.height)
|
45 |
+
x = self.rebnconvin(x)
|
46 |
+
|
47 |
+
# U-Net like symmetric encoder-decoder structure
|
48 |
+
def unet(x, height=1):
|
49 |
+
if height < self.height:
|
50 |
+
x1 = getattr(self, f'rebnconv{height}')(x)
|
51 |
+
if not self.dilated and height < self.height - 1:
|
52 |
+
x2 = unet(getattr(self, 'downsample')(x1), height + 1)
|
53 |
+
else:
|
54 |
+
x2 = unet(x1, height + 1)
|
55 |
+
|
56 |
+
x = getattr(self, f'rebnconv{height}d')(torch.cat((x2, x1), 1))
|
57 |
+
return _upsample_like(x, sizes[height - 1]) if not self.dilated and height > 1 else x
|
58 |
+
else:
|
59 |
+
return getattr(self, f'rebnconv{height}')(x)
|
60 |
+
|
61 |
+
return x + unet(x)
|
62 |
+
|
63 |
+
def _make_layers(self, height, in_ch, mid_ch, out_ch, dilated=False):
|
64 |
+
self.add_module('rebnconvin', REBNCONV(in_ch, out_ch))
|
65 |
+
self.add_module('downsample', nn.MaxPool2d(2, stride=2, ceil_mode=True))
|
66 |
+
|
67 |
+
self.add_module(f'rebnconv1', REBNCONV(out_ch, mid_ch))
|
68 |
+
self.add_module(f'rebnconv1d', REBNCONV(mid_ch * 2, out_ch))
|
69 |
+
|
70 |
+
for i in range(2, height):
|
71 |
+
dilate = 1 if not dilated else 2 ** (i - 1)
|
72 |
+
self.add_module(f'rebnconv{i}', REBNCONV(mid_ch, mid_ch, dilate=dilate))
|
73 |
+
self.add_module(f'rebnconv{i}d', REBNCONV(mid_ch * 2, mid_ch, dilate=dilate))
|
74 |
+
|
75 |
+
dilate = 2 if not dilated else 2 ** (height - 1)
|
76 |
+
self.add_module(f'rebnconv{height}', REBNCONV(mid_ch, mid_ch, dilate=dilate))
|
77 |
+
|
78 |
+
|
79 |
+
class U2NET(nn.Module):
|
80 |
+
def __init__(self, cfgs, out_ch):
|
81 |
+
super(U2NET, self).__init__()
|
82 |
+
self.out_ch = out_ch
|
83 |
+
self._make_layers(cfgs)
|
84 |
+
|
85 |
+
def forward(self, x):
|
86 |
+
sizes = _size_map(x, self.height)
|
87 |
+
maps = [] # storage for maps
|
88 |
+
|
89 |
+
# side saliency map
|
90 |
+
def unet(x, height=1):
|
91 |
+
if height < 6:
|
92 |
+
x1 = getattr(self, f'stage{height}')(x)
|
93 |
+
x2 = unet(getattr(self, 'downsample')(x1), height + 1)
|
94 |
+
x = getattr(self, f'stage{height}d')(torch.cat((x2, x1), 1))
|
95 |
+
side(x, height)
|
96 |
+
return _upsample_like(x, sizes[height - 1]) if height > 1 else x
|
97 |
+
else:
|
98 |
+
x = getattr(self, f'stage{height}')(x)
|
99 |
+
side(x, height)
|
100 |
+
return _upsample_like(x, sizes[height - 1])
|
101 |
+
|
102 |
+
def side(x, h):
|
103 |
+
# side output saliency map (before sigmoid)
|
104 |
+
x = getattr(self, f'side{h}')(x)
|
105 |
+
x = _upsample_like(x, sizes[1])
|
106 |
+
maps.append(x)
|
107 |
+
|
108 |
+
def fuse():
|
109 |
+
# fuse saliency probability maps
|
110 |
+
maps.reverse()
|
111 |
+
x = torch.cat(maps, 1)
|
112 |
+
x = getattr(self, 'outconv')(x)
|
113 |
+
maps.insert(0, x)
|
114 |
+
return [torch.sigmoid(x) for x in maps]
|
115 |
+
|
116 |
+
unet(x)
|
117 |
+
maps = fuse()
|
118 |
+
return maps
|
119 |
+
|
120 |
+
def _make_layers(self, cfgs):
|
121 |
+
self.height = int((len(cfgs) + 1) / 2)
|
122 |
+
self.add_module('downsample', nn.MaxPool2d(2, stride=2, ceil_mode=True))
|
123 |
+
for k, v in cfgs.items():
|
124 |
+
# build rsu block
|
125 |
+
self.add_module(k, RSU(v[0], *v[1]))
|
126 |
+
if v[2] > 0:
|
127 |
+
# build side layer
|
128 |
+
self.add_module(f'side{v[0][-1]}', nn.Conv2d(v[2], self.out_ch, 3, padding=1))
|
129 |
+
# build fuse layer
|
130 |
+
self.add_module('outconv', nn.Conv2d(int(self.height * self.out_ch), self.out_ch, 1))
|
131 |
+
|
132 |
+
|
133 |
+
def U2NET_full():
|
134 |
+
full = {
|
135 |
+
# cfgs for building RSUs and sides
|
136 |
+
# {stage : [name, (height(L), in_ch, mid_ch, out_ch, dilated), side]}
|
137 |
+
'stage1': ['En_1', (7, 3, 32, 64), -1],
|
138 |
+
'stage2': ['En_2', (6, 64, 32, 128), -1],
|
139 |
+
'stage3': ['En_3', (5, 128, 64, 256), -1],
|
140 |
+
'stage4': ['En_4', (4, 256, 128, 512), -1],
|
141 |
+
'stage5': ['En_5', (4, 512, 256, 512, True), -1],
|
142 |
+
'stage6': ['En_6', (4, 512, 256, 512, True), 512],
|
143 |
+
'stage5d': ['De_5', (4, 1024, 256, 512, True), 512],
|
144 |
+
'stage4d': ['De_4', (4, 1024, 128, 256), 256],
|
145 |
+
'stage3d': ['De_3', (5, 512, 64, 128), 128],
|
146 |
+
'stage2d': ['De_2', (6, 256, 32, 64), 64],
|
147 |
+
'stage1d': ['De_1', (7, 128, 16, 64), 64],
|
148 |
+
}
|
149 |
+
return U2NET(cfgs=full, out_ch=1)
|
150 |
+
|
151 |
+
|
152 |
+
def U2NET_lite():
|
153 |
+
lite = {
|
154 |
+
# cfgs for building RSUs and sides
|
155 |
+
# {stage : [name, (height(L), in_ch, mid_ch, out_ch, dilated), side]}
|
156 |
+
'stage1': ['En_1', (7, 3, 16, 64), -1],
|
157 |
+
'stage2': ['En_2', (6, 64, 16, 64), -1],
|
158 |
+
'stage3': ['En_3', (5, 64, 16, 64), -1],
|
159 |
+
'stage4': ['En_4', (4, 64, 16, 64), -1],
|
160 |
+
'stage5': ['En_5', (4, 64, 16, 64, True), -1],
|
161 |
+
'stage6': ['En_6', (4, 64, 16, 64, True), 64],
|
162 |
+
'stage5d': ['De_5', (4, 128, 16, 64, True), 64],
|
163 |
+
'stage4d': ['De_4', (4, 128, 16, 64), 64],
|
164 |
+
'stage3d': ['De_3', (5, 128, 16, 64), 64],
|
165 |
+
'stage2d': ['De_2', (6, 128, 16, 64), 64],
|
166 |
+
'stage1d': ['De_1', (7, 128, 16, 64), 64],
|
167 |
+
}
|
168 |
+
return U2NET(cfgs=lite, out_ch=1)
|
U-2-Net/requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy==1.15.2
|
2 |
+
scikit-image==0.14.0
|
3 |
+
torch
|
4 |
+
torchvision
|
5 |
+
pillow==8.1.1
|
6 |
+
opencv-python
|
7 |
+
paddlepaddle
|
8 |
+
paddlehub
|
9 |
+
gradio
|
U-2-Net/saved_models/face_detection_cv2/haarcascade_frontalface_default.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
U-2-Net/saved_models/u2net_portrait/u2net_portrait.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fb9f0378a16868d08e2325c8b36eae2b174b040b91bf64781fbb5dd4d31712b4
|
3 |
+
size 176315791
|
U-2-Net/setup_model_weights.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gdown
|
3 |
+
|
4 |
+
os.makedirs('./saved_models/u2net', exist_ok=True)
|
5 |
+
os.makedirs('./saved_models/u2net_portrait', exist_ok=True)
|
6 |
+
|
7 |
+
gdown.download('https://drive.google.com/uc?id=1ao1ovG1Qtx4b7EoskHXmi2E9rp5CHLcZ',
|
8 |
+
'./saved_models/u2net/u2net.pth',
|
9 |
+
quiet=False)
|
10 |
+
|
11 |
+
gdown.download('https://drive.google.com/uc?id=1IG3HdpcRiDoWNookbncQjeaPN28t90yW',
|
12 |
+
'./saved_models/u2net_portrait/u2net_portrait.pth',
|
13 |
+
quiet=False)
|
U-2-Net/u2net_human_seg_test.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from skimage import io, transform
|
3 |
+
import torch
|
4 |
+
import torchvision
|
5 |
+
from torch.autograd import Variable
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from torch.utils.data import Dataset, DataLoader
|
9 |
+
from torchvision import transforms#, utils
|
10 |
+
# import torch.optim as optim
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
from PIL import Image
|
14 |
+
import glob
|
15 |
+
|
16 |
+
from data_loader import RescaleT
|
17 |
+
from data_loader import ToTensor
|
18 |
+
from data_loader import ToTensorLab
|
19 |
+
from data_loader import SalObjDataset
|
20 |
+
|
21 |
+
from model import U2NET # full size version 173.6 MB
|
22 |
+
|
23 |
+
# normalize the predicted SOD probability map
|
24 |
+
def normPRED(d):
|
25 |
+
ma = torch.max(d)
|
26 |
+
mi = torch.min(d)
|
27 |
+
|
28 |
+
dn = (d-mi)/(ma-mi)
|
29 |
+
|
30 |
+
return dn
|
31 |
+
|
32 |
+
def save_output(image_name,pred,d_dir):
|
33 |
+
|
34 |
+
predict = pred
|
35 |
+
predict = predict.squeeze()
|
36 |
+
predict_np = predict.cpu().data.numpy()
|
37 |
+
|
38 |
+
im = Image.fromarray(predict_np*255).convert('RGB')
|
39 |
+
img_name = image_name.split(os.sep)[-1]
|
40 |
+
image = io.imread(image_name)
|
41 |
+
imo = im.resize((image.shape[1],image.shape[0]),resample=Image.BILINEAR)
|
42 |
+
|
43 |
+
pb_np = np.array(imo)
|
44 |
+
|
45 |
+
aaa = img_name.split(".")
|
46 |
+
bbb = aaa[0:-1]
|
47 |
+
imidx = bbb[0]
|
48 |
+
for i in range(1,len(bbb)):
|
49 |
+
imidx = imidx + "." + bbb[i]
|
50 |
+
|
51 |
+
imo.save(d_dir+imidx+'.png')
|
52 |
+
|
53 |
+
def main():
|
54 |
+
|
55 |
+
# --------- 1. get image path and name ---------
|
56 |
+
model_name='u2net'
|
57 |
+
|
58 |
+
|
59 |
+
image_dir = os.path.join(os.getcwd(), 'test_data', 'test_human_images')
|
60 |
+
prediction_dir = os.path.join(os.getcwd(), 'test_data', 'test_human_images' + '_results' + os.sep)
|
61 |
+
model_dir = os.path.join(os.getcwd(), 'saved_models', model_name+'_human_seg', model_name + '_human_seg.pth')
|
62 |
+
|
63 |
+
img_name_list = glob.glob(image_dir + os.sep + '*')
|
64 |
+
print(img_name_list)
|
65 |
+
|
66 |
+
# --------- 2. dataloader ---------
|
67 |
+
#1. dataloader
|
68 |
+
test_salobj_dataset = SalObjDataset(img_name_list = img_name_list,
|
69 |
+
lbl_name_list = [],
|
70 |
+
transform=transforms.Compose([RescaleT(320),
|
71 |
+
ToTensorLab(flag=0)])
|
72 |
+
)
|
73 |
+
test_salobj_dataloader = DataLoader(test_salobj_dataset,
|
74 |
+
batch_size=1,
|
75 |
+
shuffle=False,
|
76 |
+
num_workers=1)
|
77 |
+
|
78 |
+
# --------- 3. model define ---------
|
79 |
+
if(model_name=='u2net'):
|
80 |
+
print("...load U2NET---173.6 MB")
|
81 |
+
net = U2NET(3,1)
|
82 |
+
|
83 |
+
if torch.cuda.is_available():
|
84 |
+
net.load_state_dict(torch.load(model_dir))
|
85 |
+
net.cuda()
|
86 |
+
else:
|
87 |
+
net.load_state_dict(torch.load(model_dir, map_location='cpu'))
|
88 |
+
net.eval()
|
89 |
+
|
90 |
+
# --------- 4. inference for each image ---------
|
91 |
+
for i_test, data_test in enumerate(test_salobj_dataloader):
|
92 |
+
|
93 |
+
print("inferencing:",img_name_list[i_test].split(os.sep)[-1])
|
94 |
+
|
95 |
+
inputs_test = data_test['image']
|
96 |
+
inputs_test = inputs_test.type(torch.FloatTensor)
|
97 |
+
|
98 |
+
if torch.cuda.is_available():
|
99 |
+
inputs_test = Variable(inputs_test.cuda())
|
100 |
+
else:
|
101 |
+
inputs_test = Variable(inputs_test)
|
102 |
+
|
103 |
+
d1,d2,d3,d4,d5,d6,d7= net(inputs_test)
|
104 |
+
|
105 |
+
# normalization
|
106 |
+
pred = d1[:,0,:,:]
|
107 |
+
pred = normPRED(pred)
|
108 |
+
|
109 |
+
# save results to test_results folder
|
110 |
+
if not os.path.exists(prediction_dir):
|
111 |
+
os.makedirs(prediction_dir, exist_ok=True)
|
112 |
+
save_output(img_name_list[i_test],pred,prediction_dir)
|
113 |
+
|
114 |
+
del d1,d2,d3,d4,d5,d6,d7
|
115 |
+
|
116 |
+
if __name__ == "__main__":
|
117 |
+
main()
|
U-2-Net/u2net_portrait_composite.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from skimage import io, transform
|
3 |
+
from skimage.filters import gaussian
|
4 |
+
import torch
|
5 |
+
import torchvision
|
6 |
+
from torch.autograd import Variable
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from torch.utils.data import Dataset, DataLoader
|
10 |
+
from torchvision import transforms#, utils
|
11 |
+
# import torch.optim as optim
|
12 |
+
|
13 |
+
import numpy as np
|
14 |
+
from PIL import Image
|
15 |
+
import glob
|
16 |
+
|
17 |
+
from data_loader import RescaleT
|
18 |
+
from data_loader import ToTensor
|
19 |
+
from data_loader import ToTensorLab
|
20 |
+
from data_loader import SalObjDataset
|
21 |
+
|
22 |
+
from model import U2NET # full size version 173.6 MB
|
23 |
+
from model import U2NETP # small version u2net 4.7 MB
|
24 |
+
|
25 |
+
import argparse
|
26 |
+
|
27 |
+
# normalize the predicted SOD probability map
|
28 |
+
def normPRED(d):
|
29 |
+
ma = torch.max(d)
|
30 |
+
mi = torch.min(d)
|
31 |
+
|
32 |
+
dn = (d-mi)/(ma-mi)
|
33 |
+
|
34 |
+
return dn
|
35 |
+
|
36 |
+
def save_output(image_name,pred,d_dir,sigma=2,alpha=0.5):
|
37 |
+
|
38 |
+
predict = pred
|
39 |
+
predict = predict.squeeze()
|
40 |
+
predict_np = predict.cpu().data.numpy()
|
41 |
+
|
42 |
+
image = io.imread(image_name)
|
43 |
+
pd = transform.resize(predict_np,image.shape[0:2],order=2)
|
44 |
+
pd = pd/(np.amax(pd)+1e-8)*255
|
45 |
+
pd = pd[:,:,np.newaxis]
|
46 |
+
|
47 |
+
print(image.shape)
|
48 |
+
print(pd.shape)
|
49 |
+
|
50 |
+
## fuse the orignal portrait image and the portraits into one composite image
|
51 |
+
## 1. use gaussian filter to blur the orginal image
|
52 |
+
sigma=sigma
|
53 |
+
image = gaussian(image, sigma=sigma, preserve_range=True)
|
54 |
+
|
55 |
+
## 2. fuse these orignal image and the portrait with certain weight: alpha
|
56 |
+
alpha = alpha
|
57 |
+
im_comp = image*alpha+pd*(1-alpha)
|
58 |
+
|
59 |
+
print(im_comp.shape)
|
60 |
+
|
61 |
+
|
62 |
+
img_name = image_name.split(os.sep)[-1]
|
63 |
+
aaa = img_name.split(".")
|
64 |
+
bbb = aaa[0:-1]
|
65 |
+
imidx = bbb[0]
|
66 |
+
for i in range(1,len(bbb)):
|
67 |
+
imidx = imidx + "." + bbb[i]
|
68 |
+
io.imsave(d_dir+'/'+imidx+'_sigma_' + str(sigma) + '_alpha_' + str(alpha) + '_composite.png',im_comp)
|
69 |
+
|
70 |
+
def main():
|
71 |
+
|
72 |
+
parser = argparse.ArgumentParser(description="image and portrait composite")
|
73 |
+
parser.add_argument('-s',action='store',dest='sigma')
|
74 |
+
parser.add_argument('-a',action='store',dest='alpha')
|
75 |
+
args = parser.parse_args()
|
76 |
+
print(args.sigma)
|
77 |
+
print(args.alpha)
|
78 |
+
print("--------------------")
|
79 |
+
|
80 |
+
# --------- 1. get image path and name ---------
|
81 |
+
model_name='u2net_portrait'#u2netp
|
82 |
+
|
83 |
+
|
84 |
+
image_dir = './test_data/test_portrait_images/your_portrait_im'
|
85 |
+
prediction_dir = './test_data/test_portrait_images/your_portrait_results'
|
86 |
+
if(not os.path.exists(prediction_dir)):
|
87 |
+
os.mkdir(prediction_dir)
|
88 |
+
|
89 |
+
model_dir = './saved_models/u2net_portrait/u2net_portrait.pth'
|
90 |
+
|
91 |
+
img_name_list = glob.glob(image_dir+'/*')
|
92 |
+
print("Number of images: ", len(img_name_list))
|
93 |
+
|
94 |
+
# --------- 2. dataloader ---------
|
95 |
+
#1. dataloader
|
96 |
+
test_salobj_dataset = SalObjDataset(img_name_list = img_name_list,
|
97 |
+
lbl_name_list = [],
|
98 |
+
transform=transforms.Compose([RescaleT(512),
|
99 |
+
ToTensorLab(flag=0)])
|
100 |
+
)
|
101 |
+
test_salobj_dataloader = DataLoader(test_salobj_dataset,
|
102 |
+
batch_size=1,
|
103 |
+
shuffle=False,
|
104 |
+
num_workers=1)
|
105 |
+
|
106 |
+
# --------- 3. model define ---------
|
107 |
+
|
108 |
+
print("...load U2NET---173.6 MB")
|
109 |
+
net = U2NET(3,1)
|
110 |
+
|
111 |
+
net.load_state_dict(torch.load(model_dir))
|
112 |
+
if torch.cuda.is_available():
|
113 |
+
net.cuda()
|
114 |
+
net.eval()
|
115 |
+
|
116 |
+
# --------- 4. inference for each image ---------
|
117 |
+
for i_test, data_test in enumerate(test_salobj_dataloader):
|
118 |
+
|
119 |
+
print("inferencing:",img_name_list[i_test].split(os.sep)[-1])
|
120 |
+
|
121 |
+
inputs_test = data_test['image']
|
122 |
+
inputs_test = inputs_test.type(torch.FloatTensor)
|
123 |
+
|
124 |
+
if torch.cuda.is_available():
|
125 |
+
inputs_test = Variable(inputs_test.cuda())
|
126 |
+
else:
|
127 |
+
inputs_test = Variable(inputs_test)
|
128 |
+
|
129 |
+
d1,d2,d3,d4,d5,d6,d7= net(inputs_test)
|
130 |
+
|
131 |
+
# normalization
|
132 |
+
pred = 1.0 - d1[:,0,:,:]
|
133 |
+
pred = normPRED(pred)
|
134 |
+
|
135 |
+
# save results to test_results folder
|
136 |
+
save_output(img_name_list[i_test],pred,prediction_dir,sigma=float(args.sigma),alpha=float(args.alpha))
|
137 |
+
|
138 |
+
del d1,d2,d3,d4,d5,d6,d7
|
139 |
+
|
140 |
+
if __name__ == "__main__":
|
141 |
+
main()
|
U-2-Net/u2net_portrait_demo.py
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import torch
|
3 |
+
from model import U2NET
|
4 |
+
from torch.autograd import Variable
|
5 |
+
import numpy as np
|
6 |
+
from glob import glob
|
7 |
+
import os
|
8 |
+
|
9 |
+
def detect_single_face(face_cascade,img):
|
10 |
+
# Convert into grayscale
|
11 |
+
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
12 |
+
|
13 |
+
# Detect faces
|
14 |
+
faces = face_cascade.detectMultiScale(gray, 1.1, 4)
|
15 |
+
if(len(faces)==0):
|
16 |
+
print("Warming: no face detection, the portrait u2net will run on the whole image!")
|
17 |
+
return None
|
18 |
+
|
19 |
+
# filter to keep the largest face
|
20 |
+
wh = 0
|
21 |
+
idx = 0
|
22 |
+
for i in range(0,len(faces)):
|
23 |
+
(x,y,w,h) = faces[i]
|
24 |
+
if(wh<w*h):
|
25 |
+
idx = i
|
26 |
+
wh = w*h
|
27 |
+
|
28 |
+
return faces[idx]
|
29 |
+
|
30 |
+
# crop, pad and resize face region to 512x512 resolution
|
31 |
+
def crop_face(img, face):
|
32 |
+
|
33 |
+
# no face detected, return the whole image and the inference will run on the whole image
|
34 |
+
if(face is None):
|
35 |
+
return img
|
36 |
+
(x, y, w, h) = face
|
37 |
+
|
38 |
+
height,width = img.shape[0:2]
|
39 |
+
|
40 |
+
# crop the face with a bigger bbox
|
41 |
+
hmw = h - w
|
42 |
+
# hpad = int(h/2)+1
|
43 |
+
# wpad = int(w/2)+1
|
44 |
+
|
45 |
+
l,r,t,b = 0,0,0,0
|
46 |
+
lpad = int(float(w)*0.4)
|
47 |
+
left = x-lpad
|
48 |
+
if(left<0):
|
49 |
+
l = lpad-x
|
50 |
+
left = 0
|
51 |
+
|
52 |
+
rpad = int(float(w)*0.4)
|
53 |
+
right = x+w+rpad
|
54 |
+
if(right>width):
|
55 |
+
r = right-width
|
56 |
+
right = width
|
57 |
+
|
58 |
+
tpad = int(float(h)*0.6)
|
59 |
+
top = y - tpad
|
60 |
+
if(top<0):
|
61 |
+
t = tpad-y
|
62 |
+
top = 0
|
63 |
+
|
64 |
+
bpad = int(float(h)*0.2)
|
65 |
+
bottom = y+h+bpad
|
66 |
+
if(bottom>height):
|
67 |
+
b = bottom-height
|
68 |
+
bottom = height
|
69 |
+
|
70 |
+
|
71 |
+
im_face = img[top:bottom,left:right]
|
72 |
+
if(len(im_face.shape)==2):
|
73 |
+
im_face = np.repeat(im_face[:,:,np.newaxis],(1,1,3))
|
74 |
+
|
75 |
+
im_face = np.pad(im_face,((t,b),(l,r),(0,0)),mode='constant',constant_values=((255,255),(255,255),(255,255)))
|
76 |
+
|
77 |
+
# pad to achieve image with square shape for avoding face deformation after resizing
|
78 |
+
hf,wf = im_face.shape[0:2]
|
79 |
+
if(hf-2>wf):
|
80 |
+
wfp = int((hf-wf)/2)
|
81 |
+
im_face = np.pad(im_face,((0,0),(wfp,wfp),(0,0)),mode='constant',constant_values=((255,255),(255,255),(255,255)))
|
82 |
+
elif(wf-2>hf):
|
83 |
+
hfp = int((wf-hf)/2)
|
84 |
+
im_face = np.pad(im_face,((hfp,hfp),(0,0),(0,0)),mode='constant',constant_values=((255,255),(255,255),(255,255)))
|
85 |
+
|
86 |
+
# resize to have 512x512 resolution
|
87 |
+
im_face = cv2.resize(im_face, (512,512), interpolation = cv2.INTER_AREA)
|
88 |
+
|
89 |
+
return im_face
|
90 |
+
|
91 |
+
def normPRED(d):
|
92 |
+
ma = torch.max(d)
|
93 |
+
mi = torch.min(d)
|
94 |
+
|
95 |
+
dn = (d-mi)/(ma-mi)
|
96 |
+
|
97 |
+
return dn
|
98 |
+
|
99 |
+
def inference(net,input):
|
100 |
+
|
101 |
+
# normalize the input
|
102 |
+
tmpImg = np.zeros((input.shape[0],input.shape[1],3))
|
103 |
+
input = input/np.max(input)
|
104 |
+
|
105 |
+
tmpImg[:,:,0] = (input[:,:,2]-0.406)/0.225
|
106 |
+
tmpImg[:,:,1] = (input[:,:,1]-0.456)/0.224
|
107 |
+
tmpImg[:,:,2] = (input[:,:,0]-0.485)/0.229
|
108 |
+
|
109 |
+
# convert BGR to RGB
|
110 |
+
tmpImg = tmpImg.transpose((2, 0, 1))
|
111 |
+
tmpImg = tmpImg[np.newaxis,:,:,:]
|
112 |
+
tmpImg = torch.from_numpy(tmpImg)
|
113 |
+
|
114 |
+
# convert numpy array to torch tensor
|
115 |
+
tmpImg = tmpImg.type(torch.FloatTensor)
|
116 |
+
|
117 |
+
if torch.cuda.is_available():
|
118 |
+
tmpImg = Variable(tmpImg.cuda())
|
119 |
+
else:
|
120 |
+
tmpImg = Variable(tmpImg)
|
121 |
+
|
122 |
+
# inference
|
123 |
+
d1,d2,d3,d4,d5,d6,d7= net(tmpImg)
|
124 |
+
|
125 |
+
# normalization
|
126 |
+
pred = 1.0 - d1[:,0,:,:]
|
127 |
+
pred = normPRED(pred)
|
128 |
+
|
129 |
+
# convert torch tensor to numpy array
|
130 |
+
pred = pred.squeeze()
|
131 |
+
pred = pred.cpu().data.numpy()
|
132 |
+
|
133 |
+
del d1,d2,d3,d4,d5,d6,d7
|
134 |
+
|
135 |
+
return pred
|
136 |
+
|
137 |
+
def main():
|
138 |
+
|
139 |
+
# get the image path list for inference
|
140 |
+
im_list = glob('./test_data/test_portrait_images/your_portrait_im/*')
|
141 |
+
print("Number of images: ",len(im_list))
|
142 |
+
# indicate the output directory
|
143 |
+
out_dir = './test_data/test_portrait_images/your_portrait_results'
|
144 |
+
if(not os.path.exists(out_dir)):
|
145 |
+
os.mkdir(out_dir)
|
146 |
+
|
147 |
+
# Load the cascade face detection model
|
148 |
+
face_cascade = cv2.CascadeClassifier('./saved_models/face_detection_cv2/haarcascade_frontalface_default.xml')
|
149 |
+
# u2net_portrait path
|
150 |
+
model_dir = './saved_models/u2net_portrait/u2net_portrait.pth'
|
151 |
+
|
152 |
+
# load u2net_portrait model
|
153 |
+
net = U2NET(3,1)
|
154 |
+
net.load_state_dict(torch.load(model_dir))
|
155 |
+
if torch.cuda.is_available():
|
156 |
+
net.cuda()
|
157 |
+
net.eval()
|
158 |
+
|
159 |
+
# do the inference one-by-one
|
160 |
+
for i in range(0,len(im_list)):
|
161 |
+
print("--------------------------")
|
162 |
+
print("inferencing ", i, "/", len(im_list), im_list[i])
|
163 |
+
|
164 |
+
# load each image
|
165 |
+
img = cv2.imread(im_list[i])
|
166 |
+
height,width = img.shape[0:2]
|
167 |
+
face = detect_single_face(face_cascade,img)
|
168 |
+
im_face = crop_face(img, face)
|
169 |
+
im_portrait = inference(net,im_face)
|
170 |
+
|
171 |
+
# save the output
|
172 |
+
cv2.imwrite(out_dir+"/"+im_list[i].split('/')[-1][0:-4]+'.png',(im_portrait*255).astype(np.uint8))
|
173 |
+
|
174 |
+
if __name__ == '__main__':
|
175 |
+
main()
|
U-2-Net/u2net_portrait_test.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from skimage import io, transform
|
3 |
+
import torch
|
4 |
+
import torchvision
|
5 |
+
from torch.autograd import Variable
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from torch.utils.data import Dataset, DataLoader
|
9 |
+
from torchvision import transforms#, utils
|
10 |
+
# import torch.optim as optim
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
from PIL import Image
|
14 |
+
import glob
|
15 |
+
|
16 |
+
from data_loader import RescaleT
|
17 |
+
from data_loader import ToTensor
|
18 |
+
from data_loader import ToTensorLab
|
19 |
+
from data_loader import SalObjDataset
|
20 |
+
|
21 |
+
from model import U2NET # full size version 173.6 MB
|
22 |
+
from model import U2NETP # small version u2net 4.7 MB
|
23 |
+
|
24 |
+
# normalize the predicted SOD probability map
|
25 |
+
def normPRED(d):
|
26 |
+
ma = torch.max(d)
|
27 |
+
mi = torch.min(d)
|
28 |
+
|
29 |
+
dn = (d-mi)/(ma-mi)
|
30 |
+
|
31 |
+
return dn
|
32 |
+
|
33 |
+
def save_output(image_name,pred,d_dir):
|
34 |
+
|
35 |
+
predict = pred
|
36 |
+
predict = predict.squeeze()
|
37 |
+
predict_np = predict.cpu().data.numpy()
|
38 |
+
|
39 |
+
im = Image.fromarray(predict_np*255).convert('RGB')
|
40 |
+
img_name = image_name.split(os.sep)[-1]
|
41 |
+
image = io.imread(image_name)
|
42 |
+
imo = im.resize((image.shape[1],image.shape[0]),resample=Image.BILINEAR)
|
43 |
+
|
44 |
+
pb_np = np.array(imo)
|
45 |
+
|
46 |
+
aaa = img_name.split(".")
|
47 |
+
bbb = aaa[0:-1]
|
48 |
+
imidx = bbb[0]
|
49 |
+
for i in range(1,len(bbb)):
|
50 |
+
imidx = imidx + "." + bbb[i]
|
51 |
+
|
52 |
+
imo.save(d_dir+'/'+imidx+'.png')
|
53 |
+
|
54 |
+
def main():
|
55 |
+
|
56 |
+
# --------- 1. get image path and name ---------
|
57 |
+
model_name='u2net_portrait'#u2netp
|
58 |
+
|
59 |
+
|
60 |
+
image_dir = './test_data/test_portrait_images/portrait_im'
|
61 |
+
prediction_dir = './test_data/test_portrait_images/portrait_results'
|
62 |
+
if(not os.path.exists(prediction_dir)):
|
63 |
+
os.mkdir(prediction_dir)
|
64 |
+
|
65 |
+
model_dir = './saved_models/u2net_portrait/u2net_portrait.pth'
|
66 |
+
|
67 |
+
img_name_list = glob.glob(image_dir+'/*')
|
68 |
+
print("Number of images: ", len(img_name_list))
|
69 |
+
|
70 |
+
# --------- 2. dataloader ---------
|
71 |
+
#1. dataloader
|
72 |
+
test_salobj_dataset = SalObjDataset(img_name_list = img_name_list,
|
73 |
+
lbl_name_list = [],
|
74 |
+
transform=transforms.Compose([RescaleT(512),
|
75 |
+
ToTensorLab(flag=0)])
|
76 |
+
)
|
77 |
+
test_salobj_dataloader = DataLoader(test_salobj_dataset,
|
78 |
+
batch_size=1,
|
79 |
+
shuffle=False,
|
80 |
+
num_workers=1)
|
81 |
+
|
82 |
+
# --------- 3. model define ---------
|
83 |
+
|
84 |
+
print("...load U2NET---173.6 MB")
|
85 |
+
net = U2NET(3,1)
|
86 |
+
|
87 |
+
net.load_state_dict(torch.load(model_dir))
|
88 |
+
if torch.cuda.is_available():
|
89 |
+
net.cuda()
|
90 |
+
net.eval()
|
91 |
+
|
92 |
+
# --------- 4. inference for each image ---------
|
93 |
+
for i_test, data_test in enumerate(test_salobj_dataloader):
|
94 |
+
|
95 |
+
print("inferencing:",img_name_list[i_test].split(os.sep)[-1])
|
96 |
+
|
97 |
+
inputs_test = data_test['image']
|
98 |
+
inputs_test = inputs_test.type(torch.FloatTensor)
|
99 |
+
|
100 |
+
if torch.cuda.is_available():
|
101 |
+
inputs_test = Variable(inputs_test.cuda())
|
102 |
+
else:
|
103 |
+
inputs_test = Variable(inputs_test)
|
104 |
+
|
105 |
+
d1,d2,d3,d4,d5,d6,d7= net(inputs_test)
|
106 |
+
|
107 |
+
# normalization
|
108 |
+
pred = 1.0 - d1[:,0,:,:]
|
109 |
+
pred = normPRED(pred)
|
110 |
+
|
111 |
+
# save results to test_results folder
|
112 |
+
save_output(img_name_list[i_test],pred,prediction_dir)
|
113 |
+
|
114 |
+
del d1,d2,d3,d4,d5,d6,d7
|
115 |
+
|
116 |
+
if __name__ == "__main__":
|
117 |
+
main()
|
U-2-Net/u2net_test.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from skimage import io, transform
|
3 |
+
import torch
|
4 |
+
import torchvision
|
5 |
+
from torch.autograd import Variable
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from torch.utils.data import Dataset, DataLoader
|
9 |
+
from torchvision import transforms#, utils
|
10 |
+
# import torch.optim as optim
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
from PIL import Image
|
14 |
+
import glob
|
15 |
+
|
16 |
+
from data_loader import RescaleT
|
17 |
+
from data_loader import ToTensor
|
18 |
+
from data_loader import ToTensorLab
|
19 |
+
from data_loader import SalObjDataset
|
20 |
+
|
21 |
+
from model import U2NET # full size version 173.6 MB
|
22 |
+
from model import U2NETP # small version u2net 4.7 MB
|
23 |
+
|
24 |
+
# normalize the predicted SOD probability map
|
25 |
+
def normPRED(d):
|
26 |
+
ma = torch.max(d)
|
27 |
+
mi = torch.min(d)
|
28 |
+
|
29 |
+
dn = (d-mi)/(ma-mi)
|
30 |
+
|
31 |
+
return dn
|
32 |
+
|
33 |
+
def save_output(image_name,pred,d_dir):
|
34 |
+
|
35 |
+
predict = pred
|
36 |
+
predict = predict.squeeze()
|
37 |
+
predict_np = predict.cpu().data.numpy()
|
38 |
+
|
39 |
+
im = Image.fromarray(predict_np*255).convert('RGB')
|
40 |
+
img_name = image_name.split(os.sep)[-1]
|
41 |
+
image = io.imread(image_name)
|
42 |
+
imo = im.resize((image.shape[1],image.shape[0]),resample=Image.BILINEAR)
|
43 |
+
|
44 |
+
pb_np = np.array(imo)
|
45 |
+
|
46 |
+
aaa = img_name.split(".")
|
47 |
+
bbb = aaa[0:-1]
|
48 |
+
imidx = bbb[0]
|
49 |
+
for i in range(1,len(bbb)):
|
50 |
+
imidx = imidx + "." + bbb[i]
|
51 |
+
|
52 |
+
imo.save(d_dir+imidx+'.png')
|
53 |
+
|
54 |
+
def main():
|
55 |
+
|
56 |
+
# --------- 1. get image path and name ---------
|
57 |
+
model_name='u2net'#u2netp
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
image_dir = os.path.join(os.getcwd(), 'test_data', 'test_images')
|
62 |
+
prediction_dir = os.path.join(os.getcwd(), 'test_data', model_name + '_results' + os.sep)
|
63 |
+
model_dir = os.path.join(os.getcwd(), 'saved_models', model_name, model_name + '.pth')
|
64 |
+
|
65 |
+
img_name_list = glob.glob(image_dir + os.sep + '*')
|
66 |
+
print(img_name_list)
|
67 |
+
|
68 |
+
# --------- 2. dataloader ---------
|
69 |
+
#1. dataloader
|
70 |
+
test_salobj_dataset = SalObjDataset(img_name_list = img_name_list,
|
71 |
+
lbl_name_list = [],
|
72 |
+
transform=transforms.Compose([RescaleT(320),
|
73 |
+
ToTensorLab(flag=0)])
|
74 |
+
)
|
75 |
+
test_salobj_dataloader = DataLoader(test_salobj_dataset,
|
76 |
+
batch_size=1,
|
77 |
+
shuffle=False,
|
78 |
+
num_workers=1)
|
79 |
+
|
80 |
+
# --------- 3. model define ---------
|
81 |
+
if(model_name=='u2net'):
|
82 |
+
print("...load U2NET---173.6 MB")
|
83 |
+
net = U2NET(3,1)
|
84 |
+
elif(model_name=='u2netp'):
|
85 |
+
print("...load U2NEP---4.7 MB")
|
86 |
+
net = U2NETP(3,1)
|
87 |
+
|
88 |
+
if torch.cuda.is_available():
|
89 |
+
net.load_state_dict(torch.load(model_dir))
|
90 |
+
net.cuda()
|
91 |
+
else:
|
92 |
+
net.load_state_dict(torch.load(model_dir, map_location='cpu'))
|
93 |
+
net.eval()
|
94 |
+
|
95 |
+
# --------- 4. inference for each image ---------
|
96 |
+
for i_test, data_test in enumerate(test_salobj_dataloader):
|
97 |
+
|
98 |
+
print("inferencing:",img_name_list[i_test].split(os.sep)[-1])
|
99 |
+
|
100 |
+
inputs_test = data_test['image']
|
101 |
+
inputs_test = inputs_test.type(torch.FloatTensor)
|
102 |
+
|
103 |
+
if torch.cuda.is_available():
|
104 |
+
inputs_test = Variable(inputs_test.cuda())
|
105 |
+
else:
|
106 |
+
inputs_test = Variable(inputs_test)
|
107 |
+
|
108 |
+
d1,d2,d3,d4,d5,d6,d7= net(inputs_test)
|
109 |
+
|
110 |
+
# normalization
|
111 |
+
pred = d1[:,0,:,:]
|
112 |
+
pred = normPRED(pred)
|
113 |
+
|
114 |
+
# save results to test_results folder
|
115 |
+
if not os.path.exists(prediction_dir):
|
116 |
+
os.makedirs(prediction_dir, exist_ok=True)
|
117 |
+
save_output(img_name_list[i_test],pred,prediction_dir)
|
118 |
+
|
119 |
+
del d1,d2,d3,d4,d5,d6,d7
|
120 |
+
|
121 |
+
if __name__ == "__main__":
|
122 |
+
main()
|
U-2-Net/u2net_train.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import torchvision
|
4 |
+
from torch.autograd import Variable
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
from torch.utils.data import Dataset, DataLoader
|
9 |
+
from torchvision import transforms, utils
|
10 |
+
import torch.optim as optim
|
11 |
+
import torchvision.transforms as standard_transforms
|
12 |
+
|
13 |
+
import numpy as np
|
14 |
+
import glob
|
15 |
+
import os
|
16 |
+
|
17 |
+
from data_loader import Rescale
|
18 |
+
from data_loader import RescaleT
|
19 |
+
from data_loader import RandomCrop
|
20 |
+
from data_loader import ToTensor
|
21 |
+
from data_loader import ToTensorLab
|
22 |
+
from data_loader import SalObjDataset
|
23 |
+
|
24 |
+
from model import U2NET
|
25 |
+
from model import U2NETP
|
26 |
+
|
27 |
+
# ------- 1. define loss function --------
|
28 |
+
|
29 |
+
bce_loss = nn.BCELoss(size_average=True)
|
30 |
+
|
31 |
+
def muti_bce_loss_fusion(d0, d1, d2, d3, d4, d5, d6, labels_v):
|
32 |
+
|
33 |
+
loss0 = bce_loss(d0,labels_v)
|
34 |
+
loss1 = bce_loss(d1,labels_v)
|
35 |
+
loss2 = bce_loss(d2,labels_v)
|
36 |
+
loss3 = bce_loss(d3,labels_v)
|
37 |
+
loss4 = bce_loss(d4,labels_v)
|
38 |
+
loss5 = bce_loss(d5,labels_v)
|
39 |
+
loss6 = bce_loss(d6,labels_v)
|
40 |
+
|
41 |
+
loss = loss0 + loss1 + loss2 + loss3 + loss4 + loss5 + loss6
|
42 |
+
print("l0: %3f, l1: %3f, l2: %3f, l3: %3f, l4: %3f, l5: %3f, l6: %3f\n"%(loss0.data.item(),loss1.data.item(),loss2.data.item(),loss3.data.item(),loss4.data.item(),loss5.data.item(),loss6.data.item()))
|
43 |
+
|
44 |
+
return loss0, loss
|
45 |
+
|
46 |
+
|
47 |
+
# ------- 2. set the directory of training dataset --------
|
48 |
+
|
49 |
+
model_name = 'u2net' #'u2netp'
|
50 |
+
|
51 |
+
data_dir = os.path.join(os.getcwd(), 'train_data' + os.sep)
|
52 |
+
tra_image_dir = os.path.join('DUTS', 'DUTS-TR', 'DUTS-TR', 'im_aug' + os.sep)
|
53 |
+
tra_label_dir = os.path.join('DUTS', 'DUTS-TR', 'DUTS-TR', 'gt_aug' + os.sep)
|
54 |
+
|
55 |
+
image_ext = '.jpg'
|
56 |
+
label_ext = '.png'
|
57 |
+
|
58 |
+
model_dir = os.path.join(os.getcwd(), 'saved_models', model_name + os.sep)
|
59 |
+
|
60 |
+
epoch_num = 100000
|
61 |
+
batch_size_train = 12
|
62 |
+
batch_size_val = 1
|
63 |
+
train_num = 0
|
64 |
+
val_num = 0
|
65 |
+
|
66 |
+
tra_img_name_list = glob.glob(data_dir + tra_image_dir + '*' + image_ext)
|
67 |
+
|
68 |
+
tra_lbl_name_list = []
|
69 |
+
for img_path in tra_img_name_list:
|
70 |
+
img_name = img_path.split(os.sep)[-1]
|
71 |
+
|
72 |
+
aaa = img_name.split(".")
|
73 |
+
bbb = aaa[0:-1]
|
74 |
+
imidx = bbb[0]
|
75 |
+
for i in range(1,len(bbb)):
|
76 |
+
imidx = imidx + "." + bbb[i]
|
77 |
+
|
78 |
+
tra_lbl_name_list.append(data_dir + tra_label_dir + imidx + label_ext)
|
79 |
+
|
80 |
+
print("---")
|
81 |
+
print("train images: ", len(tra_img_name_list))
|
82 |
+
print("train labels: ", len(tra_lbl_name_list))
|
83 |
+
print("---")
|
84 |
+
|
85 |
+
train_num = len(tra_img_name_list)
|
86 |
+
|
87 |
+
salobj_dataset = SalObjDataset(
|
88 |
+
img_name_list=tra_img_name_list,
|
89 |
+
lbl_name_list=tra_lbl_name_list,
|
90 |
+
transform=transforms.Compose([
|
91 |
+
RescaleT(320),
|
92 |
+
RandomCrop(288),
|
93 |
+
ToTensorLab(flag=0)]))
|
94 |
+
salobj_dataloader = DataLoader(salobj_dataset, batch_size=batch_size_train, shuffle=True, num_workers=1)
|
95 |
+
|
96 |
+
# ------- 3. define model --------
|
97 |
+
# define the net
|
98 |
+
if(model_name=='u2net'):
|
99 |
+
net = U2NET(3, 1)
|
100 |
+
elif(model_name=='u2netp'):
|
101 |
+
net = U2NETP(3,1)
|
102 |
+
|
103 |
+
if torch.cuda.is_available():
|
104 |
+
net.cuda()
|
105 |
+
|
106 |
+
# ------- 4. define optimizer --------
|
107 |
+
print("---define optimizer...")
|
108 |
+
optimizer = optim.Adam(net.parameters(), lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
|
109 |
+
|
110 |
+
# ------- 5. training process --------
|
111 |
+
print("---start training...")
|
112 |
+
ite_num = 0
|
113 |
+
running_loss = 0.0
|
114 |
+
running_tar_loss = 0.0
|
115 |
+
ite_num4val = 0
|
116 |
+
save_frq = 2000 # save the model every 2000 iterations
|
117 |
+
|
118 |
+
for epoch in range(0, epoch_num):
|
119 |
+
net.train()
|
120 |
+
|
121 |
+
for i, data in enumerate(salobj_dataloader):
|
122 |
+
ite_num = ite_num + 1
|
123 |
+
ite_num4val = ite_num4val + 1
|
124 |
+
|
125 |
+
inputs, labels = data['image'], data['label']
|
126 |
+
|
127 |
+
inputs = inputs.type(torch.FloatTensor)
|
128 |
+
labels = labels.type(torch.FloatTensor)
|
129 |
+
|
130 |
+
# wrap them in Variable
|
131 |
+
if torch.cuda.is_available():
|
132 |
+
inputs_v, labels_v = Variable(inputs.cuda(), requires_grad=False), Variable(labels.cuda(),
|
133 |
+
requires_grad=False)
|
134 |
+
else:
|
135 |
+
inputs_v, labels_v = Variable(inputs, requires_grad=False), Variable(labels, requires_grad=False)
|
136 |
+
|
137 |
+
# y zero the parameter gradients
|
138 |
+
optimizer.zero_grad()
|
139 |
+
|
140 |
+
# forward + backward + optimize
|
141 |
+
d0, d1, d2, d3, d4, d5, d6 = net(inputs_v)
|
142 |
+
loss2, loss = muti_bce_loss_fusion(d0, d1, d2, d3, d4, d5, d6, labels_v)
|
143 |
+
|
144 |
+
loss.backward()
|
145 |
+
optimizer.step()
|
146 |
+
|
147 |
+
# # print statistics
|
148 |
+
running_loss += loss.data.item()
|
149 |
+
running_tar_loss += loss2.data.item()
|
150 |
+
|
151 |
+
# del temporary outputs and loss
|
152 |
+
del d0, d1, d2, d3, d4, d5, d6, loss2, loss
|
153 |
+
|
154 |
+
print("[epoch: %3d/%3d, batch: %5d/%5d, ite: %d] train loss: %3f, tar: %3f " % (
|
155 |
+
epoch + 1, epoch_num, (i + 1) * batch_size_train, train_num, ite_num, running_loss / ite_num4val, running_tar_loss / ite_num4val))
|
156 |
+
|
157 |
+
if ite_num % save_frq == 0:
|
158 |
+
|
159 |
+
torch.save(net.state_dict(), model_dir + model_name+"_bce_itr_%d_train_%3f_tar_%3f.pth" % (ite_num, running_loss / ite_num4val, running_tar_loss / ite_num4val))
|
160 |
+
running_loss = 0.0
|
161 |
+
running_tar_loss = 0.0
|
162 |
+
net.train() # resume train
|
163 |
+
ite_num4val = 0
|
164 |
+
|