Spaces:
Sleeping
Sleeping
File size: 7,730 Bytes
ff83063 f62acd5 ff83063 d0d2b4b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import streamlit as st
import pandas as pd
import numpy as np
from sklearn.pipeline import make_pipeline
from catboost import CatBoostClassifier
from sklearn.preprocessing import StandardScaler
import shap
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.feature_selection import SelectKBest
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import make_pipeline
from sklearn.linear_model import LogisticRegression
from catboost import CatBoostClassifier
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.cluster import DBSCAN
from sklearn.neighbors import NearestNeighbors
import numpy as np
import pandas as pd
from tqdm.auto import tqdm
from sklearn.preprocessing import OneHotEncoder
import pickle
class CustomFeatureTransformer(BaseEstimator, TransformerMixin):
def __init__(self, verbose=False):
self.verbose = verbose
self.column_means_ = None
def fit(self, X, y=None):
X_copy = X.copy()
self.numerical_columns = list(X_copy.select_dtypes(include=np.number).columns)
self.categorical_columns = list(X_copy.select_dtypes(exclude=np.number).columns)
# filter out with > 100 unique values
for col in self.categorical_columns:
if len(X_copy[col].unique()) > 100:
self.categorical_columns.remove(col)
if self.verbose:
print(f'removed {col} with {len(X_copy[col].unique())} unique values')
# Store means for each column
self.column_means_ = X_copy[self.numerical_columns].mean().fillna(0)
self.onehot_encoder = OneHotEncoder(sparse_output=False, handle_unknown='ignore')
self.onehot_encoder.fit(X_copy[self.categorical_columns])
return self
def transform(self, X):
X_copy = X.copy()
X_copy.reset_index(drop=True, inplace=True)
result_dfs = []
# Process each column
for col in self.numerical_columns:
# Add is_null indicator
is_null = X_copy[col].isna()
result_dfs.append(pd.DataFrame({
f"{col}_is_null": is_null.astype(int)
}))
filled_values = X_copy[col].fillna(self.column_means_[col])
result_dfs.append(pd.DataFrame({
f"{col}_value": filled_values
}))
# Add non-numerical columns using one-hot encoding
result_dfs.append(pd.DataFrame(self.onehot_encoder.transform(X_copy[self.categorical_columns]), columns=self.onehot_encoder.get_feature_names_out()))
# Concatenate all transformed features
df = pd.concat(result_dfs, axis=1)
assert not df.isna().any().any()
return df
class DayNumberTransformer:
def __init__(self):
pass
def fit(self, X, y=None):
return self
def transform(self, X, y=None):
X = X.copy()
X['message_timestamp'] = pd.to_datetime(X['message_timestamp'])
X['week_number'] = X['message_timestamp'].dt.strftime('%U %w')
return X
class WeatherTransformer:
def __init__(self, weather):
self.weather = weather
self.weather['date'] = pd.to_datetime(self.weather['date']).dt.tz_convert('Europe/Berlin')
def fit(self, X, y=None):
return self
def transform(self, X, y=None):
X = X.copy()
# round ot hour
X['message_timestamp'] = pd.to_datetime(X['message_timestamp']).dt.tz_localize('Europe/Berlin')
X['message_timestamp'] = X['message_timestamp'].dt.round('h')
# join weather data by column message_timestamp and date
X = X.merge(self.weather, left_on='message_timestamp', right_on='date', how='left')
# print number of rows in X that have no weather data
if X['temperature_2m'].isna().sum() > 0:
print("Number of rows without weather data: ", X['temperature_2m'].isna().sum())
columns_X = X.columns
# delete all that contain 'sensor' in the name
columns_X = [col for col in columns_X if 'sensor' not in col]
# print("Columns in X: ", columns_X)
# 1 / 0
return X
class TopFeaturesSelector:
def __init__(self, top_features):
self.top_features = top_features
def fit(self, X, y=None):
return self
def transform(self, X, y=None):
return X[self.top_features]
import warnings
warnings.filterwarnings("ignore")
weather_file = 'hourly_data.csv'
shap_importance_file = 'shap_importance.csv'
weather = pd.read_csv(weather_file)
shap_importance_df = pd.read_csv(shap_importance_file)
print(shap_importance_df.head())
top_features = shap_importance_df['Feature'].head(25).values
catboost = CatBoostClassifier().load_model('catboost_model.cbm')
scaler = pickle.load(open('scaler.pkl', 'rb'))
custom_feature_transformer = pickle.load(open('customfeatureselector.pkl', 'rb'))
# Define the sklearn pipeline
pipe = make_pipeline(
WeatherTransformer(weather),
DayNumberTransformer(),
custom_feature_transformer,
TopFeaturesSelector(top_features),
scaler,
catboost
)
def egor_plots(X_test, k=1000):
# Preprocess X_test
X_prescaled = pipe[:-2].transform(X_test)[:k]
X_test_preprocessed = pipe[-2].transform(X_prescaled)
# SHAP Analysis
st.write("SHAP Analysis... This may take a couple of minutes depending on the number of samples.")
explainer = shap.TreeExplainer(pipe[-1])
shap_values = explainer(X_test_preprocessed)
shap_values.feature_names = X_prescaled.columns
# SHAP Summary Plot
st.write("### SHAP Summary Plot")
fig_summary = shap.summary_plot(shap_values, X_test_preprocessed, show=False)
st.pyplot(fig_summary)
# SHAP Scatter Plots
st.write("### SHAP Scatter Plots")
for i in range(25):
feature_name = top_features[i]
st.write(f"#### Scatter Plot for Feature: {feature_name}")
fig, ax = plt.subplots()
shap.plots.scatter(shap_values[:, i], X_test_preprocessed[:, i], show=False, ax=ax)
ax.axhline(y=0, color='r', linestyle='--')
ax.axvline(x=0, color='g', linestyle='--')
st.pyplot(fig)
# Streamlit App
st.title("BMW Hackathon Defect Detection")
st.write("### Upload your tabular data")
# File uploader
uploaded_file = st.file_uploader("Upload a CSV file", type=["csv"])
# Add radio button for prediction type
prediction_type = st.radio(
"Select prediction type",
["predict", "predict_proba"],
index=0
)
k = st.slider("Number of samples for SHAP plots", min_value=10, max_value=1000, value=100)
if uploaded_file:
# Load the uploaded file
data = pd.read_csv(uploaded_file)
st.write("Uploaded Data:")
st.write(data.head())
st.write("Predicting...")
if prediction_type == 'predict':
y_pred = pipe.predict(data)
# status 1 -> OK, 0 -> NOK
status = pd.Series(['OK' if pred == 1 else 'NOK' for pred in y_pred])
elif prediction_type == 'predict_proba':
status = pipe.predict_proba(data)[:, 1]
else:
raise ValueError(f"Invalid prediction type: {prediction_type}")
res = pd.DataFrame(
{"physical_part_id": data["physical_part_id"],
"status": status}
)
st.write("### Results")
st.write(res.head())
# Download the predictions as CSV
csv = res.to_csv(index=False)
st.download_button(
label="Download predictions as CSV",
data=csv,
file_name="predictions.csv",
mime="text/csv"
)
st.write("### SHAP plots")
egor_plots(data, k)
|