File size: 4,296 Bytes
e547b24
 
 
 
 
 
 
 
 
 
919ba89
e547b24
 
 
 
9d14420
 
4e5fe78
 
e547b24
 
 
4e5fe78
 
 
e547b24
 
 
4e5fe78
 
 
 
 
e547b24
 
4e5fe78
e547b24
 
 
 
 
 
 
4e5fe78
 
 
e547b24
 
 
4e5fe78
 
e547b24
 
4e5fe78
e547b24
4e5fe78
 
 
e547b24
6f5a32e
e547b24
 
 
02f8cfa
bc84ac0
02f8cfa
 
73f7edc
e547b24
 
02f8cfa
faf256e
02f8cfa
 
 
4e5fe78
02f8cfa
faf256e
bc84ac0
02f8cfa
 
 
 
 
9d14420
 
e547b24
02f8cfa
 
 
 
e547b24
4e5fe78
e547b24
06ca9b2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import gradio as gr
import requests
import io
import random
import os
from PIL import Image
from deep_translator import GoogleTranslator

# Project by Nymbo

API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
API_TOKEN = os.getenv("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
timeout = 100

MAX_IMAGE_SIZE = 1024  # Define the maximum image size

def query(prompt, is_negative=False, steps=30, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, width=512, height=512):
    if not prompt:
        return None

    key = random.randint(0, 999)

    if API_TOKEN is None:
        raise gr.Error("API token is missing. Please set the HF_READ_TOKEN environment variable.")
    
    headers = {"Authorization": f"Bearer {API_TOKEN}"}
    
    try:
        prompt = GoogleTranslator(source='my', target='en').translate(prompt)
    except Exception as e:
        print(f"Translation error: {e}")
        raise gr.Error("Failed to translate the prompt.")

    prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
    print(f'Generation {key}: {prompt}')
    
    payload = {
        "inputs": prompt,
        "is_negative": is_negative,
        "steps": steps,
        "cfg_scale": cfg_scale,
        "seed": seed if seed != -1 else random.randint(1, 1000000000),
        "strength": strength,
        "width": width,
        "height": height
    }

    try:
        response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
        response.raise_for_status()
        image_bytes = response.content
        image = Image.open(io.BytesIO(image_bytes))
        print(f'Generation {key} completed! ({prompt})')
        return image
    except requests.exceptions.RequestException as e:
        print(f"Error: Failed to get image. {e}")
        raise gr.Error(f"Failed to get image: {e}")
    except Exception as e:
        print(f"Error when trying to open the image: {e}")
        return None

css = """
#app-container {
    max-width: 600px;
    margin-left: auto;
    margin-right: auto;
}
"""

with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as app:
    gr.HTML("<center><h1>Walone AI Image Stable Pro</h1></center>")
    with gr.Column(elem_id="app-container"):
        with gr.Row():
            with gr.Column(elem_id="prompt-container"):
                text_prompt = gr.Textbox(label="Prompt ရေးပါ", placeholder="Enter a prompt here", lines=2, elem_id="prompt-text-input")
                with gr.Row():
                    with gr.Accordion("အဆင့်မြင့် Settings", open=False):
                        negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input")
                        steps = gr.Slider(label="Sampling steps", value=35, minimum=1, maximum=100, step=1)
                        cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1)
                        method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
                        strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001)
                        seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
                        width = gr.Slider(label="Width", value=512, minimum=256, maximum=MAX_IMAGE_SIZE, step=32)
                        height = gr.Slider(label="Height", value=512, minimum=256, maximum=MAX_IMAGE_SIZE, step=32)

        with gr.Row():
            text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
        with gr.Row():
            image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
        
        text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, width, height], outputs=image_output)

app.launch(show_api=False, share=False)