File size: 4,296 Bytes
e547b24 919ba89 e547b24 9d14420 4e5fe78 e547b24 4e5fe78 e547b24 4e5fe78 e547b24 4e5fe78 e547b24 4e5fe78 e547b24 4e5fe78 e547b24 4e5fe78 e547b24 4e5fe78 e547b24 6f5a32e e547b24 02f8cfa bc84ac0 02f8cfa 73f7edc e547b24 02f8cfa faf256e 02f8cfa 4e5fe78 02f8cfa faf256e bc84ac0 02f8cfa 9d14420 e547b24 02f8cfa e547b24 4e5fe78 e547b24 06ca9b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
import gradio as gr
import requests
import io
import random
import os
from PIL import Image
from deep_translator import GoogleTranslator
# Project by Nymbo
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
API_TOKEN = os.getenv("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
timeout = 100
MAX_IMAGE_SIZE = 1024 # Define the maximum image size
def query(prompt, is_negative=False, steps=30, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, width=512, height=512):
if not prompt:
return None
key = random.randint(0, 999)
if API_TOKEN is None:
raise gr.Error("API token is missing. Please set the HF_READ_TOKEN environment variable.")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
try:
prompt = GoogleTranslator(source='my', target='en').translate(prompt)
except Exception as e:
print(f"Translation error: {e}")
raise gr.Error("Failed to translate the prompt.")
prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
print(f'Generation {key}: {prompt}')
payload = {
"inputs": prompt,
"is_negative": is_negative,
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed != -1 else random.randint(1, 1000000000),
"strength": strength,
"width": width,
"height": height
}
try:
response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
response.raise_for_status()
image_bytes = response.content
image = Image.open(io.BytesIO(image_bytes))
print(f'Generation {key} completed! ({prompt})')
return image
except requests.exceptions.RequestException as e:
print(f"Error: Failed to get image. {e}")
raise gr.Error(f"Failed to get image: {e}")
except Exception as e:
print(f"Error when trying to open the image: {e}")
return None
css = """
#app-container {
max-width: 600px;
margin-left: auto;
margin-right: auto;
}
"""
with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as app:
gr.HTML("<center><h1>Walone AI Image Stable Pro</h1></center>")
with gr.Column(elem_id="app-container"):
with gr.Row():
with gr.Column(elem_id="prompt-container"):
text_prompt = gr.Textbox(label="Prompt ရေးပါ", placeholder="Enter a prompt here", lines=2, elem_id="prompt-text-input")
with gr.Row():
with gr.Accordion("အဆင့်မြင့် Settings", open=False):
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input")
steps = gr.Slider(label="Sampling steps", value=35, minimum=1, maximum=100, step=1)
cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1)
method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001)
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
width = gr.Slider(label="Width", value=512, minimum=256, maximum=MAX_IMAGE_SIZE, step=32)
height = gr.Slider(label="Height", value=512, minimum=256, maximum=MAX_IMAGE_SIZE, step=32)
with gr.Row():
text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
with gr.Row():
image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, width, height], outputs=image_output)
app.launch(show_api=False, share=False) |