File size: 55,636 Bytes
0ba2339
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
977a8a5
0ba2339
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f1f9e1
0ba2339
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
# Copyright 2024 The InstantX Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


from typing import Any, Callable, Dict, List, Optional, Tuple, Union

import cv2
import math

import numpy as np
import PIL.Image
import torch
import torch.nn.functional as F
from transformers import CLIPTokenizer

from diffusers.image_processor import PipelineImageInput

from diffusers.models import ControlNetModel

from diffusers.utils import (
    deprecate,
    logging,
    replace_example_docstring,
)
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput

from diffusers import StableDiffusionXLControlNetPipeline
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
from diffusers.utils.import_utils import is_xformers_available

from ip_adapter.resampler import Resampler

from ip_adapter.attention_processor import AttnProcessor, IPAttnProcessor
from ip_adapter.attention_processor import region_control

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> # !pip install opencv-python transformers accelerate insightface
        >>> import diffusers
        >>> from diffusers.utils import load_image
        >>> from diffusers.models import ControlNetModel

        >>> import cv2
        >>> import torch
        >>> import numpy as np
        >>> from PIL import Image
        
        >>> from insightface.app import FaceAnalysis
        >>> from pipeline_stable_diffusion_xl_instantid import StableDiffusionXLInstantIDPipeline, draw_kps

        >>> # download 'antelopev2' under ./models
        >>> app = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
        >>> app.prepare(ctx_id=0, det_size=(640, 640))
        
        >>> # download models under ./checkpoints
        >>> face_adapter = f'./checkpoints/ip-adapter.bin'
        >>> controlnet_path = f'./checkpoints/ControlNetModel'
        
        >>> # load IdentityNet
        >>> controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
        
        >>> pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
        ...     "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, torch_dtype=torch.float16
        ... )
        >>> pipe.cuda()
        
        >>> # load adapter
        >>> pipe.load_ip_adapter_instantid(face_adapter)

        >>> prompt = "analog film photo of a man. faded film, desaturated, 35mm photo, grainy, vignette, vintage, Kodachrome, Lomography, stained, highly detailed, found footage, masterpiece, best quality"
        >>> negative_prompt = "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured (lowres, low quality, worst quality:1.2), (text:1.2), watermark, painting, drawing, illustration, glitch,deformed, mutated, cross-eyed, ugly, disfigured"

        >>> # load an image
        >>> image = load_image("your-example.jpg")
        
        >>> face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))[-1]
        >>> face_emb = face_info['embedding']
        >>> face_kps = draw_kps(face_image, face_info['kps'])
        
        >>> pipe.set_ip_adapter_scale(0.8)

        >>> # generate image
        >>> image = pipe(
        ...     prompt, image_embeds=face_emb, image=face_kps, controlnet_conditioning_scale=0.8
        ... ).images[0]
        ```
"""


from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipeline
class LongPromptWeight(object):
    
    """
    Copied from https://github.com/huggingface/diffusers/blob/main/examples/community/lpw_stable_diffusion_xl.py
    """
    
    def __init__(self) -> None:
        pass

    def parse_prompt_attention(self, text):
        """
        Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
        Accepted tokens are:
        (abc) - increases attention to abc by a multiplier of 1.1
        (abc:3.12) - increases attention to abc by a multiplier of 3.12
        [abc] - decreases attention to abc by a multiplier of 1.1
        \( - literal character '('
        \[ - literal character '['
        \) - literal character ')'
        \] - literal character ']'
        \\ - literal character '\'
        anything else - just text

        >>> parse_prompt_attention('normal text')
        [['normal text', 1.0]]
        >>> parse_prompt_attention('an (important) word')
        [['an ', 1.0], ['important', 1.1], [' word', 1.0]]
        >>> parse_prompt_attention('(unbalanced')
        [['unbalanced', 1.1]]
        >>> parse_prompt_attention('\(literal\]')
        [['(literal]', 1.0]]
        >>> parse_prompt_attention('(unnecessary)(parens)')
        [['unnecessaryparens', 1.1]]
        >>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
        [['a ', 1.0],
        ['house', 1.5730000000000004],
        [' ', 1.1],
        ['on', 1.0],
        [' a ', 1.1],
        ['hill', 0.55],
        [', sun, ', 1.1],
        ['sky', 1.4641000000000006],
        ['.', 1.1]]
        """
        import re

        re_attention = re.compile(
            r"""
                \\\(|\\\)|\\\[|\\]|\\\\|\\|\(|\[|:([+-]?[.\d]+)\)|
                \)|]|[^\\()\[\]:]+|:
            """,
            re.X,
        )

        re_break = re.compile(r"\s*\bBREAK\b\s*", re.S)

        res = []
        round_brackets = []
        square_brackets = []

        round_bracket_multiplier = 1.1
        square_bracket_multiplier = 1 / 1.1

        def multiply_range(start_position, multiplier):
            for p in range(start_position, len(res)):
                res[p][1] *= multiplier

        for m in re_attention.finditer(text):
            text = m.group(0)
            weight = m.group(1)

            if text.startswith("\\"):
                res.append([text[1:], 1.0])
            elif text == "(":
                round_brackets.append(len(res))
            elif text == "[":
                square_brackets.append(len(res))
            elif weight is not None and len(round_brackets) > 0:
                multiply_range(round_brackets.pop(), float(weight))
            elif text == ")" and len(round_brackets) > 0:
                multiply_range(round_brackets.pop(), round_bracket_multiplier)
            elif text == "]" and len(square_brackets) > 0:
                multiply_range(square_brackets.pop(), square_bracket_multiplier)
            else:
                parts = re.split(re_break, text)
                for i, part in enumerate(parts):
                    if i > 0:
                        res.append(["BREAK", -1])
                    res.append([part, 1.0])

        for pos in round_brackets:
            multiply_range(pos, round_bracket_multiplier)

        for pos in square_brackets:
            multiply_range(pos, square_bracket_multiplier)

        if len(res) == 0:
            res = [["", 1.0]]

        # merge runs of identical weights
        i = 0
        while i + 1 < len(res):
            if res[i][1] == res[i + 1][1]:
                res[i][0] += res[i + 1][0]
                res.pop(i + 1)
            else:
                i += 1

        return res

    def get_prompts_tokens_with_weights(self, clip_tokenizer: CLIPTokenizer, prompt: str):
        """
        Get prompt token ids and weights, this function works for both prompt and negative prompt

        Args:
            pipe (CLIPTokenizer)
                A CLIPTokenizer
            prompt (str)
                A prompt string with weights

        Returns:
            text_tokens (list)
                A list contains token ids
            text_weight (list)
                A list contains the correspodent weight of token ids

        Example:
            import torch
            from transformers import CLIPTokenizer

            clip_tokenizer = CLIPTokenizer.from_pretrained(
                "stablediffusionapi/deliberate-v2"
                , subfolder = "tokenizer"
                , dtype = torch.float16
            )

            token_id_list, token_weight_list = get_prompts_tokens_with_weights(
                clip_tokenizer = clip_tokenizer
                ,prompt = "a (red:1.5) cat"*70
            )
        """
        texts_and_weights = self.parse_prompt_attention(prompt)
        text_tokens, text_weights = [], []
        for word, weight in texts_and_weights:
            # tokenize and discard the starting and the ending token
            token = clip_tokenizer(word, truncation=False).input_ids[1:-1]  # so that tokenize whatever length prompt
            # the returned token is a 1d list: [320, 1125, 539, 320]

            # merge the new tokens to the all tokens holder: text_tokens
            text_tokens = [*text_tokens, *token]

            # each token chunk will come with one weight, like ['red cat', 2.0]
            # need to expand weight for each token.
            chunk_weights = [weight] * len(token)

            # append the weight back to the weight holder: text_weights
            text_weights = [*text_weights, *chunk_weights]
        return text_tokens, text_weights

    def group_tokens_and_weights(self, token_ids: list, weights: list, pad_last_block=False):
        """
        Produce tokens and weights in groups and pad the missing tokens

        Args:
            token_ids (list)
                The token ids from tokenizer
            weights (list)
                The weights list from function get_prompts_tokens_with_weights
            pad_last_block (bool)
                Control if fill the last token list to 75 tokens with eos
        Returns:
            new_token_ids (2d list)
            new_weights (2d list)

        Example:
            token_groups,weight_groups = group_tokens_and_weights(
                token_ids = token_id_list
                , weights = token_weight_list
            )
        """
        bos, eos = 49406, 49407

        # this will be a 2d list
        new_token_ids = []
        new_weights = []
        while len(token_ids) >= 75:
            # get the first 75 tokens
            head_75_tokens = [token_ids.pop(0) for _ in range(75)]
            head_75_weights = [weights.pop(0) for _ in range(75)]

            # extract token ids and weights
            temp_77_token_ids = [bos] + head_75_tokens + [eos]
            temp_77_weights = [1.0] + head_75_weights + [1.0]

            # add 77 token and weights chunk to the holder list
            new_token_ids.append(temp_77_token_ids)
            new_weights.append(temp_77_weights)

        # padding the left
        if len(token_ids) >= 0:
            padding_len = 75 - len(token_ids) if pad_last_block else 0

            temp_77_token_ids = [bos] + token_ids + [eos] * padding_len + [eos]
            new_token_ids.append(temp_77_token_ids)

            temp_77_weights = [1.0] + weights + [1.0] * padding_len + [1.0]
            new_weights.append(temp_77_weights)

        return new_token_ids, new_weights

    def get_weighted_text_embeddings_sdxl(
        self,
        pipe: StableDiffusionXLPipeline,
        prompt: str = "",
        prompt_2: str = None,
        neg_prompt: str = "",
        neg_prompt_2: str = None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
        pooled_prompt_embeds=None,
        negative_pooled_prompt_embeds=None,
        extra_emb=None,
        extra_emb_alpha=0.6,
    ):
        """
        This function can process long prompt with weights, no length limitation
        for Stable Diffusion XL

        Args:
            pipe (StableDiffusionPipeline)
            prompt (str)
            prompt_2 (str)
            neg_prompt (str)
            neg_prompt_2 (str)
        Returns:
            prompt_embeds (torch.Tensor)
            neg_prompt_embeds (torch.Tensor)
        """
        # 
        if prompt_embeds is not None and \
            negative_prompt_embeds is not None and \
            pooled_prompt_embeds is not None and \
            negative_pooled_prompt_embeds is not None:
            return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds

        if prompt_2:
            prompt = f"{prompt} {prompt_2}"

        if neg_prompt_2:
            neg_prompt = f"{neg_prompt} {neg_prompt_2}"

        eos = pipe.tokenizer.eos_token_id

        # tokenizer 1
        prompt_tokens, prompt_weights = self.get_prompts_tokens_with_weights(pipe.tokenizer, prompt)
        neg_prompt_tokens, neg_prompt_weights = self.get_prompts_tokens_with_weights(pipe.tokenizer, neg_prompt)

        # tokenizer 2
        # prompt_tokens_2, prompt_weights_2 = self.get_prompts_tokens_with_weights(pipe.tokenizer_2, prompt)
        # neg_prompt_tokens_2, neg_prompt_weights_2 = self.get_prompts_tokens_with_weights(pipe.tokenizer_2, neg_prompt)
        # tokenizer 2 遇到 !! !!!! 等多感叹号和tokenizer 1的效果不一致
        prompt_tokens_2, prompt_weights_2 = self.get_prompts_tokens_with_weights(pipe.tokenizer, prompt)
        neg_prompt_tokens_2, neg_prompt_weights_2 = self.get_prompts_tokens_with_weights(pipe.tokenizer, neg_prompt)

        # padding the shorter one for prompt set 1
        prompt_token_len = len(prompt_tokens)
        neg_prompt_token_len = len(neg_prompt_tokens)

        if prompt_token_len > neg_prompt_token_len:
            # padding the neg_prompt with eos token
            neg_prompt_tokens = neg_prompt_tokens + [eos] * abs(prompt_token_len - neg_prompt_token_len)
            neg_prompt_weights = neg_prompt_weights + [1.0] * abs(prompt_token_len - neg_prompt_token_len)
        else:
            # padding the prompt
            prompt_tokens = prompt_tokens + [eos] * abs(prompt_token_len - neg_prompt_token_len)
            prompt_weights = prompt_weights + [1.0] * abs(prompt_token_len - neg_prompt_token_len)

        # padding the shorter one for token set 2
        prompt_token_len_2 = len(prompt_tokens_2)
        neg_prompt_token_len_2 = len(neg_prompt_tokens_2)

        if prompt_token_len_2 > neg_prompt_token_len_2:
            # padding the neg_prompt with eos token
            neg_prompt_tokens_2 = neg_prompt_tokens_2 + [eos] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
            neg_prompt_weights_2 = neg_prompt_weights_2 + [1.0] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
        else:
            # padding the prompt
            prompt_tokens_2 = prompt_tokens_2 + [eos] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
            prompt_weights_2 = prompt_weights + [1.0] * abs(prompt_token_len_2 - neg_prompt_token_len_2)

        embeds = []
        neg_embeds = []

        prompt_token_groups, prompt_weight_groups = self.group_tokens_and_weights(prompt_tokens.copy(), prompt_weights.copy())

        neg_prompt_token_groups, neg_prompt_weight_groups = self.group_tokens_and_weights(
            neg_prompt_tokens.copy(), neg_prompt_weights.copy()
        )

        prompt_token_groups_2, prompt_weight_groups_2 = self.group_tokens_and_weights(
            prompt_tokens_2.copy(), prompt_weights_2.copy()
        )

        neg_prompt_token_groups_2, neg_prompt_weight_groups_2 = self.group_tokens_and_weights(
            neg_prompt_tokens_2.copy(), neg_prompt_weights_2.copy()
        )

        # get prompt embeddings one by one is not working.
        for i in range(len(prompt_token_groups)):
            # get positive prompt embeddings with weights
            token_tensor = torch.tensor([prompt_token_groups[i]], dtype=torch.long, device=pipe.device)
            weight_tensor = torch.tensor(prompt_weight_groups[i], dtype=torch.float16, device=pipe.device)

            token_tensor_2 = torch.tensor([prompt_token_groups_2[i]], dtype=torch.long, device=pipe.device)

            # use first text encoder
            prompt_embeds_1 = pipe.text_encoder(token_tensor.to(pipe.device), output_hidden_states=True)
            prompt_embeds_1_hidden_states = prompt_embeds_1.hidden_states[-2]

            # use second text encoder
            prompt_embeds_2 = pipe.text_encoder_2(token_tensor_2.to(pipe.device), output_hidden_states=True)
            prompt_embeds_2_hidden_states = prompt_embeds_2.hidden_states[-2]
            pooled_prompt_embeds = prompt_embeds_2[0]

            prompt_embeds_list = [prompt_embeds_1_hidden_states, prompt_embeds_2_hidden_states]
            token_embedding = torch.concat(prompt_embeds_list, dim=-1).squeeze(0)

            for j in range(len(weight_tensor)):
                if weight_tensor[j] != 1.0:
                    token_embedding[j] = (
                        token_embedding[-1] + (token_embedding[j] - token_embedding[-1]) * weight_tensor[j]
                    )

            token_embedding = token_embedding.unsqueeze(0)
            embeds.append(token_embedding)

            # get negative prompt embeddings with weights
            neg_token_tensor = torch.tensor([neg_prompt_token_groups[i]], dtype=torch.long, device=pipe.device)
            neg_token_tensor_2 = torch.tensor([neg_prompt_token_groups_2[i]], dtype=torch.long, device=pipe.device)
            neg_weight_tensor = torch.tensor(neg_prompt_weight_groups[i], dtype=torch.float16, device=pipe.device)

            # use first text encoder
            neg_prompt_embeds_1 = pipe.text_encoder(neg_token_tensor.to(pipe.device), output_hidden_states=True)
            neg_prompt_embeds_1_hidden_states = neg_prompt_embeds_1.hidden_states[-2]

            # use second text encoder
            neg_prompt_embeds_2 = pipe.text_encoder_2(neg_token_tensor_2.to(pipe.device), output_hidden_states=True)
            neg_prompt_embeds_2_hidden_states = neg_prompt_embeds_2.hidden_states[-2]
            negative_pooled_prompt_embeds = neg_prompt_embeds_2[0]

            neg_prompt_embeds_list = [neg_prompt_embeds_1_hidden_states, neg_prompt_embeds_2_hidden_states]
            neg_token_embedding = torch.concat(neg_prompt_embeds_list, dim=-1).squeeze(0)

            for z in range(len(neg_weight_tensor)):
                if neg_weight_tensor[z] != 1.0:
                    neg_token_embedding[z] = (
                        neg_token_embedding[-1] + (neg_token_embedding[z] - neg_token_embedding[-1]) * neg_weight_tensor[z]
                    )

            neg_token_embedding = neg_token_embedding.unsqueeze(0)
            neg_embeds.append(neg_token_embedding)

        prompt_embeds = torch.cat(embeds, dim=1)
        negative_prompt_embeds = torch.cat(neg_embeds, dim=1)

        if extra_emb is not None:
            extra_emb = extra_emb.to(prompt_embeds.device, dtype=prompt_embeds.dtype) * extra_emb_alpha
            prompt_embeds = torch.cat([prompt_embeds, extra_emb], 1)
            negative_prompt_embeds = torch.cat([negative_prompt_embeds, torch.zeros_like(extra_emb)], 1)
            print(f'fix prompt_embeds, extra_emb_alpha={extra_emb_alpha}')

        return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds

    def get_prompt_embeds(self, *args, **kwargs):
        prompt_embeds, negative_prompt_embeds, _, _ = self.get_weighted_text_embeddings_sdxl(*args, **kwargs)
        prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
        return prompt_embeds

    
class StableDiffusionXLInstantIDPipeline(StableDiffusionXLControlNetPipeline):
    
    def cuda(self, dtype=torch.float16, use_xformers=False):
        self.to('cuda', dtype)
        
        if hasattr(self, 'image_proj_model'):
            self.image_proj_model.to(self.unet.device).to(self.unet.dtype)
        
        if use_xformers:
            if is_xformers_available():
                import xformers
                from packaging import version

                xformers_version = version.parse(xformers.__version__)
                if xformers_version == version.parse("0.0.16"):
                    logger.warn(
                        "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
                    )
                self.enable_xformers_memory_efficient_attention()
            else:
                raise ValueError("xformers is not available. Make sure it is installed correctly")
    
    def load_ip_adapter_instantid(self, model_ckpt, image_emb_dim=512, num_tokens=16, scale=0.5):     
        self.set_image_proj_model(model_ckpt, image_emb_dim, num_tokens)
        self.set_ip_adapter(model_ckpt, num_tokens, scale)
        
    def set_image_proj_model(self, model_ckpt, image_emb_dim=512, num_tokens=16):
        
        image_proj_model = Resampler(
            dim=1280,
            depth=4,
            dim_head=64,
            heads=20,
            num_queries=num_tokens,
            embedding_dim=image_emb_dim,
            output_dim=self.unet.config.cross_attention_dim,
            ff_mult=4,
        )

        image_proj_model.eval()
        
        self.image_proj_model = image_proj_model.to(self.device, dtype=self.dtype)
        state_dict = torch.load(model_ckpt, map_location="cpu")
        if 'image_proj' in state_dict:
            state_dict = state_dict["image_proj"]
        self.image_proj_model.load_state_dict(state_dict)
        
        self.image_proj_model_in_features = image_emb_dim
    
    def set_ip_adapter(self, model_ckpt, num_tokens, scale):
        
        unet = self.unet
        attn_procs = {}
        for name in unet.attn_processors.keys():
            cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
            if name.startswith("mid_block"):
                hidden_size = unet.config.block_out_channels[-1]
            elif name.startswith("up_blocks"):
                block_id = int(name[len("up_blocks.")])
                hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
            elif name.startswith("down_blocks"):
                block_id = int(name[len("down_blocks.")])
                hidden_size = unet.config.block_out_channels[block_id]
            if cross_attention_dim is None:
                attn_procs[name] = AttnProcessor().to(unet.device, dtype=unet.dtype)
            else:
                attn_procs[name] = IPAttnProcessor(hidden_size=hidden_size, 
                                                   cross_attention_dim=cross_attention_dim, 
                                                   scale=scale,
                                                   num_tokens=num_tokens).to(unet.device, dtype=unet.dtype)
        unet.set_attn_processor(attn_procs)
        
        state_dict = torch.load(model_ckpt, map_location="cpu")
        ip_layers = torch.nn.ModuleList(self.unet.attn_processors.values())
        if 'ip_adapter' in state_dict:
            state_dict = state_dict['ip_adapter']
        ip_layers.load_state_dict(state_dict)
    
    def set_ip_adapter_scale(self, scale):
        unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
        for attn_processor in unet.attn_processors.values():
            if isinstance(attn_processor, IPAttnProcessor):
                attn_processor.scale = scale

    def _encode_prompt_image_emb(self, prompt_image_emb, device, dtype, do_classifier_free_guidance):
        
        if isinstance(prompt_image_emb, torch.Tensor):
            prompt_image_emb = prompt_image_emb.clone().detach()
        else:
            prompt_image_emb = torch.tensor(prompt_image_emb)
            
        prompt_image_emb = prompt_image_emb.to(device=device, dtype=dtype)
        prompt_image_emb = prompt_image_emb.reshape([1, -1, self.image_proj_model_in_features])
        
        if do_classifier_free_guidance:
            prompt_image_emb = torch.cat([torch.zeros_like(prompt_image_emb), prompt_image_emb], dim=0)
        else:
            prompt_image_emb = torch.cat([prompt_image_emb], dim=0)
        
        prompt_image_emb = self.image_proj_model(prompt_image_emb)
        return prompt_image_emb

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        prompt_2: Optional[Union[str, List[str]]] = None,
        image: PipelineImageInput = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        guidance_scale: float = 5.0,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        negative_prompt_2: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        image_embeds: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
        guess_mode: bool = False,
        control_guidance_start: Union[float, List[float]] = 0.0,
        control_guidance_end: Union[float, List[float]] = 1.0,
        original_size: Tuple[int, int] = None,
        crops_coords_top_left: Tuple[int, int] = (0, 0),
        target_size: Tuple[int, int] = None,
        negative_original_size: Optional[Tuple[int, int]] = None,
        negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
        negative_target_size: Optional[Tuple[int, int]] = None,
        clip_skip: Optional[int] = None,
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        control_mask = None,
        **kwargs,
    ):
        r"""
        The call function to the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
            prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
                used in both text-encoders.
            image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
                    `List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
                The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
                specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be
                accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height
                and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in
                `init`, images must be passed as a list such that each element of the list can be correctly batched for
                input to a single ControlNet.
            height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
                The height in pixels of the generated image. Anything below 512 pixels won't work well for
                [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
                and checkpoints that are not specifically fine-tuned on low resolutions.
            width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
                The width in pixels of the generated image. Anything below 512 pixels won't work well for
                [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
                and checkpoints that are not specifically fine-tuned on low resolutions.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 5.0):
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide what to not include in image generation. If not defined, you need to
                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
            negative_prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide what to not include in image generation. This is sent to `tokenizer_2`
                and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders.
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor is generated by sampling using the supplied random `generator`.
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `prompt` input argument.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
            pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
                not provided, pooled text embeddings are generated from `prompt` input argument.
            negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt
                weighting). If not provided, pooled `negative_prompt_embeds` are generated from `negative_prompt` input
                argument.
            image_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated image embeddings.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
                [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
                The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
                to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
                the corresponding scale as a list.
            guess_mode (`bool`, *optional*, defaults to `False`):
                The ControlNet encoder tries to recognize the content of the input image even if you remove all
                prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
            control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
                The percentage of total steps at which the ControlNet starts applying.
            control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
                The percentage of total steps at which the ControlNet stops applying.
            original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
                If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
                `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
                explained in section 2.2 of
                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
            crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
                `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
                `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
                `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
            target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
                For most cases, `target_size` should be set to the desired height and width of the generated image. If
                not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
                section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
            negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
                To negatively condition the generation process based on a specific image resolution. Part of SDXL's
                micro-conditioning as explained in section 2.2 of
                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
                information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
            negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
                To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
                micro-conditioning as explained in section 2.2 of
                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
                information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
            negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
                To negatively condition the generation process based on a target image resolution. It should be as same
                as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
                information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
            callback_on_step_end (`Callable`, *optional*):
                A function that calls at the end of each denoising steps during the inference. The function is called
                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
                `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
                `._callback_tensor_inputs` attribute of your pipeine class.

        Examples:

        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
                otherwise a `tuple` is returned containing the output images.
        """
        lpw = LongPromptWeight()

        callback = kwargs.pop("callback", None)
        callback_steps = kwargs.pop("callback_steps", None)

        if callback is not None:
            deprecate(
                "callback",
                "1.0.0",
                "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
            )
        if callback_steps is not None:
            deprecate(
                "callback_steps",
                "1.0.0",
                "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
            )

        controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet

        # align format for control guidance
        if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
            control_guidance_start = len(control_guidance_end) * [control_guidance_start]
        elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
            control_guidance_end = len(control_guidance_start) * [control_guidance_end]
        elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
            mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
            control_guidance_start, control_guidance_end = (
                mult * [control_guidance_start],
                mult * [control_guidance_end],
            )

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            prompt_2,
            image,
            callback_steps,
            negative_prompt,
            negative_prompt_2,
            prompt_embeds,
            negative_prompt_embeds,
            pooled_prompt_embeds,
            negative_pooled_prompt_embeds,
            controlnet_conditioning_scale,
            control_guidance_start,
            control_guidance_end,
            callback_on_step_end_tensor_inputs,
        )

        self._guidance_scale = guidance_scale
        self._clip_skip = clip_skip
        self._cross_attention_kwargs = cross_attention_kwargs

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device

        if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
            controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)

        global_pool_conditions = (
            controlnet.config.global_pool_conditions
            if isinstance(controlnet, ControlNetModel)
            else controlnet.nets[0].config.global_pool_conditions
        )
        guess_mode = guess_mode or global_pool_conditions

        # 3.1 Encode input prompt
        (
            prompt_embeds,
            negative_prompt_embeds,
            pooled_prompt_embeds,
            negative_pooled_prompt_embeds,
        ) = lpw.get_weighted_text_embeddings_sdxl(
            pipe=self, 
            prompt=prompt, 
            neg_prompt=negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
        )
        
        # 3.2 Encode image prompt
        prompt_image_emb = self._encode_prompt_image_emb(image_embeds, 
                                                         device,
                                                         self.unet.dtype,
                                                         self.do_classifier_free_guidance)
        
        # 4. Prepare image
        if isinstance(controlnet, ControlNetModel):
            image = self.prepare_image(
                image=image,
                width=width,
                height=height,
                batch_size=batch_size * num_images_per_prompt,
                num_images_per_prompt=num_images_per_prompt,
                device=device,
                dtype=controlnet.dtype,
                do_classifier_free_guidance=self.do_classifier_free_guidance,
                guess_mode=guess_mode,
            )
            height, width = image.shape[-2:]
        elif isinstance(controlnet, MultiControlNetModel):
            images = []

            for image_ in image:
                image_ = self.prepare_image(
                    image=image_,
                    width=width,
                    height=height,
                    batch_size=batch_size * num_images_per_prompt,
                    num_images_per_prompt=num_images_per_prompt,
                    device=device,
                    dtype=controlnet.dtype,
                    do_classifier_free_guidance=self.do_classifier_free_guidance,
                    guess_mode=guess_mode,
                )

                images.append(image_)

            image = images
            height, width = image[0].shape[-2:]
        else:
            assert False

        # 4.1 Region control
        if control_mask is not None:
            mask_weight_image = control_mask
            mask_weight_image = np.array(mask_weight_image)
            mask_weight_image_tensor = torch.from_numpy(mask_weight_image).to(device=device, dtype=prompt_embeds.dtype)
            mask_weight_image_tensor = mask_weight_image_tensor[:, :, 0] / 255.
            mask_weight_image_tensor = mask_weight_image_tensor[None, None]
            h, w = mask_weight_image_tensor.shape[-2:]
            control_mask_wight_image_list = []
            for scale in [8, 8, 8, 16, 16, 16, 32, 32, 32]:
                scale_mask_weight_image_tensor = F.interpolate(
                    mask_weight_image_tensor,(h // scale, w // scale), mode='bilinear')
                control_mask_wight_image_list.append(scale_mask_weight_image_tensor)
            region_mask = torch.from_numpy(np.array(control_mask)[:, :, 0]).to(self.unet.device, dtype=self.unet.dtype) / 255.
            region_control.prompt_image_conditioning = [dict(region_mask=region_mask)]
        else:
            control_mask_wight_image_list = None
            region_control.prompt_image_conditioning = [dict(region_mask=None)]

        # 5. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps
        self._num_timesteps = len(timesteps)

        # 6. Prepare latent variables
        num_channels_latents = self.unet.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )

        # 6.5 Optionally get Guidance Scale Embedding
        timestep_cond = None
        if self.unet.config.time_cond_proj_dim is not None:
            guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
            timestep_cond = self.get_guidance_scale_embedding(
                guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
            ).to(device=device, dtype=latents.dtype)

        # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 7.1 Create tensor stating which controlnets to keep
        controlnet_keep = []
        for i in range(len(timesteps)):
            keeps = [
                1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
                for s, e in zip(control_guidance_start, control_guidance_end)
            ]
            controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)

        # 7.2 Prepare added time ids & embeddings
        if isinstance(image, list):
            original_size = original_size or image[0].shape[-2:]
        else:
            original_size = original_size or image.shape[-2:]
        target_size = target_size or (height, width)

        add_text_embeds = pooled_prompt_embeds
        if self.text_encoder_2 is None:
            text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
        else:
            text_encoder_projection_dim = self.text_encoder_2.config.projection_dim

        add_time_ids = self._get_add_time_ids(
            original_size,
            crops_coords_top_left,
            target_size,
            dtype=prompt_embeds.dtype,
            text_encoder_projection_dim=text_encoder_projection_dim,
        )

        if negative_original_size is not None and negative_target_size is not None:
            negative_add_time_ids = self._get_add_time_ids(
                negative_original_size,
                negative_crops_coords_top_left,
                negative_target_size,
                dtype=prompt_embeds.dtype,
                text_encoder_projection_dim=text_encoder_projection_dim,
            )
        else:
            negative_add_time_ids = add_time_ids

        if self.do_classifier_free_guidance:
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
            add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
            add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)

        prompt_embeds = prompt_embeds.to(device)
        add_text_embeds = add_text_embeds.to(device)
        add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
        encoder_hidden_states = torch.cat([prompt_embeds, prompt_image_emb], dim=1)

        # 8. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        is_unet_compiled = is_compiled_module(self.unet)
        is_controlnet_compiled = is_compiled_module(self.controlnet)
        is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
                
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # Relevant thread:
                # https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
                if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1:
                    torch._inductor.cudagraph_mark_step_begin()
                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}

                # controlnet(s) inference
                if guess_mode and self.do_classifier_free_guidance:
                    # Infer ControlNet only for the conditional batch.
                    control_model_input = latents
                    control_model_input = self.scheduler.scale_model_input(control_model_input, t)
                    controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
                    controlnet_added_cond_kwargs = {
                        "text_embeds": add_text_embeds.chunk(2)[1],
                        "time_ids": add_time_ids.chunk(2)[1],
                    }
                else:
                    control_model_input = latent_model_input
                    controlnet_prompt_embeds = prompt_embeds
                    controlnet_added_cond_kwargs = added_cond_kwargs
                
                if isinstance(controlnet_keep[i], list):
                    cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
                else:
                    controlnet_cond_scale = controlnet_conditioning_scale
                    if isinstance(controlnet_cond_scale, list):
                        controlnet_cond_scale = controlnet_cond_scale[0]
                    cond_scale = controlnet_cond_scale * controlnet_keep[i]

                down_block_res_samples, mid_block_res_sample = self.controlnet(
                    control_model_input,
                    t,
                    encoder_hidden_states=prompt_image_emb,
                    controlnet_cond=image,
                    conditioning_scale=cond_scale,
                    guess_mode=guess_mode,
                    added_cond_kwargs=controlnet_added_cond_kwargs,
                    return_dict=False,
                )

                # controlnet mask
                if control_mask_wight_image_list is not None:
                    down_block_res_samples = [
                        down_block_res_sample * mask_weight
                        for down_block_res_sample, mask_weight in zip(down_block_res_samples, control_mask_wight_image_list)
                    ]
                    mid_block_res_sample *= control_mask_wight_image_list[-1]

                if guess_mode and self.do_classifier_free_guidance:
                    # Infered ControlNet only for the conditional batch.
                    # To apply the output of ControlNet to both the unconditional and conditional batches,
                    # add 0 to the unconditional batch to keep it unchanged.
                    down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
                    mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])

                # predict the noise residual
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=encoder_hidden_states,
                    timestep_cond=timestep_cond,
                    cross_attention_kwargs=self.cross_attention_kwargs,
                    down_block_additional_residuals=down_block_res_samples,
                    mid_block_additional_residual=mid_block_res_sample,
                    added_cond_kwargs=added_cond_kwargs,
                    return_dict=False,
                )[0]

                # perform guidance
                if self.do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)
        
        if not output_type == "latent":
            # make sure the VAE is in float32 mode, as it overflows in float16
            needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
            if needs_upcasting:
                self.upcast_vae()
                latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
            
            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]

            # cast back to fp16 if needed
            if needs_upcasting:
                self.vae.to(dtype=torch.float16)            
        else:
            image = latents

        if not output_type == "latent":
            # apply watermark if available
            if self.watermark is not None:
                image = self.watermark.apply_watermark(image)

            image = self.image_processor.postprocess(image, output_type=output_type)

        # Offload all models
        self.maybe_free_model_hooks()

        if not return_dict:
            return (image,)

        return StableDiffusionXLPipelineOutput(images=image)