File size: 56,579 Bytes
431084f
84e44a0
 
476ebd3
84e44a0
 
 
 
 
 
 
 
 
e6b8403
 
 
84e44a0
 
 
e6b8403
 
 
 
 
 
 
 
 
 
 
 
 
84e44a0
 
 
 
 
b91ebf7
 
 
 
84e44a0
 
e6b8403
 
 
 
84e44a0
 
 
 
 
 
 
 
 
431084f
 
84e44a0
431084f
 
 
 
 
 
 
 
 
84e44a0
431084f
e6b8403
 
 
84e44a0
 
 
e6b8403
431084f
e6b8403
431084f
e6b8403
431084f
 
 
84e44a0
 
fee12c7
 
 
 
84e44a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
431084f
e6b8403
 
 
 
 
 
 
 
84e44a0
e6b8403
 
 
 
84e44a0
e6b8403
 
431084f
e6b8403
84e44a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
431084f
 
e6b8403
 
 
 
29264b8
431084f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84e44a0
431084f
 
 
 
 
 
84e44a0
 
 
 
 
 
431084f
 
 
 
 
 
84e44a0
 
431084f
 
 
84e44a0
 
 
 
 
431084f
84e44a0
431084f
 
84e44a0
 
 
431084f
 
84e44a0
 
 
 
 
 
 
431084f
84e44a0
 
 
431084f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6b8403
 
431084f
e6b8403
431084f
e6b8403
431084f
e6b8403
 
84e44a0
27ad614
431084f
 
26bfa39
e6b8403
84e44a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
431084f
e6b8403
431084f
 
e6b8403
 
431084f
 
 
e6b8403
 
 
431084f
 
 
 
 
 
 
 
 
 
 
 
 
e6b8403
 
84e44a0
431084f
 
 
e6b8403
84e44a0
 
 
 
 
 
 
 
e6b8403
 
 
 
431084f
84e44a0
 
e6b8403
84e44a0
 
 
 
 
 
 
 
 
 
 
 
e6b8403
431084f
84e44a0
 
e6b8403
 
 
 
 
 
 
 
 
 
 
431084f
 
84e44a0
 
431084f
e6b8403
84e44a0
 
 
 
e6b8403
 
 
 
 
 
 
431084f
84e44a0
 
 
 
 
e6b8403
 
431084f
84e44a0
e6b8403
84e44a0
e6b8403
 
 
 
 
 
 
 
 
 
 
431084f
e6b8403
 
 
 
 
 
 
 
 
 
84e44a0
e6b8403
 
 
 
 
431084f
e6b8403
 
 
 
 
 
 
 
431084f
e6b8403
 
 
 
 
 
 
 
 
431084f
e6b8403
 
 
 
 
 
 
 
 
 
 
 
 
84e44a0
 
 
 
 
 
e6b8403
 
 
 
 
84e44a0
 
 
e6b8403
 
 
431084f
 
 
 
 
 
 
 
 
 
 
84e44a0
431084f
e6b8403
 
 
431084f
e6b8403
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2784108
e6b8403
84e44a0
 
 
 
431084f
 
e6b8403
431084f
 
 
e6b8403
 
 
431084f
84e44a0
e6b8403
 
84e44a0
476ebd3
84e44a0
 
 
 
 
431084f
 
e6b8403
431084f
 
e6b8403
431084f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84e44a0
431084f
84e44a0
431084f
 
 
 
 
84e44a0
431084f
 
 
 
 
e6b8403
8e6c9a4
e6b8403
476ebd3
e6b8403
431084f
 
 
 
 
e6b8403
 
 
 
431084f
 
84e44a0
 
e6b8403
84e44a0
431084f
 
e6b8403
 
 
 
 
 
 
 
431084f
 
e6b8403
 
 
 
 
431084f
 
 
e6b8403
431084f
 
 
e6b8403
 
 
 
 
 
 
 
431084f
 
e6b8403
 
fefb0ab
e6b8403
 
431084f
e6b8403
84e44a0
e6b8403
 
431084f
 
 
84e44a0
 
431084f
 
e6b8403
431084f
 
e6b8403
431084f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84e44a0
431084f
 
 
 
 
 
 
 
 
 
 
 
 
e6b8403
8e6c9a4
e6b8403
476ebd3
431084f
 
 
 
 
 
 
e6b8403
 
 
 
 
431084f
84e44a0
 
e6b8403
84e44a0
431084f
 
e6b8403
 
 
 
 
 
 
 
431084f
 
e6b8403
 
 
 
431084f
 
 
 
e6b8403
431084f
 
 
e6b8403
 
 
 
 
 
 
 
431084f
 
e6b8403
431084f
fefb0ab
e6b8403
 
 
84e44a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
431084f
 
 
 
84e44a0
431084f
 
e6b8403
 
 
 
 
431084f
 
 
 
e6b8403
431084f
 
 
e6b8403
 
 
 
 
 
 
431084f
 
 
 
e6b8403
431084f
 
 
 
e6b8403
431084f
 
 
e6b8403
 
 
 
 
 
 
431084f
 
 
 
e6b8403
659c8f8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
#%cd SoniTranslate
# vc infer pipe 161 np.int
import os

os.system("pip install -r requirements_colab.txt")
os.system("pip install -r requirements_extra.txt")

os.system('apt install git-lfs')
os.system('git lfs install')
os.system('apt -y install -qq aria2')
os.system('aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt -d . -o hubert_base.pt')
os.system('wget https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/rmvpe.pt')

import numpy as np
import gradio as gr
import whisperx
from whisperx.utils import LANGUAGES as LANG_TRANSCRIPT
from whisperx.alignment import DEFAULT_ALIGN_MODELS_TORCH as DAMT, DEFAULT_ALIGN_MODELS_HF as DAMHF
from IPython.utils import capture
import torch
from gtts import gTTS
import librosa
import edge_tts
import asyncio
import gc
from pydub import AudioSegment
from tqdm import tqdm
from deep_translator import GoogleTranslator
import os
from soni_translate.audio_segments import create_translated_audio
from soni_translate.text_to_speech import make_voice_gradio
from soni_translate.translate_segments import translate_text
import time
import shutil
from urllib.parse import unquote
import zipfile
import rarfile
import logging
logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("httpx").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)



title = "<center><strong><font size='7'>📽️ SoniTranslate 🈷️</font></strong></center>"

news = """ ## 📖 News
        🔥 2023/07/26: New UI and add mix options.

        🔥 2023/07/27: Fix some bug processing the video and audio.

        🔥 2023/08/01: Add options for use RVC models.

        🔥 2023/08/02: Added support for Arabic, Czech, Danish, Finnish, Greek, Hebrew, Hungarian, Korean, Persian, Polish, Russian, Turkish, Urdu, Hindi, and Vietnamese languages. 🌐

        🔥 2023/08/03: Changed default options and added directory view of downloads..
        """

description = """
### 🎥 **Translate videos easily with SoniTranslate!** 📽️

Upload a video or provide a video link. Limitation: 10 seconds for CPU, but no restrictions with a GPU.

For faster results and no duration limits, try the Colab notebook with a GPU:
[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://github.com/R3gm/SoniTranslate/blob/main/SoniTranslate_Colab.ipynb)

📽️ **This a demo of SoniTranslate; GitHub repository: [SoniTranslate](https://github.com/R3gm/SoniTranslate)!**

See the tab labeled `Help` for instructions on how to use it. Let's start having fun with video translation! 🚀🎉
"""



tutorial = """

# 🔰 **Instructions for use:**

1. 📤 **Upload a video** on the first tab or 🌐 **use a video link** on the second tab.

2. 🌍 Choose the language in which you want to **translate the video**.

3. 🗣️ Specify the **number of people speaking** in the video and **assign each one a text-to-speech voice** suitable for the translation language.

4. 🚀 Press the '**Translate**' button to obtain the results.




# 🎤 (Optional) How to Use RVC and RVC2 Voices 🎶


The goal is to apply a RVC (Retrieval-based Voice Conversion) to the generated TTS (Text-to-Speech) 🎙️

1. In the `Custom Voice RVC` tab, download the models you need 📥 You can use links from Hugging Face and Google Drive in formats like zip, pth, or index. You can also download complete HF space repositories, but this option is not very stable 😕

2. Now, go to `Replace voice: TTS to RVC` and check the `enable` box ✅ After this, you can choose the models you want to apply to each TTS speaker 👩‍🦰👨‍🦱👩‍🦳👨‍🦲

3. Adjust the F0 method that will be applied to all RVCs 🎛️

4. Press `APPLY CONFIGURATION` to apply the changes you made 🔄

5. Go back to the video translation tab and click on 'Translate' ▶️ Now, the translation will be done applying the RVCs 🗣️

Tip: You can use `Test RVC` to experiment and find the best TTS or configurations to apply to the RVC 🧪🔍

"""



# Check GPU
if torch.cuda.is_available():
    device = "cuda"
    list_compute_type = ['float16', 'float32']
    compute_type_default = 'float16'
    whisper_model_default = 'large-v2'
else:
    device = "cpu"
    list_compute_type = ['float32']
    compute_type_default = 'float32'
    whisper_model_default = 'medium'
print('Working in: ', device)

list_tts = ['af-ZA-AdriNeural-Female', 'af-ZA-WillemNeural-Male', 'am-ET-AmehaNeural-Male', 'am-ET-MekdesNeural-Female', 'ar-AE-FatimaNeural-Female', 'ar-AE-HamdanNeural-Male', 'ar-BH-AliNeural-Male', 'ar-BH-LailaNeural-Female', 'ar-DZ-AminaNeural-Female', 'ar-DZ-IsmaelNeural-Male', 'ar-EG-SalmaNeural-Female', 'ar-EG-ShakirNeural-Male', 'ar-IQ-BasselNeural-Male', 'ar-IQ-RanaNeural-Female', 'ar-JO-SanaNeural-Female', 'ar-JO-TaimNeural-Male', 'ar-KW-FahedNeural-Male', 'ar-KW-NouraNeural-Female', 'ar-LB-LaylaNeural-Female', 'ar-LB-RamiNeural-Male', 'ar-LY-ImanNeural-Female', 'ar-LY-OmarNeural-Male', 'ar-MA-JamalNeural-Male', 'ar-MA-MounaNeural-Female', 'ar-OM-AbdullahNeural-Male', 'ar-OM-AyshaNeural-Female', 'ar-QA-AmalNeural-Female', 'ar-QA-MoazNeural-Male', 'ar-SA-HamedNeural-Male', 'ar-SA-ZariyahNeural-Female', 'ar-SY-AmanyNeural-Female', 'ar-SY-LaithNeural-Male', 'ar-TN-HediNeural-Male', 'ar-TN-ReemNeural-Female', 'ar-YE-MaryamNeural-Female', 'ar-YE-SalehNeural-Male', 'az-AZ-BabekNeural-Male', 'az-AZ-BanuNeural-Female', 'bg-BG-BorislavNeural-Male', 'bg-BG-KalinaNeural-Female', 'bn-BD-NabanitaNeural-Female', 'bn-BD-PradeepNeural-Male', 'bn-IN-BashkarNeural-Male', 'bn-IN-TanishaaNeural-Female', 'bs-BA-GoranNeural-Male', 'bs-BA-VesnaNeural-Female', 'ca-ES-EnricNeural-Male', 'ca-ES-JoanaNeural-Female', 'cs-CZ-AntoninNeural-Male', 'cs-CZ-VlastaNeural-Female', 'cy-GB-AledNeural-Male', 'cy-GB-NiaNeural-Female', 'da-DK-ChristelNeural-Female', 'da-DK-JeppeNeural-Male', 'de-AT-IngridNeural-Female', 'de-AT-JonasNeural-Male', 'de-CH-JanNeural-Male', 'de-CH-LeniNeural-Female', 'de-DE-AmalaNeural-Female', 'de-DE-ConradNeural-Male', 'de-DE-KatjaNeural-Female', 'de-DE-KillianNeural-Male', 'el-GR-AthinaNeural-Female', 'el-GR-NestorasNeural-Male', 'en-AU-NatashaNeural-Female', 'en-AU-WilliamNeural-Male', 'en-CA-ClaraNeural-Female', 'en-CA-LiamNeural-Male', 'en-GB-LibbyNeural-Female', 'en-GB-MaisieNeural-Female', 'en-GB-RyanNeural-Male', 'en-GB-SoniaNeural-Female', 'en-GB-ThomasNeural-Male', 'en-HK-SamNeural-Male', 'en-HK-YanNeural-Female', 'en-IE-ConnorNeural-Male', 'en-IE-EmilyNeural-Female', 'en-IN-NeerjaExpressiveNeural-Female', 'en-IN-NeerjaNeural-Female', 'en-IN-PrabhatNeural-Male', 'en-KE-AsiliaNeural-Female', 'en-KE-ChilembaNeural-Male', 'en-NG-AbeoNeural-Male', 'en-NG-EzinneNeural-Female', 'en-NZ-MitchellNeural-Male', 'en-NZ-MollyNeural-Female', 'en-PH-JamesNeural-Male', 'en-PH-RosaNeural-Female', 'en-SG-LunaNeural-Female', 'en-SG-WayneNeural-Male', 'en-TZ-ElimuNeural-Male', 'en-TZ-ImaniNeural-Female', 'en-US-AnaNeural-Female', 'en-US-AriaNeural-Female', 'en-US-ChristopherNeural-Male', 'en-US-EricNeural-Male', 'en-US-GuyNeural-Male', 'en-US-JennyNeural-Female', 'en-US-MichelleNeural-Female', 'en-US-RogerNeural-Male', 'en-US-SteffanNeural-Male', 'en-ZA-LeahNeural-Female', 'en-ZA-LukeNeural-Male', 'es-AR-ElenaNeural-Female', 'es-AR-TomasNeural-Male', 'es-BO-MarceloNeural-Male', 'es-BO-SofiaNeural-Female', 'es-CL-CatalinaNeural-Female', 'es-CL-LorenzoNeural-Male', 'es-CO-GonzaloNeural-Male', 'es-CO-SalomeNeural-Female', 'es-CR-JuanNeural-Male', 'es-CR-MariaNeural-Female', 'es-CU-BelkysNeural-Female', 'es-CU-ManuelNeural-Male', 'es-DO-EmilioNeural-Male', 'es-DO-RamonaNeural-Female', 'es-EC-AndreaNeural-Female', 'es-EC-LuisNeural-Male', 'es-ES-AlvaroNeural-Male', 'es-ES-ElviraNeural-Female', 'es-GQ-JavierNeural-Male', 'es-GQ-TeresaNeural-Female', 'es-GT-AndresNeural-Male', 'es-GT-MartaNeural-Female', 'es-HN-CarlosNeural-Male', 'es-HN-KarlaNeural-Female', 'es-MX-DaliaNeural-Female', 'es-MX-JorgeNeural-Male', 'es-NI-FedericoNeural-Male', 'es-NI-YolandaNeural-Female', 'es-PA-MargaritaNeural-Female', 'es-PA-RobertoNeural-Male', 'es-PE-AlexNeural-Male', 'es-PE-CamilaNeural-Female', 'es-PR-KarinaNeural-Female', 'es-PR-VictorNeural-Male', 'es-PY-MarioNeural-Male', 'es-PY-TaniaNeural-Female', 'es-SV-LorenaNeural-Female', 'es-SV-RodrigoNeural-Male', 'es-US-AlonsoNeural-Male', 'es-US-PalomaNeural-Female', 'es-UY-MateoNeural-Male', 'es-UY-ValentinaNeural-Female', 'es-VE-PaolaNeural-Female', 'es-VE-SebastianNeural-Male', 'et-EE-AnuNeural-Female', 'et-EE-KertNeural-Male', 'fa-IR-DilaraNeural-Female', 'fa-IR-FaridNeural-Male', 'fi-FI-HarriNeural-Male', 'fi-FI-NooraNeural-Female', 'fil-PH-AngeloNeural-Male', 'fil-PH-BlessicaNeural-Female', 'fr-BE-CharlineNeural-Female', 'fr-BE-GerardNeural-Male', 'fr-CA-AntoineNeural-Male', 'fr-CA-JeanNeural-Male', 'fr-CA-SylvieNeural-Female', 'fr-CH-ArianeNeural-Female', 'fr-CH-FabriceNeural-Male', 'fr-FR-DeniseNeural-Female', 'fr-FR-EloiseNeural-Female', 'fr-FR-HenriNeural-Male', 'ga-IE-ColmNeural-Male', 'ga-IE-OrlaNeural-Female', 'gl-ES-RoiNeural-Male', 'gl-ES-SabelaNeural-Female', 'gu-IN-DhwaniNeural-Female', 'gu-IN-NiranjanNeural-Male', 'he-IL-AvriNeural-Male', 'he-IL-HilaNeural-Female', 'hi-IN-MadhurNeural-Male', 'hi-IN-SwaraNeural-Female', 'hr-HR-GabrijelaNeural-Female', 'hr-HR-SreckoNeural-Male', 'hu-HU-NoemiNeural-Female', 'hu-HU-TamasNeural-Male', 'id-ID-ArdiNeural-Male', 'id-ID-GadisNeural-Female', 'is-IS-GudrunNeural-Female', 'is-IS-GunnarNeural-Male', 'it-IT-DiegoNeural-Male', 'it-IT-ElsaNeural-Female', 'it-IT-IsabellaNeural-Female', 'ja-JP-KeitaNeural-Male', 'ja-JP-NanamiNeural-Female', 'jv-ID-DimasNeural-Male', 'jv-ID-SitiNeural-Female', 'ka-GE-EkaNeural-Female', 'ka-GE-GiorgiNeural-Male', 'kk-KZ-AigulNeural-Female', 'kk-KZ-DauletNeural-Male', 'km-KH-PisethNeural-Male', 'km-KH-SreymomNeural-Female', 'kn-IN-GaganNeural-Male', 'kn-IN-SapnaNeural-Female', 'ko-KR-InJoonNeural-Male', 'ko-KR-SunHiNeural-Female', 'lo-LA-ChanthavongNeural-Male', 'lo-LA-KeomanyNeural-Female', 'lt-LT-LeonasNeural-Male', 'lt-LT-OnaNeural-Female', 'lv-LV-EveritaNeural-Female', 'lv-LV-NilsNeural-Male', 'mk-MK-AleksandarNeural-Male', 'mk-MK-MarijaNeural-Female', 'ml-IN-MidhunNeural-Male', 'ml-IN-SobhanaNeural-Female', 'mn-MN-BataaNeural-Male', 'mn-MN-YesuiNeural-Female', 'mr-IN-AarohiNeural-Female', 'mr-IN-ManoharNeural-Male', 'ms-MY-OsmanNeural-Male', 'ms-MY-YasminNeural-Female', 'mt-MT-GraceNeural-Female', 'mt-MT-JosephNeural-Male', 'my-MM-NilarNeural-Female', 'my-MM-ThihaNeural-Male', 'nb-NO-FinnNeural-Male', 'nb-NO-PernilleNeural-Female', 'ne-NP-HemkalaNeural-Female', 'ne-NP-SagarNeural-Male', 'nl-BE-ArnaudNeural-Male', 'nl-BE-DenaNeural-Female', 'nl-NL-ColetteNeural-Female', 'nl-NL-FennaNeural-Female', 'nl-NL-MaartenNeural-Male', 'pl-PL-MarekNeural-Male', 'pl-PL-ZofiaNeural-Female', 'ps-AF-GulNawazNeural-Male', 'ps-AF-LatifaNeural-Female', 'pt-BR-AntonioNeural-Male', 'pt-BR-FranciscaNeural-Female', 'pt-PT-DuarteNeural-Male', 'pt-PT-RaquelNeural-Female', 'ro-RO-AlinaNeural-Female', 'ro-RO-EmilNeural-Male', 'ru-RU-DmitryNeural-Male', 'ru-RU-SvetlanaNeural-Female', 'si-LK-SameeraNeural-Male', 'si-LK-ThiliniNeural-Female', 'sk-SK-LukasNeural-Male', 'sk-SK-ViktoriaNeural-Female', 'sl-SI-PetraNeural-Female', 'sl-SI-RokNeural-Male', 'so-SO-MuuseNeural-Male', 'so-SO-UbaxNeural-Female', 'sq-AL-AnilaNeural-Female', 'sq-AL-IlirNeural-Male', 'sr-RS-NicholasNeural-Male', 'sr-RS-SophieNeural-Female', 'su-ID-JajangNeural-Male', 'su-ID-TutiNeural-Female', 'sv-SE-MattiasNeural-Male', 'sv-SE-SofieNeural-Female', 'sw-KE-RafikiNeural-Male', 'sw-KE-ZuriNeural-Female', 'sw-TZ-DaudiNeural-Male', 'sw-TZ-RehemaNeural-Female', 'ta-IN-PallaviNeural-Female', 'ta-IN-ValluvarNeural-Male', 'ta-LK-KumarNeural-Male', 'ta-LK-SaranyaNeural-Female', 'ta-MY-KaniNeural-Female', 'ta-MY-SuryaNeural-Male', 'ta-SG-AnbuNeural-Male', 'ta-SG-VenbaNeural-Female', 'te-IN-MohanNeural-Male', 'te-IN-ShrutiNeural-Female', 'th-TH-NiwatNeural-Male', 'th-TH-PremwadeeNeural-Female', 'tr-TR-AhmetNeural-Male', 'tr-TR-EmelNeural-Female', 'uk-UA-OstapNeural-Male', 'uk-UA-PolinaNeural-Female', 'ur-IN-GulNeural-Female', 'ur-IN-SalmanNeural-Male', 'ur-PK-AsadNeural-Male', 'ur-PK-UzmaNeural-Female', 'uz-UZ-MadinaNeural-Female', 'uz-UZ-SardorNeural-Male', 'vi-VN-HoaiMyNeural-Female', 'vi-VN-NamMinhNeural-Male', 'zh-CN-XiaoxiaoNeural-Female', 'zh-CN-XiaoyiNeural-Female', 'zh-CN-YunjianNeural-Male', 'zh-CN-YunxiNeural-Male', 'zh-CN-YunxiaNeural-Male', 'zh-CN-YunyangNeural-Male', 'zh-CN-liaoning-XiaobeiNeural-Female', 'zh-CN-shaanxi-XiaoniNeural-Female']

### voices
with capture.capture_output() as cap:
    os.system('mkdir downloads')
    os.system('mkdir logs')
    os.system('mkdir weights')
    os.system('mkdir downloads')
    del cap


def print_tree_directory(root_dir, indent=''):
    if not os.path.exists(root_dir):
        print(f"{indent}Invalid directory or file: {root_dir}")
        return

    items = os.listdir(root_dir)

    for index, item in enumerate(sorted(items)):
        item_path = os.path.join(root_dir, item)
        is_last_item = index == len(items) - 1

        if os.path.isfile(item_path) and item_path.endswith('.zip'):
            with zipfile.ZipFile(item_path, 'r') as zip_file:
                print(f"{indent}{'└──' if is_last_item else '├──'} {item} (zip file)")
                zip_contents = zip_file.namelist()
                for zip_item in sorted(zip_contents):
                    print(f"{indent}{'    ' if is_last_item else '│   '}{zip_item}")
        else:
            print(f"{indent}{'└──' if is_last_item else '├──'} {item}")

            if os.path.isdir(item_path):
                new_indent = indent + ('    ' if is_last_item else '│   ')
                print_tree_directory(item_path, new_indent)


def upload_model_list():
    weight_root = "weights"
    models = []
    for name in os.listdir(weight_root):
        if name.endswith(".pth"):
            models.append(name)

    index_root = "logs"
    index_paths = []
    for name in os.listdir(index_root):
        if name.endswith(".index"):
            index_paths.append("logs/"+name)

    print(models, index_paths)
    return models, index_paths

def manual_download(url, dst):
    token = os.getenv("YOUR_HF_TOKEN")
    user_header = f"\"Authorization: Bearer {token}\""

    if 'drive.google' in url:
        print("Drive link")
        if 'folders' in url:
            print("folder")
            os.system(f'gdown --folder "{url}" -O {dst} --fuzzy -c')
        else:
            print("single")
            os.system(f'gdown "{url}" -O {dst} --fuzzy -c')
    elif 'huggingface' in url:
        print("HuggingFace link")
        if '/blob/' in url or '/resolve/' in url:
          if '/blob/' in url:
              url = url.replace('/blob/', '/resolve/')
          #parsed_link = '\n{}\n\tout={}'.format(url, unquote(url.split('/')[-1]))
          #os.system(f'echo -e "{parsed_link}" | aria2c --header={user_header} --console-log-level=error --summary-interval=10 -i- -j5 -x16 -s16 -k1M -c -d "{dst}"')
          os.system(f"wget -P {dst} {url}")
        else:
          os.system(f"git clone {url} {dst+'repo/'}")
    elif 'http' in url or 'magnet' in url:
        parsed_link = '"{}"'.format(url)
        os.system(f'aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -j5 -x16 -s16 -k1M -c -d {dst} -Z {parsed_link}')


def download_list(text_downloads):
    try:
      urls = [elem.strip() for elem in text_downloads.split(',')]
    except:
      return 'No valid link'

    os.system('mkdir downloads')
    os.system('mkdir logs')
    os.system('mkdir weights')
    path_download = "downloads/"
    for url in urls:
      manual_download(url, path_download)
    
    # Tree
    print('####################################')
    print_tree_directory("downloads", indent='')
    print('####################################')

    # Place files
    select_zip_and_rar_files("downloads/")

    models, _ = upload_model_list()
    os.system("rm -rf downloads/repo")

    return f"Downloaded = {models}"


def select_zip_and_rar_files(directory_path="downloads/"):
    #filter
    zip_files = []
    rar_files = []

    for file_name in os.listdir(directory_path):
        if file_name.endswith(".zip"):
            zip_files.append(file_name)
        elif file_name.endswith(".rar"):
            rar_files.append(file_name)

    # extract
    for file_name in zip_files:
        file_path = os.path.join(directory_path, file_name)
        with zipfile.ZipFile(file_path, 'r') as zip_ref:
            zip_ref.extractall(directory_path)

    for file_name in rar_files:
        file_path = os.path.join(directory_path, file_name)
        with rarfile.RarFile(file_path, 'r') as rar_ref:
            rar_ref.extractall(directory_path)

    # set in path
    def move_files_with_extension(src_dir, extension, destination_dir):
        for root, _, files in os.walk(src_dir):
            for file_name in files:
                if file_name.endswith(extension):
                    source_file = os.path.join(root, file_name)
                    destination = os.path.join(destination_dir, file_name)
                    shutil.move(source_file, destination)

    move_files_with_extension(directory_path, ".index", "logs/")
    move_files_with_extension(directory_path, ".pth", "weights/")

    return 'Download complete'

def custom_model_voice_enable(enable_custom_voice):
    if enable_custom_voice:
      os.environ["VOICES_MODELS"] = 'ENABLE'
    else:
      os.environ["VOICES_MODELS"] = 'DISABLE'


models, index_paths = upload_model_list()

f0_methods_voice = ["pm", "harvest", "crepe", "rmvpe"]


from voice_main import ClassVoices
voices = ClassVoices()

'''
def translate_from_video(video, WHISPER_MODEL_SIZE, batch_size, compute_type,
                         TRANSLATE_AUDIO_TO, min_speakers, max_speakers,
                         tts_voice00, tts_voice01,tts_voice02,tts_voice03,tts_voice04,tts_voice05):

    YOUR_HF_TOKEN = os.getenv("My_hf_token")

    create_translated_audio(result_diarize, audio_files, Output_name_file)

    os.system("rm audio_dub_stereo.wav")
    os.system("ffmpeg -i audio_dub_solo.wav -ac 1 audio_dub_stereo.wav")

    os.system(f"rm {mix_audio}")
    os.system(f'ffmpeg -y -i audio.wav -i audio_dub_stereo.wav -filter_complex "[0:0]volume=0.15[a];[1:0]volume=1.90[b];[a][b]amix=inputs=2:duration=longest" -c:a libmp3lame {mix_audio}')

    os.system(f"rm {video_output}")
    os.system(f"ffmpeg -i {OutputFile} -i {mix_audio} -c:v copy -c:a copy -map 0:v -map 1:a -shortest {video_output}")

    return video_output
'''

def translate_from_video(
    video,
    YOUR_HF_TOKEN,
    preview=False,
    WHISPER_MODEL_SIZE="large-v1",
    batch_size=16,
    compute_type="float16",
    SOURCE_LANGUAGE= "Automatic detection",
    TRANSLATE_AUDIO_TO="English (en)",
    min_speakers=1,
    max_speakers=2,
    tts_voice00="en-AU-WilliamNeural-Male",
    tts_voice01="en-CA-ClaraNeural-Female",
    tts_voice02="en-GB-ThomasNeural-Male",
    tts_voice03="en-GB-SoniaNeural-Female",
    tts_voice04="en-NZ-MitchellNeural-Male",
    tts_voice05="en-GB-MaisieNeural-Female",
    video_output="video_dub.mp4",
    AUDIO_MIX_METHOD='Adjusting volumes and mixing audio',
    progress=gr.Progress(),
    ):

    if YOUR_HF_TOKEN == "" or YOUR_HF_TOKEN == None:
      YOUR_HF_TOKEN = os.getenv("YOUR_HF_TOKEN")
      if YOUR_HF_TOKEN == None:
        print('No valid token')
        return "No valid token"
      else:
        os.environ["YOUR_HF_TOKEN"] = YOUR_HF_TOKEN

    video = video if isinstance(video, str) else video.name
    print(video)

    if "SET_LIMIT" == os.getenv("DEMO"):
      preview=True
      print("DEMO; set preview=True; The generation is **limited to 10 seconds** to prevent errors with the CPU. If you use a GPU, you won't have any of these limitations.")
      AUDIO_MIX_METHOD='Adjusting volumes and mixing audio'
      print("DEMO; set Adjusting volumes and mixing audio")
      WHISPER_MODEL_SIZE="medium"
      print("DEMO; set whisper model to medium")

    LANGUAGES = {
        'Automatic detection': 'Automatic detection',
        'Arabic (ar)': 'ar',
        'Chinese (zh)': 'zh',
        'Czech (cs)': 'cs',
        'Danish (da)': 'da',
        'Dutch (nl)': 'nl',
        'English (en)': 'en',
        'Finnish (fi)': 'fi',
        'French (fr)': 'fr',
        'German (de)': 'de',
        'Greek (el)': 'el',
        'Hebrew (he)': 'he',
        'Hungarian (hu)': 'hu',
        'Italian (it)': 'it',
        'Japanese (ja)': 'ja',
        'Korean (ko)': 'ko',
        'Persian (fa)': 'fa',
        'Polish (pl)': 'pl',
        'Portuguese (pt)': 'pt',
        'Russian (ru)': 'ru',
        'Spanish (es)': 'es',
        'Turkish (tr)': 'tr',
        'Ukrainian (uk)': 'uk',
        'Urdu (ur)': 'ur',
        'Vietnamese (vi)': 'vi',
        'Hindi (hi)': 'hi',
    }

    TRANSLATE_AUDIO_TO = LANGUAGES[TRANSLATE_AUDIO_TO]
    SOURCE_LANGUAGE = LANGUAGES[SOURCE_LANGUAGE]


    if not os.path.exists('audio'):
        os.makedirs('audio')

    if not os.path.exists('audio2/audio'):
        os.makedirs('audio2/audio')

    # Check GPU
    device = "cuda" if torch.cuda.is_available() else "cpu"
    compute_type = "float32" if device == "cpu" else compute_type

    OutputFile = 'Video.mp4'
    audio_wav = "audio.wav"
    Output_name_file = "audio_dub_solo.ogg"
    mix_audio = "audio_mix.mp3"

    os.system("rm Video.mp4")
    os.system("rm audio.webm")
    os.system("rm audio.wav")

    progress(0.15, desc="Processing video...")
    if os.path.exists(video):
        if preview:
            print('Creating a preview video of 10 seconds, to disable this option, go to advanced settings and turn off preview.')
            os.system(f'ffmpeg -y -i "{video}" -ss 00:00:20 -t 00:00:10 -c:v libx264 -c:a aac -strict experimental Video.mp4')
        else:
            # Check if the file ends with ".mp4" extension
            if video.endswith(".mp4"):
                destination_path = os.path.join(os.getcwd(), "Video.mp4")
                shutil.copy(video, destination_path)
            else:
                print("File does not have the '.mp4' extension. Converting video.")
                os.system(f'ffmpeg -y -i "{video}" -c:v libx264 -c:a aac -strict experimental Video.mp4')

        for i in range (120):
            time.sleep(1)
            print('process video...')
            if os.path.exists(OutputFile):
                time.sleep(1)
                os.system("ffmpeg -y -i Video.mp4 -vn -acodec pcm_s16le -ar 44100 -ac 2 audio.wav")
                time.sleep(1)
                break
            if i == 119:
              print('Error processing video')
              return

        for i in range (120):
            time.sleep(1)
            print('process audio...')
            if os.path.exists(audio_wav):
                break
            if i == 119:
              print("Error can't create the audio")
              return

    else:
        if preview:
            print('Creating a preview from the link, 10 seconds to disable this option, go to advanced settings and turn off preview.')
            #https://github.com/yt-dlp/yt-dlp/issues/2220
            mp4_ = f'yt-dlp -f "mp4" --downloader ffmpeg --downloader-args "ffmpeg_i: -ss 00:00:20 -t 00:00:10" --force-overwrites --max-downloads 1 --no-warnings --no-abort-on-error --ignore-no-formats-error --restrict-filenames -o {OutputFile} {video}'
            wav_ = "ffmpeg -y -i Video.mp4 -vn -acodec pcm_s16le -ar 44100 -ac 2 audio.wav"
            os.system(mp4_)
            os.system(wav_)
        else:
            mp4_ = f'yt-dlp -f "mp4" --force-overwrites --max-downloads 1 --no-warnings --no-abort-on-error --ignore-no-formats-error --restrict-filenames -o {OutputFile} {video}'
            wav_ = f'python -m yt_dlp --output {audio_wav} --force-overwrites --max-downloads 1 --no-warnings --no-abort-on-error --ignore-no-formats-error --extract-audio --audio-format wav {video}'

            os.system(wav_)

            for i in range (120):
                time.sleep(1)
                print('process audio...')
                if os.path.exists(audio_wav) and not os.path.exists('audio.webm'):
                    time.sleep(1)
                    os.system(mp4_)
                    break
                if i == 119:
                  print('Error donwloading the audio')
                  return

    print("Set file complete.")
    progress(0.30, desc="Transcribing...")

    SOURCE_LANGUAGE = None if SOURCE_LANGUAGE == 'Automatic detection' else SOURCE_LANGUAGE

    # 1. Transcribe with original whisper (batched)
    with capture.capture_output() as cap:
      model = whisperx.load_model(
          WHISPER_MODEL_SIZE,
          device,
          compute_type=compute_type,
          language= SOURCE_LANGUAGE,
          )
      del cap
    audio = whisperx.load_audio(audio_wav)
    result = model.transcribe(audio, batch_size=batch_size)
    gc.collect(); torch.cuda.empty_cache(); del model
    print("Transcript complete")

    

    # 2. Align whisper output
    progress(0.45, desc="Aligning...")
    DAMHF.update(DAMT) #lang align
    EXTRA_ALIGN = {
        "hi": "theainerd/Wav2Vec2-large-xlsr-hindi"
    } # add new align models here
    #print(result['language'], DAM.keys(), EXTRA_ALIGN.keys())
    if not result['language'] in DAMHF.keys() and not result['language'] in EXTRA_ALIGN.keys():
        audio = result = None
        print("Automatic detection: Source language not incompatible")
        print(f"Detected language {LANG_TRANSCRIPT[result['language']]}  incompatible, you can select the source language to avoid this error.")
        return

    model_a, metadata = whisperx.load_align_model(
        language_code=result["language"],
        device=device,
        model_name = None if result["language"] in DAMHF.keys() else EXTRA_ALIGN[result["language"]]
        )
    result = whisperx.align(
        result["segments"],
        model_a,
        metadata,
        audio,
        device,
        return_char_alignments=True,
        )
    gc.collect(); torch.cuda.empty_cache(); del model_a
    print("Align complete")

    if result['segments'] == []:
        print('No active speech found in audio')
        return

    # 3. Assign speaker labels
    progress(0.60, desc="Diarizing...")
    with capture.capture_output() as cap:
      diarize_model = whisperx.DiarizationPipeline(use_auth_token=YOUR_HF_TOKEN, device=device)
      del cap
    diarize_segments = diarize_model(
        audio_wav,
        min_speakers=min_speakers,
        max_speakers=max_speakers)
    result_diarize = whisperx.assign_word_speakers(diarize_segments, result)
    gc.collect(); torch.cuda.empty_cache(); del diarize_model
    print("Diarize complete")

    progress(0.75, desc="Translating...")
    if TRANSLATE_AUDIO_TO == "zh":
        TRANSLATE_AUDIO_TO = "zh-CN"
    if TRANSLATE_AUDIO_TO == "he":
        TRANSLATE_AUDIO_TO = "iw"
    result_diarize['segments'] = translate_text(result_diarize['segments'], TRANSLATE_AUDIO_TO)
    print("Translation complete")

    progress(0.85, desc="Text_to_speech...")
    audio_files = []
    speakers_list = []

    # Mapping speakers to voice variables
    speaker_to_voice = {
        'SPEAKER_00': tts_voice00,
        'SPEAKER_01': tts_voice01,
        'SPEAKER_02': tts_voice02,
        'SPEAKER_03': tts_voice03,
        'SPEAKER_04': tts_voice04,
        'SPEAKER_05': tts_voice05
    }

    for segment in tqdm(result_diarize['segments']):

        text = segment['text']
        start = segment['start']
        end = segment['end']

        try:
            speaker = segment['speaker']
        except KeyError:
            segment['speaker'] = "SPEAKER_99"
            speaker = segment['speaker']
            print(f"NO SPEAKER DETECT IN SEGMENT: TTS auxiliary will be used in the segment time {segment['start'], segment['text']}")

        # make the tts audio
        filename = f"audio/{start}.ogg"

        if speaker in speaker_to_voice and speaker_to_voice[speaker] != 'None':
            make_voice_gradio(text, speaker_to_voice[speaker], filename, TRANSLATE_AUDIO_TO)
        elif speaker == "SPEAKER_99":
            try:
                tts = gTTS(text, lang=TRANSLATE_AUDIO_TO)
                tts.save(filename)
                print('Using GTTS')
            except:
                tts = gTTS('a', lang=TRANSLATE_AUDIO_TO)
                tts.save(filename)
                print('Error: Audio will be replaced.')

        # duration
        duration_true = end - start
        duration_tts = librosa.get_duration(filename=filename)

        # porcentaje
        porcentaje = duration_tts / duration_true

        if porcentaje > 2.1:
            porcentaje = 2.1
        elif porcentaje <= 1.2 and porcentaje >= 0.8:
            porcentaje = 1.0
        elif porcentaje <= 0.79:
            porcentaje = 0.8

        # Smoth and round
        porcentaje = round(porcentaje+0.0, 1)

        # apply aceleration or opposite to the audio file in audio2 folder
        os.system(f"ffmpeg -y -loglevel panic -i {filename} -filter:a atempo={porcentaje} audio2/{filename}")

        duration_create = librosa.get_duration(filename=f"audio2/{filename}")
        audio_files.append(filename)
        speakers_list.append(speaker)

    # custom voice
    if os.getenv('VOICES_MODELS') == 'ENABLE':
        progress(0.90, desc="Applying customized voices...")
        voices(speakers_list, audio_files)

    # replace files with the accelerates
    os.system("mv -f audio2/audio/*.ogg audio/")

    os.system(f"rm {Output_name_file}")

    progress(0.95, desc="Creating final translated video...")

    create_translated_audio(result_diarize, audio_files, Output_name_file)

    os.system(f"rm {mix_audio}")

    # TYPE MIX AUDIO
    if AUDIO_MIX_METHOD == 'Adjusting volumes and mixing audio':
        # volume mix
        os.system(f'ffmpeg -y -i {audio_wav} -i {Output_name_file} -filter_complex "[0:0]volume=0.15[a];[1:0]volume=1.90[b];[a][b]amix=inputs=2:duration=longest" -c:a libmp3lame {mix_audio}')
    else:
        try:
            # background mix
            os.system(f'ffmpeg -i {audio_wav} -i {Output_name_file} -filter_complex "[1:a]asplit=2[sc][mix];[0:a][sc]sidechaincompress=threshold=0.003:ratio=20[bg]; [bg][mix]amerge[final]" -map [final] {mix_audio}')
        except:
            # volume mix except
            os.system(f'ffmpeg -y -i {audio_wav} -i {Output_name_file} -filter_complex "[0:0]volume=0.25[a];[1:0]volume=1.80[b];[a][b]amix=inputs=2:duration=longest" -c:a libmp3lame {mix_audio}')

    os.system(f"rm {video_output}")
    os.system(f"ffmpeg -i {OutputFile} -i {mix_audio} -c:v copy -c:a copy -map 0:v -map 1:a -shortest {video_output}")

    return video_output

import sys

class Logger:
    def __init__(self, filename):
        self.terminal = sys.stdout
        self.log = open(filename, "w")

    def write(self, message):
        self.terminal.write(message)
        self.log.write(message)

    def flush(self):
        self.terminal.flush()
        self.log.flush()

    def isatty(self):
        return False

sys.stdout = Logger("output.log")

def read_logs():
    sys.stdout.flush()
    with open("output.log", "r") as f:
        return f.read()

def submit_file_func(file):
    print(file.name)
    return file.name, file.name

# max tts
MAX_TTS = 6

theme='Taithrah/Minimal'

with gr.Blocks(theme=theme) as demo:
    gr.Markdown(title)
    gr.Markdown(description)

#### video
    with gr.Tab("Audio Translation for a Video"):
        with gr.Row():
            with gr.Column():
                #video_input = gr.UploadButton("Click to Upload a video", file_types=["video"], file_count="single") #gr.Video() # height=300,width=300
                video_input = gr.Video(label="Submit a video") #gr.File(label="VIDEO")
                #link = gr.HTML()
                #video_input.change(submit_file_func, video_input, [video_input, link], show_progress='full')

                SOURCE_LANGUAGE = gr.Dropdown(['Automatic detection', 'Arabic (ar)', 'Chinese (zh)', 'Czech (cs)', 'Danish (da)', 'Dutch (nl)', 'English (en)', 'Finnish (fi)', 'French (fr)', 'German (de)', 'Greek (el)', 'Hebrew (he)', 'Hindi (hi)', 'Hungarian (hu)', 'Italian (it)', 'Japanese (ja)', 'Korean (ko)', 'Persian (fa)', 'Polish (pl)', 'Portuguese (pt)', 'Russian (ru)', 'Spanish (es)', 'Turkish (tr)', 'Ukrainian (uk)', 'Urdu (ur)', 'Vietnamese (vi)'], value='Automatic detection',label = 'Source language', info="This is the original language of the video")
                TRANSLATE_AUDIO_TO = gr.Dropdown(['Arabic (ar)', 'Chinese (zh)', 'Czech (cs)', 'Danish (da)', 'Dutch (nl)', 'English (en)', 'Finnish (fi)', 'French (fr)', 'German (de)', 'Greek (el)', 'Hebrew (he)', 'Hindi (hi)', 'Hungarian (hu)', 'Italian (it)', 'Japanese (ja)', 'Korean (ko)', 'Persian (fa)', 'Polish (pl)', 'Portuguese (pt)', 'Russian (ru)', 'Spanish (es)', 'Turkish (tr)', 'Ukrainian (uk)', 'Urdu (ur)', 'Vietnamese (vi)'], value='English (en)',label = 'Translate audio to', info="Select the target language, and make sure to select the language corresponding to the speakers of the target language to avoid errors in the process.")

                line_ = gr.HTML("<hr></h2>")
                gr.Markdown("Select how many people are speaking in the video.")
                min_speakers = gr.Slider(1, MAX_TTS, default=1, label="min_speakers", step=1, visible=False)
                max_speakers = gr.Slider(1, MAX_TTS, value=2, step=1, label="Max speakers", interative=True)
                gr.Markdown("Select the voice you want for each speaker.")
                def submit(value):
                    visibility_dict = {
                        f'tts_voice{i:02d}': gr.update(visible=i < value) for i in range(6)
                    }
                    return [value for value in visibility_dict.values()]
                tts_voice00 = gr.Dropdown(list_tts, value='en-AU-WilliamNeural-Male', label = 'TTS Speaker 1', visible=True, interactive= True)
                tts_voice01 = gr.Dropdown(list_tts, value='en-CA-ClaraNeural-Female', label = 'TTS Speaker 2', visible=True, interactive= True)
                tts_voice02 = gr.Dropdown(list_tts, value='en-GB-ThomasNeural-Male', label = 'TTS Speaker 3', visible=False, interactive= True)
                tts_voice03 = gr.Dropdown(list_tts, value='en-GB-SoniaNeural-Female', label = 'TTS Speaker 4', visible=False, interactive= True)
                tts_voice04 = gr.Dropdown(list_tts, value='en-NZ-MitchellNeural-Male', label = 'TTS Speaker 5', visible=False, interactive= True)
                tts_voice05 = gr.Dropdown(list_tts, value='en-GB-MaisieNeural-Female', label = 'TTS Speaker 6', visible=False, interactive= True)
                max_speakers.change(submit, max_speakers, [tts_voice00, tts_voice01, tts_voice02, tts_voice03, tts_voice04, tts_voice05])

                with gr.Column():
                      with gr.Accordion("Advanced Settings", open=False):

                          AUDIO_MIX = gr.Dropdown(['Mixing audio with sidechain compression', 'Adjusting volumes and mixing audio'], value='Adjusting volumes and mixing audio', label = 'Audio Mixing Method', info="Mix original and translated audio files to create a customized, balanced output with two available mixing modes.")

                          gr.HTML("<hr></h2>")
                          gr.Markdown("Default configuration of Whisper.")
                          WHISPER_MODEL_SIZE = gr.inputs.Dropdown(['tiny', 'base', 'small', 'medium', 'large-v1', 'large-v2'], default=whisper_model_default, label="Whisper model")
                          batch_size = gr.inputs.Slider(1, 32, default=16, label="Batch size", step=1)
                          compute_type = gr.inputs.Dropdown(list_compute_type, default=compute_type_default, label="Compute type")

                          gr.HTML("<hr></h2>")
                          VIDEO_OUTPUT_NAME = gr.Textbox(label="Translated file name" ,value="video_output.mp4", info="The name of the output file")
                          PREVIEW = gr.Checkbox(label="Preview", info="Preview cuts the video to only 10 seconds for testing purposes. Please deactivate it to retrieve the full video duration.")

            with gr.Column(variant='compact'):
                with gr.Row():
                    video_button = gr.Button("TRANSLATE", )
                with gr.Row():
                    video_output = gr.Video() #gr.outputs.File(label="DOWNLOAD TRANSLATED VIDEO") 

                line_ = gr.HTML("<hr></h2>")
                if os.getenv("YOUR_HF_TOKEN") == None or os.getenv("YOUR_HF_TOKEN") == "":
                  HFKEY = gr.Textbox(visible= True, label="HF Token", info="One important step is to accept the license agreement for using Pyannote. You need to have an account on Hugging Face and accept the license to use the models: https://huggingface.co/pyannote/speaker-diarization and https://huggingface.co/pyannote/segmentation. Get your KEY TOKEN here: https://hf.co/settings/tokens", placeholder="Token goes here...")
                else:
                  HFKEY = gr.Textbox(visible= False, label="HF Token", info="One important step is to accept the license agreement for using Pyannote. You need to have an account on Hugging Face and accept the license to use the models: https://huggingface.co/pyannote/speaker-diarization and https://huggingface.co/pyannote/segmentation. Get your KEY TOKEN here: https://hf.co/settings/tokens", placeholder="Token goes here...")

                gr.Examples(
                    examples=[
                        [
                            "./assets/Video_main.mp4",
                            "",
                            False,
                            "large-v2",
                            16,
                            "float16",
                            "Spanish (es)",
                            "English (en)",
                            1,
                            2,
                            'en-AU-WilliamNeural-Male',
                            'en-CA-ClaraNeural-Female',
                            'en-GB-ThomasNeural-Male',
                            'en-GB-SoniaNeural-Female',
                            'en-NZ-MitchellNeural-Male',
                            'en-GB-MaisieNeural-Female',
                            "video_output.mp4",
                            'Adjusting volumes and mixing audio',
                        ],
                    ],
                    fn=translate_from_video,
                    inputs=[
                    video_input,
                    HFKEY,
                    PREVIEW,
                    WHISPER_MODEL_SIZE,
                    batch_size,
                    compute_type,
                    SOURCE_LANGUAGE,
                    TRANSLATE_AUDIO_TO,
                    min_speakers,
                    max_speakers,
                    tts_voice00,
                    tts_voice01,
                    tts_voice02,
                    tts_voice03,
                    tts_voice04,
                    tts_voice05,
                    VIDEO_OUTPUT_NAME,
                    AUDIO_MIX,
                    ],
                    outputs=[video_output],
                    cache_examples=False,
                )

### link

    with gr.Tab("Audio Translation via Video Link"):
        with gr.Row():
            with gr.Column():

                blink_input = gr.Textbox(label="Media link.", info="Example: www.youtube.com/watch?v=g_9rPvbENUw", placeholder="URL goes here...")

                bSOURCE_LANGUAGE = gr.Dropdown(['Automatic detection', 'Arabic (ar)', 'Chinese (zh)', 'Czech (cs)', 'Danish (da)', 'Dutch (nl)', 'English (en)', 'Finnish (fi)', 'French (fr)', 'German (de)', 'Greek (el)', 'Hebrew (he)', 'Hindi (hi)', 'Hungarian (hu)', 'Italian (it)', 'Japanese (ja)', 'Korean (ko)', 'Persian (fa)', 'Polish (pl)', 'Portuguese (pt)', 'Russian (ru)', 'Spanish (es)', 'Turkish (tr)', 'Ukrainian (uk)', 'Urdu (ur)', 'Vietnamese (vi)'], value='Automatic detection',label = 'Source language', info="This is the original language of the video")
                bTRANSLATE_AUDIO_TO = gr.Dropdown(['Arabic (ar)', 'Chinese (zh)', 'Czech (cs)', 'Danish (da)', 'Dutch (nl)', 'English (en)', 'Finnish (fi)', 'French (fr)', 'German (de)', 'Greek (el)', 'Hebrew (he)', 'Hindi (hi)', 'Hungarian (hu)', 'Italian (it)', 'Japanese (ja)', 'Korean (ko)', 'Persian (fa)', 'Polish (pl)', 'Portuguese (pt)', 'Russian (ru)', 'Spanish (es)', 'Turkish (tr)', 'Ukrainian (uk)', 'Urdu (ur)', 'Vietnamese (vi)'], value='English (en)',label = 'Translate audio to', info="Select the target language, and make sure to select the language corresponding to the speakers of the target language to avoid errors in the process.")

                bline_ = gr.HTML("<hr></h2>")
                gr.Markdown("Select how many people are speaking in the video.")
                bmin_speakers = gr.Slider(1, MAX_TTS, default=1, label="min_speakers", step=1, visible=False)
                bmax_speakers = gr.Slider(1, MAX_TTS, value=2, step=1, label="Max speakers", interative=True)
                gr.Markdown("Select the voice you want for each speaker.")
                def bsubmit(value):
                    visibility_dict = {
                        f'btts_voice{i:02d}': gr.update(visible=i < value) for i in range(6)
                    }
                    return [value for value in visibility_dict.values()]
                btts_voice00 = gr.Dropdown(list_tts, value='en-AU-WilliamNeural-Male', label = 'TTS Speaker 1', visible=True, interactive= True)
                btts_voice01 = gr.Dropdown(list_tts, value='en-CA-ClaraNeural-Female', label = 'TTS Speaker 2', visible=True, interactive= True)
                btts_voice02 = gr.Dropdown(list_tts, value='en-GB-ThomasNeural-Male', label = 'TTS Speaker 3', visible=False, interactive= True)
                btts_voice03 = gr.Dropdown(list_tts, value='en-GB-SoniaNeural-Female', label = 'TTS Speaker 4', visible=False, interactive= True)
                btts_voice04 = gr.Dropdown(list_tts, value='en-NZ-MitchellNeural-Male', label = 'TTS Speaker 5', visible=False, interactive= True)
                btts_voice05 = gr.Dropdown(list_tts, value='en-GB-MaisieNeural-Female', label = 'TTS Speaker 6', visible=False, interactive= True)
                bmax_speakers.change(bsubmit, bmax_speakers, [btts_voice00, btts_voice01, btts_voice02, btts_voice03, btts_voice04, btts_voice05])


                with gr.Column():
                      with gr.Accordion("Advanced Settings", open=False):

                          bAUDIO_MIX = gr.Dropdown(['Mixing audio with sidechain compression', 'Adjusting volumes and mixing audio'], value='Adjusting volumes and mixing audio', label = 'Audio Mixing Method', info="Mix original and translated audio files to create a customized, balanced output with two available mixing modes.")

                          gr.HTML("<hr></h2>")
                          gr.Markdown("Default configuration of Whisper.")
                          bWHISPER_MODEL_SIZE = gr.inputs.Dropdown(['tiny', 'base', 'small', 'medium', 'large-v1', 'large-v2'], default=whisper_model_default, label="Whisper model")
                          bbatch_size = gr.inputs.Slider(1, 32, default=16, label="Batch size", step=1)
                          bcompute_type = gr.inputs.Dropdown(list_compute_type, default=compute_type_default, label="Compute type")

                          gr.HTML("<hr></h2>")
                          bVIDEO_OUTPUT_NAME = gr.Textbox(label="Translated file name" ,value="video_output.mp4", info="The name of the output file")
                          bPREVIEW = gr.Checkbox(label="Preview", info="Preview cuts the video to only 10 seconds for testing purposes. Please deactivate it to retrieve the full video duration.")

            with gr.Column(variant='compact'):
                with gr.Row():
                    text_button = gr.Button("TRANSLATE")
                with gr.Row():
                    blink_output = gr.Video() #gr.outputs.File(label="DOWNLOAD TRANSLATED VIDEO") # gr.Video()


                bline_ = gr.HTML("<hr></h2>")
                if os.getenv("YOUR_HF_TOKEN") == None or os.getenv("YOUR_HF_TOKEN") == "":
                  bHFKEY = gr.Textbox(visible= True, label="HF Token", info="One important step is to accept the license agreement for using Pyannote. You need to have an account on Hugging Face and accept the license to use the models: https://huggingface.co/pyannote/speaker-diarization and https://huggingface.co/pyannote/segmentation. Get your KEY TOKEN here: https://hf.co/settings/tokens", placeholder="Token goes here...")
                else:
                  bHFKEY = gr.Textbox(visible= False, label="HF Token", info="One important step is to accept the license agreement for using Pyannote. You need to have an account on Hugging Face and accept the license to use the models: https://huggingface.co/pyannote/speaker-diarization and https://huggingface.co/pyannote/segmentation. Get your KEY TOKEN here: https://hf.co/settings/tokens", placeholder="Token goes here...")

                gr.Examples(
                    examples=[
                        [
                            "https://www.youtube.com/watch?v=5ZeHtRKHl7Y",
                            "",
                            False,
                            "large-v2",
                            16,
                            "float16",
                            "Japanese (ja)",
                            "English (en)",
                            1,
                            2,
                            'en-CA-ClaraNeural-Female',
                            'en-AU-WilliamNeural-Male',
                            'en-GB-ThomasNeural-Male',
                            'en-GB-SoniaNeural-Female',
                            'en-NZ-MitchellNeural-Male',
                            'en-GB-MaisieNeural-Female',
                            "video_output.mp4",
                            'Adjusting volumes and mixing audio',
                        ],
                    ],
                    fn=translate_from_video,
                    inputs=[
                    blink_input,
                    bHFKEY,
                    bPREVIEW,
                    bWHISPER_MODEL_SIZE,
                    bbatch_size,
                    bcompute_type,
                    bSOURCE_LANGUAGE,
                    bTRANSLATE_AUDIO_TO,
                    bmin_speakers,
                    bmax_speakers,
                    btts_voice00,
                    btts_voice01,
                    btts_voice02,
                    btts_voice03,
                    btts_voice04,
                    btts_voice05,
                    bVIDEO_OUTPUT_NAME,
                    bAUDIO_MIX
                    ],
                    outputs=[blink_output],
                    cache_examples=False,
                )


    with gr.Tab("Custom voice RVC"):
        with gr.Column():
          with gr.Accordion("Download RVC Models", open=True):
            url_links = gr.Textbox(label="URLs", value="",info="Automatically download the RVC models from the URL. You can use links from HuggingFace or Drive, and you can include several links, each one separated by a comma.", placeholder="urls here...", lines=1)
            download_finish = gr.HTML()
            download_button = gr.Button("DOWNLOAD MODELS")

            def update_models():
              models, index_paths = upload_model_list()
              for i in range(8):                      
                dict_models = {
                    f'model_voice_path{i:02d}': gr.update(choices=models) for i in range(8)
                }
                dict_index = {
                    f'file_index2_{i:02d}': gr.update(choices=index_paths) for i in range(8)
                }
                dict_changes = {**dict_models, **dict_index}
                return [value for value in dict_changes.values()]

        with gr.Column():
          with gr.Accordion("Replace voice: TTS to RVC", open=False):
            with gr.Column(variant='compact'):
              with gr.Column():
                gr.Markdown("### 1. To enable its use, mark it as enable.")
                enable_custom_voice = gr.Checkbox(label="ENABLE", info="Check this to enable the use of the models.")
                enable_custom_voice.change(custom_model_voice_enable, [enable_custom_voice], [])

                gr.Markdown("### 2. Select a voice that will be applied to each TTS of each corresponding speaker and apply the configurations.")
                
                gr.Markdown("Voice to apply to the first speaker.")
                with gr.Row():
                  model_voice_path00 = gr.Dropdown(models, label = 'Model-1', visible=True, interactive= True)
                  file_index2_00 = gr.Dropdown(index_paths, label = 'Index-1', visible=True, interactive= True)
                  name_transpose00 = gr.Number(label = 'Transpose-1', value=0, visible=True, interactive= True)
                gr.HTML("<hr></h2>")
                gr.Markdown("Voice to apply to the second speaker.")
                with gr.Row():
                  model_voice_path01 = gr.Dropdown(models, label='Model-2', visible=True, interactive=True)
                  file_index2_01 = gr.Dropdown(index_paths, label='Index-2', visible=True, interactive=True)
                  name_transpose01 = gr.Number(label='Transpose-2', value=0, visible=True, interactive=True)
                gr.HTML("<hr></h2>")
                gr.Markdown("Voice to apply to the third speaker.")
                with gr.Row():
                  model_voice_path02 = gr.Dropdown(models, label='Model-3', visible=True, interactive=True)
                  file_index2_02 = gr.Dropdown(index_paths, label='Index-3', visible=True, interactive=True)
                  name_transpose02 = gr.Number(label='Transpose-3', value=0, visible=True, interactive=True)
                gr.HTML("<hr></h2>")
                gr.Markdown("Voice to apply to the fourth speaker.")
                with gr.Row():
                  model_voice_path03 = gr.Dropdown(models, label='Model-4', visible=True, interactive=True)
                  file_index2_03 = gr.Dropdown(index_paths, label='Index-4', visible=True, interactive=True)
                  name_transpose03 = gr.Number(label='Transpose-4', value=0, visible=True, interactive=True)
                gr.HTML("<hr></h2>")
                gr.Markdown("Voice to apply to the fifth speaker.")
                with gr.Row():
                  model_voice_path04 = gr.Dropdown(models, label='Model-5', visible=True, interactive=True)
                  file_index2_04 = gr.Dropdown(index_paths, label='Index-5', visible=True, interactive=True)
                  name_transpose04 = gr.Number(label='Transpose-5', value=0, visible=True, interactive=True)
                gr.HTML("<hr></h2>")
                gr.Markdown("Voice to apply to the sixth speaker.")
                with gr.Row():
                  model_voice_path05 = gr.Dropdown(models, label='Model-6', visible=True, interactive=True)
                  file_index2_05 = gr.Dropdown(index_paths, label='Index-6', visible=True, interactive=True)
                  name_transpose05 = gr.Number(label='Transpose-6', value=0, visible=True, interactive=True)
                gr.HTML("<hr></h2>")
                gr.Markdown("- Voice to apply in case a speaker is not detected successfully.")
                with gr.Row():
                  model_voice_path06 = gr.Dropdown(models, label='Model-Aux', visible=True, interactive=True)
                  file_index2_06 = gr.Dropdown(index_paths, label='Index-Aux', visible=True, interactive=True)
                  name_transpose06 = gr.Number(label='Transpose-Aux', value=0, visible=True, interactive=True)
                gr.HTML("<hr></h2>")
                with gr.Row():
                  f0_method_global = gr.Dropdown(f0_methods_voice, value='pm', label = 'Global F0 method', visible=True, interactive= True)

            with gr.Row(variant='compact'):
              button_config = gr.Button("APPLY CONFIGURATION")

              confirm_conf = gr.HTML()

            button_config.click(voices.apply_conf, inputs=[
                f0_method_global,
                model_voice_path00, name_transpose00, file_index2_00,
                model_voice_path01, name_transpose01, file_index2_01,
                model_voice_path02, name_transpose02, file_index2_02,
                model_voice_path03, name_transpose03, file_index2_03,
                model_voice_path04, name_transpose04, file_index2_04,
                model_voice_path05, name_transpose05, file_index2_05,
                model_voice_path06, name_transpose06, file_index2_06,
                ], outputs=[confirm_conf])


          with gr.Column():
                with gr.Accordion("Test RVC", open=False):

                  with gr.Row(variant='compact'):
                    text_test = gr.Textbox(label="Text", value="This is an example",info="write a text", placeholder="...", lines=5)
                    with gr.Column(): 
                      tts_test = gr.Dropdown(list_tts, value='en-GB-ThomasNeural-Male', label = 'TTS', visible=True, interactive= True)
                      model_voice_path07 = gr.Dropdown(models, label = 'Model', visible=True, interactive= True) #value=''
                      file_index2_07 = gr.Dropdown(index_paths, label = 'Index', visible=True, interactive= True) #value=''
                      transpose_test = gr.Number(label = 'Transpose', value=0, visible=True, interactive= True, info="integer, number of semitones, raise by an octave: 12, lower by an octave: -12")
                      f0method_test = gr.Dropdown(f0_methods_voice, value='pm', label = 'F0 method', visible=True, interactive= True) 
                  with gr.Row(variant='compact'):
                    button_test = gr.Button("Test audio")

                  with gr.Column():
                    with gr.Row():
                      original_ttsvoice = gr.Audio()
                      ttsvoice = gr.Audio()

                    button_test.click(voices.make_test, inputs=[
                        text_test,
                        tts_test,
                        model_voice_path07,
                        file_index2_07,
                        transpose_test,
                        f0method_test,
                        ], outputs=[ttsvoice, original_ttsvoice])

                download_button.click(download_list, [url_links], [download_finish]).then(update_models, [], 
                                  [
                                    model_voice_path00, model_voice_path01, model_voice_path02, model_voice_path03, model_voice_path04, model_voice_path05, model_voice_path06, model_voice_path07,
                                    file_index2_00, file_index2_01, file_index2_02, file_index2_03, file_index2_04, file_index2_05, file_index2_06, file_index2_07
                                  ])


    with gr.Tab("Help"):
        gr.Markdown(tutorial)
        gr.Markdown(news)

    with gr.Accordion("Logs", open = False):
        logs = gr.Textbox()
        demo.load(read_logs, None, logs, every=1)

    # run
    video_button.click(translate_from_video, inputs=[
        video_input,
        HFKEY,
        PREVIEW,
        WHISPER_MODEL_SIZE,
        batch_size,
        compute_type,
        SOURCE_LANGUAGE,
        TRANSLATE_AUDIO_TO,
        min_speakers,
        max_speakers,
        tts_voice00,
        tts_voice01,
        tts_voice02,
        tts_voice03,
        tts_voice04,
        tts_voice05,
        VIDEO_OUTPUT_NAME,
        AUDIO_MIX,
        ], outputs=video_output)
    text_button.click(translate_from_video, inputs=[
        blink_input,
        bHFKEY,
        bPREVIEW,
        bWHISPER_MODEL_SIZE,
        bbatch_size,
        bcompute_type,
        bSOURCE_LANGUAGE,
        bTRANSLATE_AUDIO_TO,
        bmin_speakers,
        bmax_speakers,
        btts_voice00,
        btts_voice01,
        btts_voice02,
        btts_voice03,
        btts_voice04,
        btts_voice05,
        bVIDEO_OUTPUT_NAME,
        bAUDIO_MIX,
        ], outputs=blink_output)

demo.launch(debug=False, enable_queue=True)
#demo.launch(share=True, enable_queue=True, quiet=True, debug=False)