MapLocNetGradio / osm /tiling.py
wangerniu
maplocnet
629144d
# Copyright (c) Meta Platforms, Inc. and affiliates.
import io
import pickle
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import numpy as np
from PIL import Image
import rtree
from utils.geo import BoundaryBox, Projection
from .data import MapData
from .download import get_osm
from .parser import Groups
from .raster import Canvas, render_raster_map, render_raster_masks
from .reader import OSMData, OSMNode, OSMWay
class MapIndex:
def __init__(
self,
data: MapData,
):
self.index_nodes = rtree.index.Index()
for i, node in data.nodes.items():
self.index_nodes.insert(i, tuple(node.xy) * 2)
self.index_lines = rtree.index.Index()
for i, line in data.lines.items():
bbox = tuple(np.r_[line.xy.min(0), line.xy.max(0)])
self.index_lines.insert(i, bbox)
self.index_areas = rtree.index.Index()
for i, area in data.areas.items():
xy = np.concatenate(area.outers + area.inners)
bbox = tuple(np.r_[xy.min(0), xy.max(0)])
self.index_areas.insert(i, bbox)
self.data = data
def query(self, bbox: BoundaryBox) -> Tuple[List[OSMNode], List[OSMWay]]:
query = tuple(np.r_[bbox.min_, bbox.max_])
ret = []
for x in ["nodes", "lines", "areas"]:
ids = getattr(self, "index_" + x).intersection(query)
ret.append([getattr(self.data, x)[i] for i in ids])
return tuple(ret)
def bbox_to_slice(bbox: BoundaryBox, canvas: Canvas):
uv_min = np.ceil(canvas.to_uv(bbox.min_)).astype(int)
uv_max = np.ceil(canvas.to_uv(bbox.max_)).astype(int)
slice_ = (slice(uv_max[1], uv_min[1]), slice(uv_min[0], uv_max[0]))
return slice_
def round_bbox(bbox: BoundaryBox, origin: np.ndarray, ppm: int):
bbox = bbox.translate(-origin)
bbox = BoundaryBox(np.round(bbox.min_ * ppm) / ppm, np.round(bbox.max_ * ppm) / ppm)
return bbox.translate(origin)
class MapTileManager:
def __init__(
self,
osmpath:Path,
):
self.osm = OSMData.from_file(osmpath)
# @classmethod
def from_bbox(
self,
projection: Projection,
bbox: BoundaryBox,
ppm: int,
tile_size: int = 128,
):
# bbox_osm = projection.unproject(bbox)
# if path is not None and path.is_file():
# print(OSMData.from_file)
# osm = OSMData.from_file(path)
# if osm.box is not None:
# assert osm.box.contains(bbox_osm)
# else:
# osm = OSMData.from_dict(get_osm(bbox_osm, path))
self.osm.add_xy_to_nodes(projection)
map_data = MapData.from_osm(self.osm)
map_index = MapIndex(map_data)
bounds_x, bounds_y = [
np.r_[np.arange(min_, max_, tile_size), max_]
for min_, max_ in zip(bbox.min_, bbox.max_)
]
bbox_tiles = {}
for i, xmin in enumerate(bounds_x[:-1]):
for j, ymin in enumerate(bounds_y[:-1]):
bbox_tiles[i, j] = BoundaryBox(
[xmin, ymin], [bounds_x[i + 1], bounds_y[j + 1]]
)
tiles = {}
for ij, bbox_tile in bbox_tiles.items():
canvas = Canvas(bbox_tile, ppm)
nodes, lines, areas = map_index.query(bbox_tile)
masks = render_raster_masks(nodes, lines, areas, canvas)
canvas.raster = render_raster_map(masks)
tiles[ij] = canvas
groups = {k: v for k, v in vars(Groups).items() if not k.startswith("__")}
self.origin = bbox.min_
self.bbox = bbox
self.tiles = tiles
self.tile_size = tile_size
self.ppm = ppm
self.projection = projection
self.groups = groups
self.map_data = map_data
return self.query(bbox)
# return cls(tiles, bbox, tile_size, ppm, projection, groups, map_data)
def query(self, bbox: BoundaryBox) -> Canvas:
bbox = round_bbox(bbox, self.bbox.min_, self.ppm)
canvas = Canvas(bbox, self.ppm)
raster = np.zeros((3, canvas.h, canvas.w), np.uint8)
bbox_all = bbox & self.bbox
ij_min = np.floor((bbox_all.min_ - self.origin) / self.tile_size).astype(int)
ij_max = np.ceil((bbox_all.max_ - self.origin) / self.tile_size).astype(int) - 1
for i in range(ij_min[0], ij_max[0] + 1):
for j in range(ij_min[1], ij_max[1] + 1):
tile = self.tiles[i, j]
bbox_select = tile.bbox & bbox
slice_query = bbox_to_slice(bbox_select, canvas)
slice_tile = bbox_to_slice(bbox_select, tile)
raster[(slice(None),) + slice_query] = tile.raster[
(slice(None),) + slice_tile
]
canvas.raster = raster
return canvas
def save(self, path: Path):
dump = {
"bbox": self.bbox.format(),
"tile_size": self.tile_size,
"ppm": self.ppm,
"groups": self.groups,
"tiles_bbox": {},
"tiles_raster": {},
}
if self.projection is not None:
dump["ref_latlonalt"] = self.projection.latlonalt
for ij, canvas in self.tiles.items():
dump["tiles_bbox"][ij] = canvas.bbox.format()
raster_bytes = io.BytesIO()
raster = Image.fromarray(canvas.raster.transpose(1, 2, 0).astype(np.uint8))
raster.save(raster_bytes, format="PNG")
dump["tiles_raster"][ij] = raster_bytes
with open(path, "wb") as fp:
pickle.dump(dump, fp)
@classmethod
def load(cls, path: Path):
with path.open("rb") as fp:
dump = pickle.load(fp)
tiles = {}
for ij, bbox in dump["tiles_bbox"].items():
tiles[ij] = Canvas(BoundaryBox.from_string(bbox), dump["ppm"])
raster = np.asarray(Image.open(dump["tiles_raster"][ij]))
tiles[ij].raster = raster.transpose(2, 0, 1).copy()
projection = Projection(*dump["ref_latlonalt"])
return cls(
tiles,
BoundaryBox.from_string(dump["bbox"]),
dump["tile_size"],
dump["ppm"],
projection,
dump["groups"],
)
class TileManager:
def __init__(
self,
tiles: Dict,
bbox: BoundaryBox,
tile_size: int,
ppm: int,
projection: Projection,
groups: Dict[str, List[str]],
map_data: Optional[MapData] = None,
):
self.origin = bbox.min_
self.bbox = bbox
self.tiles = tiles
self.tile_size = tile_size
self.ppm = ppm
self.projection = projection
self.groups = groups
self.map_data = map_data
assert np.all(tiles[0, 0].bbox.min_ == self.origin)
for tile in tiles.values():
assert bbox.contains(tile.bbox)
@classmethod
def from_bbox(
cls,
projection: Projection,
bbox: BoundaryBox,
ppm: int,
path: Optional[Path] = None,
tile_size: int = 128,
):
bbox_osm = projection.unproject(bbox)
if path is not None and path.is_file():
print(OSMData.from_file)
osm = OSMData.from_file(path)
if osm.box is not None:
assert osm.box.contains(bbox_osm)
else:
osm = OSMData.from_dict(get_osm(bbox_osm, path))
osm.add_xy_to_nodes(projection)
map_data = MapData.from_osm(osm)
map_index = MapIndex(map_data)
bounds_x, bounds_y = [
np.r_[np.arange(min_, max_, tile_size), max_]
for min_, max_ in zip(bbox.min_, bbox.max_)
]
bbox_tiles = {}
for i, xmin in enumerate(bounds_x[:-1]):
for j, ymin in enumerate(bounds_y[:-1]):
bbox_tiles[i, j] = BoundaryBox(
[xmin, ymin], [bounds_x[i + 1], bounds_y[j + 1]]
)
tiles = {}
for ij, bbox_tile in bbox_tiles.items():
canvas = Canvas(bbox_tile, ppm)
nodes, lines, areas = map_index.query(bbox_tile)
masks = render_raster_masks(nodes, lines, areas, canvas)
canvas.raster = render_raster_map(masks)
tiles[ij] = canvas
groups = {k: v for k, v in vars(Groups).items() if not k.startswith("__")}
return cls(tiles, bbox, tile_size, ppm, projection, groups, map_data)
def query(self, bbox: BoundaryBox) -> Canvas:
bbox = round_bbox(bbox, self.bbox.min_, self.ppm)
canvas = Canvas(bbox, self.ppm)
raster = np.zeros((3, canvas.h, canvas.w), np.uint8)
bbox_all = bbox & self.bbox
ij_min = np.floor((bbox_all.min_ - self.origin) / self.tile_size).astype(int)
ij_max = np.ceil((bbox_all.max_ - self.origin) / self.tile_size).astype(int) - 1
for i in range(ij_min[0], ij_max[0] + 1):
for j in range(ij_min[1], ij_max[1] + 1):
tile = self.tiles[i, j]
bbox_select = tile.bbox & bbox
slice_query = bbox_to_slice(bbox_select, canvas)
slice_tile = bbox_to_slice(bbox_select, tile)
raster[(slice(None),) + slice_query] = tile.raster[
(slice(None),) + slice_tile
]
canvas.raster = raster
return canvas
def save(self, path: Path):
dump = {
"bbox": self.bbox.format(),
"tile_size": self.tile_size,
"ppm": self.ppm,
"groups": self.groups,
"tiles_bbox": {},
"tiles_raster": {},
}
if self.projection is not None:
dump["ref_latlonalt"] = self.projection.latlonalt
for ij, canvas in self.tiles.items():
dump["tiles_bbox"][ij] = canvas.bbox.format()
raster_bytes = io.BytesIO()
raster = Image.fromarray(canvas.raster.transpose(1, 2, 0).astype(np.uint8))
raster.save(raster_bytes, format="PNG")
dump["tiles_raster"][ij] = raster_bytes
with open(path, "wb") as fp:
pickle.dump(dump, fp)
@classmethod
def load(cls, path: Path):
with path.open("rb") as fp:
dump = pickle.load(fp)
tiles = {}
for ij, bbox in dump["tiles_bbox"].items():
tiles[ij] = Canvas(BoundaryBox.from_string(bbox), dump["ppm"])
raster = np.asarray(Image.open(dump["tiles_raster"][ij]))
tiles[ij].raster = raster.transpose(2, 0, 1).copy()
projection = Projection(*dump["ref_latlonalt"])
return cls(
tiles,
BoundaryBox.from_string(dump["bbox"]),
dump["tile_size"],
dump["ppm"],
projection,
dump["groups"],
)