File size: 15,908 Bytes
7694c84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
# *****************************************************************************
# From PyTorch:

# Copyright (c) 2016-     Facebook, Inc            (Adam Paszke)
# Copyright (c) 2014-     Facebook, Inc            (Soumith Chintala)
# Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert)
# Copyright (c) 2012-2014 Deepmind Technologies    (Koray Kavukcuoglu)
# Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu)
# Copyright (c) 2011-2013 NYU                      (Clement Farabet)
# Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, Iain Melvin, Jason Weston)
# Copyright (c) 2006      Idiap Research Institute (Samy Bengio)
# Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert, Samy Bengio, Johnny Mariethoz)

# From Caffe2:

# Copyright (c) 2016-present, Facebook Inc. All rights reserved.

# All contributions by Facebook:
# Copyright (c) 2016 Facebook Inc.

# All contributions by Google:
# Copyright (c) 2015 Google Inc.
# All rights reserved.

# All contributions by Yangqing Jia:
# Copyright (c) 2015 Yangqing Jia
# All rights reserved.

# All contributions by Kakao Brain:
# Copyright 2019-2020 Kakao Brain

# All contributions by Cruise LLC:
# Copyright (c) 2022 Cruise LLC.
# All rights reserved.

# All contributions from Caffe:
# Copyright(c) 2013, 2014, 2015, the respective contributors
# All rights reserved.

# All other contributions:
# Copyright(c) 2015, 2016 the respective contributors
# All rights reserved.

# Caffe2 uses a copyright model similar to Caffe: each contributor holds
# copyright over their contributions to Caffe2. The project versioning records
# all such contribution and copyright details. If a contributor wants to further
# mark their specific copyright on a particular contribution, they should
# indicate their copyright solely in the commit message of the change when it is
# committed.

# All rights reserved.

# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:

# 1. Redistributions of source code must retain the above copyright
#    notice, this list of conditions and the following disclaimer.

# 2. Redistributions in binary form must reproduce the above copyright
#    notice, this list of conditions and the following disclaimer in the
#    documentation and/or other materials provided with the distribution.

# 3. Neither the names of Facebook, Deepmind Technologies, NYU, NEC Laboratories America
#    and IDIAP Research Institute nor the names of its contributors may be
#    used to endorse or promote products derived from this software without
#    specific prior written permission.

# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# *****************************************************************************

# *****************************************************************************
#  Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
#  Redistribution and use in source and binary forms, with or without
#  modification, are permitted provided that the following conditions are met:
#      * Redistributions of source code must retain the above copyright
#        notice, this list of conditions and the following disclaimer.
#      * Redistributions in binary form must reproduce the above copyright
#        notice, this list of conditions and the following disclaimer in the
#        documentation and/or other materials provided with the distribution.
#      * Neither the name of the NVIDIA CORPORATION nor the
#        names of its contributors may be used to endorse or promote products
#        derived from this software without specific prior written permission.
#
#  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
#  ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
#  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
#  DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
#  DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
#  (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
#  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
#  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
#  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
#  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# *****************************************************************************


from typing import Optional, Tuple

import torch
import torch.nn as nn
from torchaudio.models.tacotron2 import _Encoder, _Decoder, _Postnet, _get_mask_from_lengths

from torch import Tensor


# modified version of torchaudio.models.Tacotron2
class Tacotron2MS(nn.Module):
    r"""Tacotron2 model from *Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions*
    :cite:`shen2018natural` based on the implementation from
    `Nvidia Deep Learning Examples <https://github.com/NVIDIA/DeepLearningExamples/>`_.

    See Also:
        * :class:`torchaudio.pipelines.Tacotron2TTSBundle`: TTS pipeline with pretrained model.

    Args:
        mask_padding (bool, optional): Use mask padding (Default: ``False``).
        n_mels (int, optional): Number of mel bins (Default: ``80``).
        n_symbol (int, optional): Number of symbols for the input text (Default: ``148``).
        n_frames_per_step (int, optional): Number of frames processed per step, only 1 is supported (Default: ``1``).
        symbol_embedding_dim (int, optional): Input embedding dimension (Default: ``512``).
        encoder_n_convolution (int, optional): Number of encoder convolutions (Default: ``3``).
        encoder_kernel_size (int, optional): Encoder kernel size (Default: ``5``).
        encoder_embedding_dim (int, optional): Encoder embedding dimension (Default: ``512``).
        decoder_rnn_dim (int, optional): Number of units in decoder LSTM (Default: ``1024``).
        decoder_max_step (int, optional): Maximum number of output mel spectrograms (Default: ``2000``).
        decoder_dropout (float, optional): Dropout probability for decoder LSTM (Default: ``0.1``).
        decoder_early_stopping (bool, optional): Continue decoding after all samples are finished (Default: ``True``).
        attention_rnn_dim (int, optional): Number of units in attention LSTM (Default: ``1024``).
        attention_hidden_dim (int, optional): Dimension of attention hidden representation (Default: ``128``).
        attention_location_n_filter (int, optional): Number of filters for attention model (Default: ``32``).
        attention_location_kernel_size (int, optional): Kernel size for attention model (Default: ``31``).
        attention_dropout (float, optional): Dropout probability for attention LSTM (Default: ``0.1``).
        prenet_dim (int, optional): Number of ReLU units in prenet layers (Default: ``256``).
        postnet_n_convolution (int, optional): Number of postnet convolutions (Default: ``5``).
        postnet_kernel_size (int, optional): Postnet kernel size (Default: ``5``).
        postnet_embedding_dim (int, optional): Postnet embedding dimension (Default: ``512``).
        gate_threshold (float, optional): Probability threshold for stop token (Default: ``0.5``).
    """

    def __init__(
        self,
        mask_padding: bool = False,
        n_mels: int = 80,
        n_symbol: int = 148,
        n_frames_per_step: int = 1,
        ###
        num_speakers=40,
        speaker_embedding_dim=128,
        ###
        symbol_embedding_dim: int = 512,
        encoder_embedding_dim: int = 512,
        encoder_n_convolution: int = 3,
        encoder_kernel_size: int = 5,
        decoder_rnn_dim: int = 1024,
        decoder_max_step: int = 2000,
        decoder_dropout: float = 0.1,
        decoder_early_stopping: bool = True,
        attention_rnn_dim: int = 1024,
        attention_hidden_dim: int = 128,
        attention_location_n_filter: int = 32,
        attention_location_kernel_size: int = 31,
        attention_dropout: float = 0.1,
        prenet_dim: int = 256,
        postnet_n_convolution: int = 5,
        postnet_kernel_size: int = 5,
        postnet_embedding_dim: int = 512,
        gate_threshold: float = 0.5,
    ) -> None:
        super().__init__()

        self.mask_padding = mask_padding
        self.n_mels = n_mels
        self.n_frames_per_step = n_frames_per_step
        self.embedding = nn.Embedding(n_symbol, symbol_embedding_dim)
        torch.nn.init.xavier_uniform_(self.embedding.weight)
        self.encoder = _Encoder(encoder_embedding_dim,
                                encoder_n_convolution, encoder_kernel_size)
        self.decoder = _Decoder(
            n_mels,
            n_frames_per_step,
            encoder_embedding_dim + (speaker_embedding_dim if num_speakers > 1 else 0),
            decoder_rnn_dim,
            decoder_max_step,
            decoder_dropout,
            decoder_early_stopping,
            attention_rnn_dim,
            attention_hidden_dim,
            attention_location_n_filter,
            attention_location_kernel_size,
            attention_dropout,
            prenet_dim,
            gate_threshold,
        )
        self.postnet = _Postnet(
            n_mels, postnet_embedding_dim, postnet_kernel_size, postnet_n_convolution)

        self.speaker_embedding = None
        if num_speakers > 1:
            self.speaker_embedding = nn.Embedding(
                num_speakers, speaker_embedding_dim)

    def forward(
        self,
        tokens: Tensor,
        token_lengths: Tensor,
        mel_specgram: Tensor,
        mel_specgram_lengths: Tensor,
        speaker_ids: Tensor,
    ) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
        r"""Pass the input through the Tacotron2 model. This is in teacher
        forcing mode, which is generally used for training.

        The input ``tokens`` should be padded with zeros to length max of ``token_lengths``.
        The input ``mel_specgram`` should be padded with zeros to length max of ``mel_specgram_lengths``.

        Args:
            tokens (Tensor): The input tokens to Tacotron2 with shape `(n_batch, max of token_lengths)`.
            token_lengths (Tensor): The valid length of each sample in ``tokens`` with shape `(n_batch, )`.
            mel_specgram (Tensor): The target mel spectrogram
                with shape `(n_batch, n_mels, max of mel_specgram_lengths)`.
            mel_specgram_lengths (Tensor): The length of each mel spectrogram with shape `(n_batch, )`.

        Returns:
            [Tensor, Tensor, Tensor, Tensor]:
                Tensor
                    Mel spectrogram before Postnet with shape `(n_batch, n_mels, max of mel_specgram_lengths)`.
                Tensor
                    Mel spectrogram after Postnet with shape `(n_batch, n_mels, max of mel_specgram_lengths)`.
                Tensor
                    The output for stop token at each time step with shape `(n_batch, max of mel_specgram_lengths)`.
                Tensor
                    Sequence of attention weights from the decoder with
                    shape `(n_batch, max of mel_specgram_lengths, max of token_lengths)`.
        """

        embedded_inputs = self.embedding(tokens).transpose(1, 2)
        embedded_text = self.encoder(embedded_inputs, token_lengths)

        if self.speaker_embedding is not None:
            embedded_speakers = self.speaker_embedding(speaker_ids).unsqueeze(1)
            embedded_speakers = embedded_speakers.repeat(
                1, embedded_text.size(1), 1)
            encoder_outputs = torch.cat(
                (embedded_text, embedded_speakers), dim=2)
        else:
            encoder_outputs = embedded_text

        mel_specgram, gate_outputs, alignments = self.decoder(
            encoder_outputs, mel_specgram, memory_lengths=token_lengths
        )

        mel_specgram_postnet = self.postnet(mel_specgram)
        mel_specgram_postnet = mel_specgram + mel_specgram_postnet

        if self.mask_padding:
            mask = _get_mask_from_lengths(mel_specgram_lengths)
            mask = mask.expand(self.n_mels, mask.size(0), mask.size(1))
            mask = mask.permute(1, 0, 2)

            mel_specgram.masked_fill_(mask, 0.0)
            mel_specgram_postnet.masked_fill_(mask, 0.0)
            gate_outputs.masked_fill_(mask[:, 0, :], 1e3)

        return mel_specgram, mel_specgram_postnet, gate_outputs, alignments

    @torch.jit.export
    def infer(self, tokens: Tensor, speaker_ids: Optional[Tensor] = None, lengths: Optional[Tensor] = None) -> Tuple[Tensor, Tensor, Tensor]:
        r"""Using Tacotron2 for inference. The input is a batch of encoded
        sentences (``tokens``) and its corresponding lengths (``lengths``). The
        output is the generated mel spectrograms, its corresponding lengths, and
        the attention weights from the decoder.

        The input `tokens` should be padded with zeros to length max of ``lengths``.

        Args:
            tokens (Tensor): The input tokens to Tacotron2 with shape `(n_batch, max of lengths)`.
            lengths (Tensor or None, optional):
                The valid length of each sample in ``tokens`` with shape `(n_batch, )`.
                If ``None``, it is assumed that the all the tokens are valid. Default: ``None``

        Returns:
            (Tensor, Tensor, Tensor):
                Tensor
                    The predicted mel spectrogram with shape `(n_batch, n_mels, max of mel_specgram_lengths)`.
                Tensor
                    The length of the predicted mel spectrogram with shape `(n_batch, )`.
                Tensor
                    Sequence of attention weights from the decoder with shape
                    `(n_batch, max of mel_specgram_lengths, max of lengths)`.
        """
        n_batch, max_length = tokens.shape
        if lengths is None:
            lengths = torch.tensor([max_length]).expand(
                n_batch).to(tokens.device, tokens.dtype)
        if speaker_ids is None:
            speaker_ids = torch.zeros_like(lengths)

        assert lengths is not None  # For TorchScript compiler

        embedded_inputs = self.embedding(tokens).transpose(1, 2)
        embedded_text = self.encoder(embedded_inputs, lengths)

        if self.speaker_embedding is not None:
            embedded_speakers = self.speaker_embedding(speaker_ids).unsqueeze(1)
            embedded_speakers = embedded_speakers.repeat(
                1, embedded_text.size(1), 1)
            encoder_outputs = torch.cat(
                (embedded_text, embedded_speakers), dim=2)
        else:
            encoder_outputs = embedded_text

        mel_specgram, mel_specgram_lengths, _, alignments = self.decoder.infer(
            encoder_outputs, lengths)

        mel_outputs_postnet = self.postnet(mel_specgram)
        mel_outputs_postnet = mel_specgram + mel_outputs_postnet

        alignments = alignments.unfold(1, n_batch, n_batch).transpose(0, 2)

        return mel_outputs_postnet, mel_specgram_lengths, alignments