Spaces:
Running
Running
File size: 3,227 Bytes
7694c84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
# adapted from https://github.com/rishikksh20/HiFi-GAN/blob/main/denoiser.py
# MIT License
# Copyright (c) 2020 Rishikesh
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import torch
import torch.nn as nn
import torchaudio
class Denoiser(nn.Module):
""" Removes model bias from audio produced with hifigan """
def __init__(self, hifigan, filter_length=1024, n_overlap=4,
win_length=1024, mode='zeros', **infer_kw):
super().__init__()
w = next(p for name, p in hifigan.named_parameters()
if name.endswith('.weight'))
# self.stft = STFT(filter_length=filter_length,
# hop_length=int(filter_length/n_overlap),
# win_length=win_length).to(w.device)
self.stft = torchaudio.transforms.Spectrogram(filter_length,
hop_length=int(filter_length/n_overlap),
win_length=win_length, power=None).to(w.device)
self.istft = torchaudio.transforms.InverseSpectrogram(filter_length,
hop_length=int(filter_length/n_overlap),
win_length=win_length).to(w.device)
mel_init = {'zeros': torch.zeros, 'normal': torch.randn}[mode]
mel_input = mel_init((1, 80, 88), dtype=w.dtype, device=w.device)
with torch.no_grad():
bias_audio = hifigan(mel_input, **infer_kw).float()
if len(bias_audio.size()) > 2:
bias_audio = bias_audio.squeeze(0)
elif len(bias_audio.size()) < 2:
bias_audio = bias_audio.unsqueeze(0)
assert len(bias_audio.size()) == 2
bias_spec = self.stft(bias_audio).abs()
self.register_buffer('bias_spec', bias_spec[:, :, 0][:, :, None])
def forward(self, audio, strength=0.1):
audio_spec = self.stft(audio.float())
audio_spec_mag, audio_spec_phase = audio_spec.abs(), audio_spec.angle()
audio_spec_denoised = audio_spec_mag - self.bias_spec * strength
audio_spec_denoised = torch.clamp(audio_spec_denoised, 0.0)
audio_denoised = self.istft(audio_spec_denoised*torch.exp(1j*audio_spec_phase))
return audio_denoised
|