Spaces:
Running
Running
File size: 4,857 Bytes
7694c84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import argparse
import os
import torch
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from models.fastpitch import net_config
from models.fastpitch.fastpitch.model import FastPitch
from models.fastpitch.fastpitch.data_function import (TTSCollate, batch_to_gpu)
from models.fastpitch.fastpitch.loss_function import FastPitchLoss
from models.fastpitch.fastpitch.attn_loss_function import AttentionBinarizationLoss
from utils.data import DynBatchDataset
from utils import get_config
from utils.training import save_states
# %%
try:
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str,
default="configs/nawar_fp.yaml", help="Path to yaml config file")
args = parser.parse_args()
config_path = args.config
except:
config_path = './configs/nawar_fp.yaml'
# %%
config = get_config(config_path)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# make checkpoint folder if nonexistent
if not os.path.isdir(config.checkpoint_dir):
os.makedirs(os.path.abspath(config.checkpoint_dir))
print(f"Created checkpoint folder @ {config.checkpoint_dir}")
train_dataset = DynBatchDataset(
txtpath=config.train_labels,
wavpath=config.train_wavs_path,
label_pattern=config.label_pattern,
f0_dict_path=config.f0_dict_path,
f0_mean=config.f0_mean, f0_std=config.f0_std,
max_lengths=config.max_lengths,
batch_sizes=config.batch_sizes,
)
# %%
collate_fn = TTSCollate()
config.batch_size = 1
sampler, shuffle, drop_last = None, True, True
train_loader = DataLoader(train_dataset,
batch_size=config.batch_size,
collate_fn=lambda x: collate_fn(x[0]),
shuffle=shuffle, drop_last=drop_last,
sampler=sampler)
# %% Generator
model = FastPitch(**net_config).to(device)
optimizer = torch.optim.AdamW(model.parameters(),
lr=config.g_lr,
betas=(config.g_beta1, config.g_beta2),
weight_decay=config.weight_decay)
criterion = FastPitchLoss()
attention_kl_loss = AttentionBinarizationLoss()
# %%
# resume from existing checkpoint
n_epoch, n_iter = 0, 0
if config.restore_model != '':
state_dicts = torch.load(config.restore_model)
model.load_state_dict(state_dicts['model'])
if 'optim' in state_dicts:
optimizer.load_state_dict(state_dicts['optim'])
if 'epoch' in state_dicts:
n_epoch = state_dicts['epoch']
if 'iter' in state_dicts:
n_iter = state_dicts['iter']
else:
# from https://catalog.ngc.nvidia.com/orgs/nvidia/teams/dle/models/fastpitch__pyt_ckpt
model_sd = torch.load('G:/models/fastpitch/nvidia_fastpitch_210824+cfg.pt')
model.load_state_dict(
{k.removeprefix('module.'): v for k, v in model_sd['state_dict'].items()})
# %%
writer = SummaryWriter(config.log_dir)
# %% TRAINING LOOP
model.train()
for epoch in range(n_epoch, config.epochs):
train_dataset.shuffle()
for batch in train_loader:
x, y, _ = batch_to_gpu(batch)
y_pred = model(x)
mel_out, *_, attn_soft, attn_hard, _, _ = y_pred
_, _, mel_padded, output_lengths, *_ = x
# generator step
loss, meta = criterion(y_pred, y)
binarization_loss = attention_kl_loss(attn_hard, attn_soft)
loss += 1.0 * binarization_loss
optimizer.zero_grad()
loss.backward()
grad_norm = torch.nn.utils.clip_grad_norm_(
model.parameters(), 1000.)
optimizer.step()
# LOGGING
meta['kl_loss'] = binarization_loss.clone().detach()
print(f"loss: {meta['loss'].item()} gnorm: {grad_norm}")
for k, v in meta.items():
writer.add_scalar(f'train/{k}', v.item(), n_iter)
if n_iter % config.n_save_states_iter == 0:
save_states(f'states.pth', model,
optimizer, n_iter,
epoch, net_config, config)
if n_iter % config.n_save_backup_iter == 0 and n_iter > 0:
save_states(f'states_{n_iter}.pth', model,
optimizer, n_iter,
epoch, net_config, config)
n_iter += 1
save_states(f'states.pth', model,
optimizer, n_iter,
epoch, net_config, config)
# %%
# (mel_out, 0
# dec_mask, 1
# dur_pred, 2
# log_dur_pred, 3
# pitch_pred, 4
# pitch_tgt, 5
# energy_pred, 6
# energy_tgt, 7
# attn_soft, 8
# attn_hard, 9
# attn_dur, 10
# attn_logprob, 11
# ) = model_out
# x = [text_padded, input_lengths, mel_padded, output_lengths,
# pitch_padded, energy_padded, speaker, attn_prior, audiopaths]
# y = [mel_padded, input_lengths, output_lengths]
|