File size: 4,857 Bytes
7694c84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import argparse
import os

import torch
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

from models.fastpitch import net_config
from models.fastpitch.fastpitch.model import FastPitch
from models.fastpitch.fastpitch.data_function import (TTSCollate, batch_to_gpu)
from models.fastpitch.fastpitch.loss_function import FastPitchLoss
from models.fastpitch.fastpitch.attn_loss_function import AttentionBinarizationLoss
from utils.data import DynBatchDataset
from utils import get_config
from utils.training import save_states
# %%

try:
    parser = argparse.ArgumentParser()
    parser.add_argument('--config', type=str,
                        default="configs/nawar_fp.yaml", help="Path to yaml config file")
    args = parser.parse_args()
    config_path = args.config
except:
    config_path = './configs/nawar_fp.yaml'

# %%

config = get_config(config_path)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# make checkpoint folder if nonexistent
if not os.path.isdir(config.checkpoint_dir):
    os.makedirs(os.path.abspath(config.checkpoint_dir))
    print(f"Created checkpoint folder @ {config.checkpoint_dir}")


train_dataset = DynBatchDataset(
    txtpath=config.train_labels,
    wavpath=config.train_wavs_path,
    label_pattern=config.label_pattern,
    f0_dict_path=config.f0_dict_path,
    f0_mean=config.f0_mean, f0_std=config.f0_std,
    max_lengths=config.max_lengths,
    batch_sizes=config.batch_sizes,
    )

# %%

collate_fn = TTSCollate()

config.batch_size = 1
sampler, shuffle, drop_last = None, True, True
train_loader = DataLoader(train_dataset,
                          batch_size=config.batch_size,
                          collate_fn=lambda x: collate_fn(x[0]),
                          shuffle=shuffle, drop_last=drop_last,
                          sampler=sampler)

# %% Generator

model = FastPitch(**net_config).to(device)

optimizer = torch.optim.AdamW(model.parameters(), 
                              lr=config.g_lr, 
                              betas=(config.g_beta1, config.g_beta2), 
                              weight_decay=config.weight_decay)

criterion = FastPitchLoss()
attention_kl_loss = AttentionBinarizationLoss()

# %%
# resume from existing checkpoint
n_epoch, n_iter = 0, 0

if config.restore_model != '':
    state_dicts = torch.load(config.restore_model)
    model.load_state_dict(state_dicts['model'])
    if 'optim' in state_dicts:
        optimizer.load_state_dict(state_dicts['optim'])
    if 'epoch' in state_dicts:
        n_epoch = state_dicts['epoch']
    if 'iter' in state_dicts:
        n_iter = state_dicts['iter']
else:
    # from https://catalog.ngc.nvidia.com/orgs/nvidia/teams/dle/models/fastpitch__pyt_ckpt
    model_sd = torch.load('G:/models/fastpitch/nvidia_fastpitch_210824+cfg.pt')
    model.load_state_dict(
        {k.removeprefix('module.'): v for k, v in model_sd['state_dict'].items()})

# %%
writer = SummaryWriter(config.log_dir)

# %% TRAINING LOOP

model.train()

for epoch in range(n_epoch, config.epochs):
    train_dataset.shuffle()
    for batch in train_loader:

        x, y, _ = batch_to_gpu(batch)

        y_pred = model(x)

        mel_out, *_, attn_soft, attn_hard, _, _ = y_pred
        _, _, mel_padded, output_lengths, *_ = x       

        # generator step
        loss, meta = criterion(y_pred, y)  
    
        binarization_loss = attention_kl_loss(attn_hard, attn_soft)        
        loss += 1.0 * binarization_loss

        optimizer.zero_grad()
        loss.backward()
        grad_norm = torch.nn.utils.clip_grad_norm_(
                    model.parameters(), 1000.)
        optimizer.step()

        # LOGGING
        meta['kl_loss'] = binarization_loss.clone().detach()

        print(f"loss: {meta['loss'].item()} gnorm: {grad_norm}")

        for k, v in meta.items():
            writer.add_scalar(f'train/{k}', v.item(), n_iter)

        if n_iter % config.n_save_states_iter == 0:
            save_states(f'states.pth', model, 
                        optimizer, n_iter, 
                        epoch, net_config, config)

        if n_iter % config.n_save_backup_iter == 0 and n_iter > 0:
            save_states(f'states_{n_iter}.pth', model, 
                        optimizer, n_iter, 
                        epoch, net_config, config)

        n_iter += 1


save_states(f'states.pth', model, 
            optimizer, n_iter,
            epoch, net_config, config)


# %%

# (mel_out, 0
# dec_mask, 1
# dur_pred, 2
# log_dur_pred, 3
# pitch_pred, 4
# pitch_tgt, 5
# energy_pred, 6
# energy_tgt, 7
# attn_soft, 8
# attn_hard, 9
# attn_dur, 10
# attn_logprob, 11
# ) = model_out

# x = [text_padded, input_lengths, mel_padded, output_lengths,
#         pitch_padded, energy_padded, speaker, attn_prior, audiopaths]

# y = [mel_padded, input_lengths, output_lengths]