Spaces:
Sleeping
Sleeping
import argparse | |
import os | |
import torch | |
import torchaudio | |
import text | |
import utils.make_html as html | |
from utils import progbar, read_lines_from_file | |
# default: | |
# python inference.py --list data/infer_text.txt --out_dir samples/results --model fastpitch --checkpoint pretrained/fastpitch_ar_adv.pth --batch_size 2 --denoise 0 | |
# Examples: | |
# python inference.py --list data/infer_text.txt --out_dir samples/res_tc2_adv0 --model tacotron2 --checkpoint pretrained/tacotron2_ar_adv.pth --batch_size 2 | |
# python inference.py --list data/infer_text.txt --out_dir samples/res_tc2_adv1 --model tacotron2 --checkpoint pretrained/tacotron2_ar_adv.pth --batch_size 2 --denoise 0.005 | |
# python inference.py --list data/infer_text.txt --out_dir samples/res_fp_adv0 --model fastpitch --checkpoint pretrained/fastpitch_ar_adv.pth --batch_size 2 | |
# python inference.py --list data/infer_text.txt --out_dir samples/res_fp_adv1 --model fastpitch --checkpoint pretrained/fastpitch_ar_adv.pth --batch_size 2 --denoise 0.005 | |
# python inference.py --list data/infer_text.txt --out_dir samples/res_fp_adv2 --model fastpitch --checkpoint pretrained/fastpitch_ar_adv.pth --batch_size 2 --denoise 0.005 --vocoder_sd pretrained/hifigan-asc-v1/g_02500000 --vocoder_config pretrained/hifigan-asc-v1/config.json | |
def infer(args): | |
use_cuda_if_available = not args.cpu | |
device = torch.device( | |
'cuda' if torch.cuda.is_available() and use_cuda_if_available else 'cpu') | |
if args.model == 'fastpitch': | |
from models.fastpitch import FastPitch2Wave | |
model = FastPitch2Wave(args.checkpoint, | |
vocoder_sd=args.vocoder_sd, | |
vocoder_config=args.vocoder_config) | |
elif args.model == 'tacotron2': | |
from models.tacotron2 import Tacotron2Wave | |
model = Tacotron2Wave(args.checkpoint, | |
vocoder_sd=args.vocoder_sd, | |
vocoder_config=args.vocoder_config) | |
else: | |
raise "model type not supported" | |
model = model.to(device) | |
model.eval() | |
if not os.path.exists(f"{args.out_dir}/wavs"): | |
os.makedirs(f"{args.out_dir}/wavs") | |
static_lines = read_lines_from_file(args.list) | |
static_batches = [static_lines[k:k+args.batch_size] | |
for k in range(0, len(static_lines), args.batch_size)] | |
idx = 0 | |
with open(os.path.join(args.out_dir, 'index.html'), 'w', encoding='utf-8') as f: | |
f.write(html.make_html_start()) | |
for batch in progbar(static_batches): | |
# infer batch | |
wav_list = model.tts(batch, | |
batch_size=args.batch_size, | |
denoise=args.denoise, | |
speed=args.speed) | |
# save wavs and add entries to html file | |
for (text_line, wav) in zip(batch, wav_list): | |
torchaudio.save(f'{args.out_dir}/wavs/static{idx}.wav', | |
wav.unsqueeze(0), | |
22_050) | |
text_buckw = text.arabic_to_buckwalter(text_line) | |
text_arabic = text.buckwalter_to_arabic(text_buckw) | |
t_phon = text.buckwalter_to_phonemes(text_buckw) | |
t_phon = text.simplify_phonemes( | |
t_phon.replace(' ', '').replace('+', ' ')) | |
f.write(html.make_sample_entry2( | |
f'wavs/static{idx}.wav', | |
text_arabic, | |
f"{idx}) {t_phon}")) | |
idx += 1 | |
f.write(html.make_volume_script(0.5)) | |
f.write(html.make_html_end()) | |
print(f"Saved files to: {args.out_dir}") | |
def main(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
'--list', type=str, default='./data/infer_text.txt') | |
parser.add_argument( | |
'--model', type=str, default='fastpitch') | |
parser.add_argument( | |
'--checkpoint', type=str, default='pretrained/fastpitch_ar_adv.pth') | |
parser.add_argument('--vocoder_sd', type=str, default=None) | |
parser.add_argument('--vocoder_config', type=str, default=None) | |
parser.add_argument('--out_dir', type=str, default='samples/results') | |
parser.add_argument('--speed', type=float, default=1.0) | |
parser.add_argument('--denoise', type=float, default=0) | |
parser.add_argument('--batch_size', type=int, default=2) | |
parser.add_argument('--cpu', action='store_true') | |
args = parser.parse_args() | |
infer(args) | |
if __name__ == '__main__': | |
main() | |