Spaces:
Running
Running
# %% | |
import argparse | |
import os | |
import torch | |
from torch.utils.data import DataLoader | |
from models.tacotron2.tacotron2_ms import Tacotron2MS | |
from utils import get_config | |
from utils.data import ArabDataset, text_mel_collate_fn | |
from utils.logging import TBLogger | |
from utils.training import batch_to_device, save_states | |
from models.tacotron2.loss import Tacotron2Loss | |
# %% | |
try: | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--config', type=str, | |
default="configs/nawar_tc2.yaml", help="Path to yaml config file") | |
args = parser.parse_args() | |
config_path = args.config | |
except: | |
config_path = './configs/nawar_tc2.yaml' | |
# %% | |
config = get_config(config_path) | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
# set random seed | |
if config.random_seed != False: | |
torch.manual_seed(config.random_seed) | |
torch.cuda.manual_seed_all(config.random_seed) | |
import numpy as np | |
np.random.seed(config.random_seed) | |
# make checkpoint folder if nonexistent | |
if not os.path.isdir(config.checkpoint_dir): | |
os.makedirs(os.path.abspath(config.checkpoint_dir)) | |
print(f"Created checkpoint_dir folder: {config.checkpoint_dir}") | |
# datasets | |
train_dataset = ArabDataset(txtpath=config.train_labels, | |
wavpath=config.train_wavs_path, | |
label_pattern=config.label_pattern) | |
# test_dataset = ArabDataset(config.test_labels, config.test_wavs_path) | |
# optional: balanced sampling | |
sampler, shuffle, drop_last = None, True, True | |
if config.balanced_sampling: | |
weights = torch.load(config.sampler_weights_file) | |
sampler = torch.utils.data.WeightedRandomSampler( | |
weights, len(weights), replacement=False) | |
shuffle, drop_last = False, False | |
# dataloaders | |
train_loader = DataLoader(train_dataset, | |
batch_size=config.batch_size, | |
collate_fn=text_mel_collate_fn, | |
shuffle=shuffle, drop_last=drop_last, | |
sampler=sampler) | |
# test_loader = DataLoader(test_dataset, | |
# batch_size=config.batch_size, drop_last=False, | |
# shuffle=False, collate_fn=text_mel_collate_fn) | |
# %% Generator | |
model = Tacotron2MS(n_symbol=40, num_speakers=40) | |
model = model.to(device) | |
model.decoder.decoder_max_step = config.decoder_max_step | |
optimizer = torch.optim.AdamW(model.parameters(), | |
lr=config.g_lr, | |
betas=(config.g_beta1, config.g_beta2), | |
weight_decay=config.weight_decay) | |
criterion = Tacotron2Loss(mel_loss_scale=1.0) | |
# %% | |
# resume from existing checkpoint | |
n_epoch, n_iter = 0, 0 | |
if config.restore_model != '': | |
state_dicts = torch.load(config.restore_model) | |
model.load_state_dict(state_dicts['model']) | |
if 'optim' in state_dicts: | |
optimizer.load_state_dict(state_dicts['optim']) | |
if 'epoch' in state_dicts: | |
n_epoch = state_dicts['epoch'] | |
if 'iter' in state_dicts: | |
n_iter = state_dicts['iter'] | |
# %% | |
# tensorboard writer | |
writer = TBLogger(config.log_dir) | |
# %% | |
def trunc_batch(batch, N): | |
return (batch[0][:N], batch[1][:N], batch[2][:N], | |
batch[3][:N], batch[4][:N]) | |
# %% TRAINING LOOP | |
model.train() | |
for epoch in range(n_epoch, config.epochs): | |
print(f"Epoch: {epoch}") | |
for batch in train_loader: | |
if batch[-1][0] > 2000: | |
batch = trunc_batch(batch, 6) | |
text_padded, input_lengths, mel_padded, gate_padded, \ | |
output_lengths = batch_to_device(batch, device) | |
y_pred = model(text_padded, input_lengths, | |
mel_padded, output_lengths, | |
torch.zeros_like(output_lengths)) | |
mel_out, mel_out_postnet, gate_out, alignments = y_pred | |
# GENERATOR | |
loss, meta = criterion(mel_out, mel_out_postnet, mel_padded, | |
gate_out, gate_padded) | |
optimizer.zero_grad() | |
loss.backward() | |
grad_norm = torch.nn.utils.clip_grad_norm_( | |
model.parameters(), config.grad_clip_thresh) | |
optimizer.step() | |
# LOGGING | |
meta['loss'] = loss.clone().detach() | |
print(f"loss: {loss.item()}, grad_norm: {grad_norm.item()}") | |
writer.add_training_data(meta, grad_norm.item(), | |
config.learning_rate, n_iter) | |
if n_iter % config.n_save_states_iter == 0: | |
save_states(f'states.pth', model, | |
optimizer, n_iter, | |
epoch, None, config) | |
if n_iter % config.n_save_backup_iter == 0 and n_iter > 0: | |
save_states(f'states_{n_iter}.pth', model, | |
optimizer, n_iter, | |
epoch, None, config) | |
n_iter += 1 | |
# VALIDATE | |
# val_loss = validate(model, test_loader, writer, device, n_iter) | |
# print(f"Validation loss: {val_loss}") | |
save_states(f'states.pth', model, | |
optimizer, n_iter, | |
epoch, None, config) | |
# %% | |