import argparse import os import torch import torchaudio import text import utils.make_html as html from utils import progbar, read_lines_from_file # default: # python inference.py --list data/infer_text.txt --out_dir samples/results --model fastpitch --checkpoint pretrained/fastpitch_ar_adv.pth --batch_size 2 --denoise 0 # Examples: # python inference.py --list data/infer_text.txt --out_dir samples/res_tc2_adv0 --model tacotron2 --checkpoint pretrained/tacotron2_ar_adv.pth --batch_size 2 # python inference.py --list data/infer_text.txt --out_dir samples/res_tc2_adv1 --model tacotron2 --checkpoint pretrained/tacotron2_ar_adv.pth --batch_size 2 --denoise 0.005 # python inference.py --list data/infer_text.txt --out_dir samples/res_fp_adv0 --model fastpitch --checkpoint pretrained/fastpitch_ar_adv.pth --batch_size 2 # python inference.py --list data/infer_text.txt --out_dir samples/res_fp_adv1 --model fastpitch --checkpoint pretrained/fastpitch_ar_adv.pth --batch_size 2 --denoise 0.005 # python inference.py --list data/infer_text.txt --out_dir samples/res_fp_adv2 --model fastpitch --checkpoint pretrained/fastpitch_ar_adv.pth --batch_size 2 --denoise 0.005 --vocoder_sd pretrained/hifigan-asc-v1/g_02500000 --vocoder_config pretrained/hifigan-asc-v1/config.json def infer(args): use_cuda_if_available = not args.cpu device = torch.device( 'cuda' if torch.cuda.is_available() and use_cuda_if_available else 'cpu') if args.model == 'fastpitch': from models.fastpitch import FastPitch2Wave model = FastPitch2Wave(args.checkpoint, vocoder_sd=args.vocoder_sd, vocoder_config=args.vocoder_config) elif args.model == 'tacotron2': from models.tacotron2 import Tacotron2Wave model = Tacotron2Wave(args.checkpoint, vocoder_sd=args.vocoder_sd, vocoder_config=args.vocoder_config) else: raise "model type not supported" model = model.to(device) model.eval() if not os.path.exists(f"{args.out_dir}/wavs"): os.makedirs(f"{args.out_dir}/wavs") static_lines = read_lines_from_file(args.list) static_batches = [static_lines[k:k+args.batch_size] for k in range(0, len(static_lines), args.batch_size)] idx = 0 with open(os.path.join(args.out_dir, 'index.html'), 'w', encoding='utf-8') as f: f.write(html.make_html_start()) for batch in progbar(static_batches): # infer batch wav_list = model.tts(batch, batch_size=args.batch_size, denoise=args.denoise, speed=args.speed) # save wavs and add entries to html file for (text_line, wav) in zip(batch, wav_list): torchaudio.save(f'{args.out_dir}/wavs/static{idx}.wav', wav.unsqueeze(0), 22_050) text_buckw = text.arabic_to_buckwalter(text_line) text_arabic = text.buckwalter_to_arabic(text_buckw) t_phon = text.buckwalter_to_phonemes(text_buckw) t_phon = text.simplify_phonemes( t_phon.replace(' ', '').replace('+', ' ')) f.write(html.make_sample_entry2( f'wavs/static{idx}.wav', text_arabic, f"{idx}) {t_phon}")) idx += 1 f.write(html.make_volume_script(0.5)) f.write(html.make_html_end()) print(f"Saved files to: {args.out_dir}") def main(): parser = argparse.ArgumentParser() parser.add_argument( '--list', type=str, default='./data/infer_text.txt') parser.add_argument( '--model', type=str, default='fastpitch') parser.add_argument( '--checkpoint', type=str, default='pretrained/fastpitch_ar_adv.pth') parser.add_argument('--vocoder_sd', type=str, default=None) parser.add_argument('--vocoder_config', type=str, default=None) parser.add_argument('--out_dir', type=str, default='samples/results') parser.add_argument('--speed', type=float, default=1.0) parser.add_argument('--denoise', type=float, default=0) parser.add_argument('--batch_size', type=int, default=2) parser.add_argument('--cpu', action='store_true') args = parser.parse_args() infer(args) if __name__ == '__main__': main()