Spaces:
Sleeping
Sleeping
File size: 22,325 Bytes
273cd6b 712a04d 6cc4283 973c041 21c61c8 973c041 21c61c8 973c041 d65ec35 973c041 479acdd 233814f e6bbc72 6489eac e6bbc72 2a84d5f e0d8ef7 e6bbc72 1318041 e6bbc72 973c041 4e497b1 973c041 9bba678 973c041 bc4cee8 d65ec35 45416f5 2abe848 bc4cee8 21c61c8 2abe848 bb1a6ad a740b3f 2116406 696ac95 712a04d e897a8d 712a04d 479acdd 712a04d 273cd6b 6cc4283 f1db6b0 6cc4283 6882990 6cc4283 edc1919 27b9232 f1db6b0 7926329 02b77f3 7926329 f192519 7926329 f192519 a9705e7 f192519 a9705e7 f192519 db75c95 f192519 c1eae00 d8082fe c1eae00 b0edb0e c1eae00 d8082fe c1eae00 d8082fe c1eae00 d8082fe c1eae00 dddd826 c1eae00 dddd826 c1eae00 d8082fe 82c24c7 790af18 d6d1977 82c24c7 c962614 82c24c7 c962614 6489eac c962614 d47249c 82c24c7 c962614 f5433d6 c962614 d47249c 6bdcbf1 82c24c7 d28f8b7 82c24c7 d28f8b7 9ab3574 c1eae00 dcd43ca c1eae00 3fa1cb4 c1eae00 3622123 c1eae00 d8082fe 102ba33 82c24c7 d47249c 82c24c7 d2e875d d28f8b7 4e497b1 28534de 4e497b1 d873b1b 6489eac f5433d6 6489eac d873b1b 6489eac d873b1b 28534de ef68d30 6bdcbf1 31b6072 6bdcbf1 9ab3574 76d6781 45416f5 9ab3574 45416f5 9ab3574 7cfa1ec 7f5dd13 9ab3574 6882990 d9ceaee 31b6072 45416f5 9ab3574 bba3493 9ab3574 eef1809 973c041 db8cb05 973c041 d873b1b 6489eac 3bb95e2 221b2cc d873b1b 6489eac d873b1b db8cb05 973c041 d873b1b 973c041 7926329 f192519 db75c95 eecb7f4 973c041 a9705e7 7926329 973c041 368a410 8fc7059 3b54e05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 |
import os
import numpy as np
import gradio as gr
import requests
from genai_chat_ai import AI,create_chat_session
import torch
from typing import Any, Callable, Optional, Tuple, Union,Iterator
import numpy as np
import torch.nn as nn # Import the missing module
import noisereduce as nr
def remove_noise_nr(audio_data,sr=16000):
"""يزيل الضوضاء باستخدام مكتبة noisereduce."""
reduced_noise = nr.reduce_noise(y=audio_data, sr=sr)
return reduced_noise
def _inference_forward_stream(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
speaker_embeddings: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
padding_mask: Optional[torch.Tensor] = None,
chunk_size: int = 32, # Chunk size for streaming output
) -> Iterator[torch.Tensor]:
"""Generates speech waveforms in a streaming fashion."""
if attention_mask is not None:
padding_mask = attention_mask.unsqueeze(-1).float()
else:
padding_mask = torch.ones_like(input_ids).unsqueeze(-1).float()
text_encoder_output = self.text_encoder(
input_ids=input_ids,
padding_mask=padding_mask,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = text_encoder_output[0] if not return_dict else text_encoder_output.last_hidden_state
hidden_states = hidden_states.transpose(1, 2)
input_padding_mask = padding_mask.transpose(1, 2)
prior_means = text_encoder_output[1] if not return_dict else text_encoder_output.prior_means
prior_log_variances = text_encoder_output[2] if not return_dict else text_encoder_output.prior_log_variances
if self.config.use_stochastic_duration_prediction:
log_duration = self.duration_predictor(
hidden_states,
input_padding_mask,
speaker_embeddings,
reverse=True,
noise_scale=self.noise_scale_duration,
)
else:
log_duration = self.duration_predictor(hidden_states, input_padding_mask, speaker_embeddings)
length_scale = 1.0 / self.speaking_rate
duration = torch.ceil(torch.exp(log_duration) * input_padding_mask * length_scale)
predicted_lengths = torch.clamp_min(torch.sum(duration, [1, 2]), 1).long()
# Create a padding mask for the output lengths of shape (batch, 1, max_output_length)
indices = torch.arange(predicted_lengths.max(), dtype=predicted_lengths.dtype, device=predicted_lengths.device)
output_padding_mask = indices.unsqueeze(0) < predicted_lengths.unsqueeze(1)
output_padding_mask = output_padding_mask.unsqueeze(1).to(input_padding_mask.dtype)
# Reconstruct an attention tensor of shape (batch, 1, out_length, in_length)
attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(output_padding_mask, -1)
batch_size, _, output_length, input_length = attn_mask.shape
cum_duration = torch.cumsum(duration, -1).view(batch_size * input_length, 1)
indices = torch.arange(output_length, dtype=duration.dtype, device=duration.device)
valid_indices = indices.unsqueeze(0) < cum_duration
valid_indices = valid_indices.to(attn_mask.dtype).view(batch_size, input_length, output_length)
padded_indices = valid_indices - nn.functional.pad(valid_indices, [0, 0, 1, 0, 0, 0])[:, :-1]
attn = padded_indices.unsqueeze(1).transpose(2, 3) * attn_mask
# Expand prior distribution
prior_means = torch.matmul(attn.squeeze(1), prior_means).transpose(1, 2)
prior_log_variances = torch.matmul(attn.squeeze(1), prior_log_variances).transpose(1, 2)
prior_latents = prior_means + torch.randn_like(prior_means) * torch.exp(prior_log_variances) * self.noise_scale
latents = self.flow(prior_latents, output_padding_mask, speaker_embeddings, reverse=True)
spectrogram = latents * output_padding_mask
for i in range(0, spectrogram.size(-1), chunk_size):
with torch.no_grad():
wav=self.decoder(spectrogram[:,:,i : i + chunk_size] ,speaker_embeddings)
yield wav.squeeze().cpu().numpy()
api_key = os.environ.get("Id_mode_vits")
headers = {"Authorization": f"Bearer {api_key}"}
from transformers import AutoTokenizer,VitsModel
import torch
models= {}
tokenizer = AutoTokenizer.from_pretrained("wasmdashai/vits-ar-sa-huba",token=api_key)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def get_model(name_model):
global models
if name_model in models:
return models[name_model]
models[name_model]=VitsModel.from_pretrained(name_model,token=api_key).to(device)
models[name_model].decoder.apply_weight_norm()
# torch.nn.utils.weight_norm(self.decoder.conv_pre)
# torch.nn.utils.weight_norm(self.decoder.conv_post)
for flow in models[name_model].flow.flows:
torch.nn.utils.weight_norm(flow.conv_pre)
torch.nn.utils.weight_norm(flow.conv_post)
return models[name_model]
def genrate_speech(text,name_model):
inputs=tokenizer(text,return_tensors="pt")
model=get_model(name_model)
with torch.no_grad():
wav=model(
input_ids= inputs.input_ids.to(device),
attention_mask=inputs.attention_mask.to(device),
speaker_id=0
).waveform.cpu().numpy().reshape(-1)
return model.config.sampling_rate,wav
def generate_audio(text,name_model,speaker_id=None):
inputs = tokenizer(text, return_tensors="pt")#.input_ids
speaker_embeddings = None
model=get_model(name_model)
#torch.cuda.empty_cache()
with torch.no_grad():
for chunk in _inference_forward_stream(model,input_ids=inputs.input_ids,attention_mask=inputs.attention_mask,speaker_embeddings= speaker_embeddings,chunk_size=256):
yield 16000,chunk#.squeeze().cpu().numpy()#.astype(np.int16).tobytes()
def generate_audio_ai(text,name_model):
text_answer = get_answer_ai(text)
text_answer = remove_extra_spaces(text_answer)
inputs = tokenizer(text_answer, return_tensors="pt")#.input_ids
speaker_embeddings = None
model=get_model(name_model)
#torch.cuda.empty_cache()
with torch.no_grad():
for chunk in _inference_forward_stream(model,input_ids=inputs.input_ids,attention_mask=inputs.attention_mask,speaker_embeddings= speaker_embeddings,chunk_size=256):
yield 16000,remove_noise_nr(chunk)#.cpu().numpy().squeeze()#.astype(np.int16).tobytes()
def remove_extra_spaces(text):
return ' '.join(text.split())
def query(text,API_URL):
payload={"inputs": text}
response = requests.post(API_URL, headers=headers, json=payload)
return response.content
def get_answer_ai(text):
global AI
try:
response = AI.send_message(text)
return response.text
except :
AI=create_chat_session()
response = AI.send_message(text)
return response.text
def get_answer_ai_stream(text):
#if session_ai is None:
global AI
try:
response = AI.send_message(text,stream=True)
return response
except :
AI=create_chat_session()
response = AI.send_message(text,stream=True)
return response
def t2t(text):
return get_answer_ai(text)
def t2tstream(text):
st=''
response=get_answer_ai_stream(text)
for chk in response:
st+=chk.text
yield st
def t2s(text,name_model):
return genrate_speech(text,name_model)
#return get_answer_ai(text)
def home_page():
return """
<div class="px-4 py-5 my-5 text-center">
<img class="d-block mx-auto mb-4" src="https://huggingface.co/spaces/wasmdashai/wasm-speeker-sa/resolve/main/%D8%AA%D9%86%D8%B2%D9%8A%D9%84%20(2).jpeg" alt="" width="72" height="57">
<h1 class="display-5 fw-bold">مرحباً بك في Wasm-Speeker</h1>
<div class="col-lg-6 mx-auto">
<p class="lead mb-4">
Wasm-Speeker هو إطار متقدم يعتمد على تقنيات الذكاء الاصطناعي لتوليد الكلام من النصوص.
تعتمد جميع النماذج على بنية VITS، التي تتيح توليد موجات صوتية واقعية بناءً على المدخلات النصية.
النماذج تحتوي على محولات لتحليل النص وتوليد الكلام بناءً على خصائص الصوت المحلية لكل لهجة.
</p>
<div class="d-grid gap-2 d-sm-flex justify-content-sm-center">
<button type="button" class="btn btn-primary btn-lg px-4 gap-3">Primary button</button>
<button type="button" class="btn btn-outline-secondary btn-lg px-4">Secondary</button>
</div>
</div>
</div>
"""
def footer():
body="""<div class="container col-xxl-8 px-4 py-5">
<div class="row flex-lg-row-reverse align-items-center g-5 py-5">
<div class="col-10 col-sm-8 col-lg-6">
<img src="https://huggingface.co/spaces/wasmdashai/wasm-speeker-sa/resolve/main/%D8%AA%D9%86%D8%B2%D9%8A%D9%84%20(3).jpeg" class="d-block mx-lg-auto img-fluid" alt="Bootstrap Themes" width="700" height="500" loading="lazy">
</div>
<div class="col-lg-6">
<h1 class="display-5 fw-bold lh-1 mb-3">Responsive left-aligned hero with image</h1>
<p class="lead">Quickly design and customize responsive mobile-first sites with Bootstrap, the world’s most popular front-end open source toolkit, featuring Sass variables and mixins, responsive grid system, extensive prebuilt components, and powerful JavaScript plugins.</p>
<div class="d-grid gap-2 d-md-flex justify-content-md-start">
<button type="button" class="btn btn-primary btn-lg px-4 me-md-2">Primary</button>
<button type="button" class="btn btn-outline-secondary btn-lg px-4">Default</button>
</div>
</div>
</div>
</div>
<div class="row p-4 pb-0 pe-lg-0 pt-lg-5 align-items-center rounded-3 border shadow-lg">
<div class="col-lg-7 p-3 p-lg-5 pt-lg-3">
<h1 class="display-4 fw-bold lh-1">Border hero with cropped image and shadows</h1>
<p class="lead">Quickly design and customize responsive mobile-first sites with Bootstrap, the world’s most popular front-end open source toolkit, featuring Sass variables and mixins, responsive grid system, extensive prebuilt components, and powerful JavaScript plugins.</p>
<div class="d-grid gap-2 d-md-flex justify-content-md-start mb-4 mb-lg-3">
<button type="button" class="btn btn-primary btn-lg px-4 me-md-2 fw-bold">Primary</button>
<button type="button" class="btn btn-outline-secondary btn-lg px-4">Default</button>
</div>
</div>
<div class="col-lg-4 offset-lg-1 p-0 overflow-hidden shadow-lg">
<img class="rounded-lg-3" src="https://huggingface.co/spaces/wasmdashai/wasm-speeker-sa/resolve/main/%D8%AA%D9%86%D8%B2%D9%8A%D9%84%20(5).jpeg" alt="" width="720">
</div>
</div>
<div class="bg-dark text-secondary px-4 py-5 text-center">
<div >
<h1 class="display-5 fw-bold text-white">Dark mode hero</h1>
<div class="col-lg-6 mx-auto">
<p class="fs-5 mb-4">Quickly design and customize responsive mobile-first sites with Bootstrap, the world’s most popular front-end open source toolkit, featuring Sass variables and mixins, responsive grid system, extensive prebuilt components, and powerful JavaScript plugins.</p>
<div class="d-grid gap-2 d-sm-flex justify-content-sm-center">
<button type="button" class="btn btn-outline-info btn-lg px-4 me-sm-3 fw-bold">Custom button</button>
<button type="button" class="btn btn-outline-light btn-lg px-4">Secondary</button>
</div>
</div>
</div>
</div>"""
return body
import gradio as gr
import os
import plotly.express as px
# Chatbot demo with multimodal input (text, markdown, LaTeX, code blocks, image, audio, & video). Plus shows support for streaming text.
def random_plot():
df = px.data.iris()
fig = px.scatter(df, x="sepal_width", y="sepal_length", color="species",
size='petal_length', hover_data=['petal_width'])
return fig
def print_like_dislike(x: gr.LikeData):
print(x.index, x.value, x.liked)
from gradio_multimodalchatbot import MultimodalChatbot
from gradio.data_classes import FileData
import tempfile
import soundfile as sf
from gradio_client import Client
def add_message(history, message):
for x in message["files"]:
history.append(((x,), None))
if message["text"] is not None:
history.append((message["text"], None))
response_audio = genrate_speech(message["text"],'wasmdashai/vits-ar-sa-huba')
history.append((gr.Audio(response_audio,scale=1,streaming=True),None))
return history
def bot(history,message):
if message["text"] is not None:
txt_ai=get_answer_ai(message["text"] )
history[-1][1]=txt_ai#((None,txt_ai))
response_audio = genrate_speech(txt_ai,'wasmdashai/vits-ar-sa-A')
history.append((None,gr.Audio(response_audio,scale=1,streaming=True)))
return history, gr.MultimodalTextbox(value=None, interactive=False)
fig = random_plot()
# متغير لتخزين سجل المحادثة
with gr.Blocks() as demo: # Use gr.Blocks to wrap the entire interface
gr.HTML("""
<head>
<!-- Required meta tags -->
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<!-- Bootstrap CSS -->
<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.0.2/dist/css/bootstrap.min.css" rel="stylesheet"
integrity="sha384-EVSTQN3/azprG1Anm3QDgpJLIm9Nao0Yz1ztcQTwFspd3yD65VohhpuuCOmLASjC" crossorigin="anonymous">
<title>Wasm-Speeker</title>
</head>
""")
# العنوان الرئيسي
gr.Markdown("# Wasm-Speeker: إطار الذكاء الاصطناعي لتوليد الكلام")
# عرض الصورة الترحيبية
gr.Image("9588e6d4-9959-4cfc-9697-fc9b996fcd97.jpeg", label="Wasm-Speeker")
# إضافة CSS لجعل التبويبات RTL
gr.HTML("""
<style>
.gradio-tabs,body,div{
direction: rtl;
}
</style>
""")
with gr.Tab("الصفحة الرئيسية"):
gr.HTML(home_page())
gr.Markdown("## مميزات Wasm-Speeker")
with gr.Row():
with gr.Column():
gr.Markdown("### 🛠 التخصص في اللهجة السعودية")
gr.Markdown("Wasm-Speeker متخصص في إنتاج أصوات واقعية للهجة السعودية.")
with gr.Column():
gr.Markdown("### 🎯 سهولة التدريب")
gr.Markdown("يتميز Wasm-Speeker بسهولة التدريب وقابلية التوسع.")
with gr.Column():
gr.Markdown("### ⚖️ الأداء المتوازن")
gr.Markdown("يوفر أداءً متوازناً يجمع بين الجودة والسرعة.")
with gr.Row():
with gr.Column():
gr.Markdown("### ⚡️ الاستخدام الفعال للموارد")
gr.Markdown("تم تصميمه لاستخدام الموارد بفعالية وكفاءة.")
with gr.Column():
gr.Markdown("### 🌍 الشعبية والانتشار")
gr.Markdown("نموذج واسع الانتشار بين المطورين في تطبيقات مختلفة.")
with gr.Column():
gr.Markdown("### 💾 حجم النموذج")
gr.Markdown("يحتوي النموذج على 36.3 مليون باراميتر.")
gr.HTML(footer())
with gr.Tab("ChatBot "):
chatbot = gr.Chatbot(
elem_id="chatbot",
bubble_full_width=False,
scale=1,
)
chat_input = gr.MultimodalTextbox(interactive=True,
file_count="single",
placeholder="Enter message or upload file...", show_label=False,)
chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot])
bot_msg = chat_msg.then(bot, [chatbot, chat_input], [chatbot, chat_input], api_name="bot_response")
bot_msg.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input])
chatbot.like(print_like_dislike, None, None)
# audio.change(chatbot_fn, [txt, audio], chatbot)
with gr.Tab("Chat AI "):
gr.Markdown("## AI: محادثة صوتية بالذكاء الاصطناعي باللهجة السعودية")
with gr.Row(): # Arrange input/output components side-by-side
with gr.Column():
text_input = gr.Textbox(label="أدخل أي نص")
with gr.Column():
model_choices = gr.Dropdown(
choices=[
"wasmdashai/vits-ar-sa",
"wasmdashai/vits-ar-sa-huba",
"wasmdashai/vits-ar-sa-ms",
"wasmdashai/vits-ar-sa-A",
"wasmdashai/vits-ar-sa-fahd",
],
label="اختر النموذج",
value="wasmdashai/vits-ar-sa-huba",
)
with gr.Row():
btn = gr.Button("إرسال")
btn_ai_only = gr.Button("توليد رد الذكاء الاصطناعي فقط")
with gr.Row():
user_audio = gr.Audio(label="صوت المدخل")
ai_audio = gr.Audio(label="رد AI الصوتي")
ai_text = gr.Textbox(label="رد AI النصي")
ai_audio2 = gr.Audio(label="2رد AI الصوتي",streaming=True)
# Use a single button to trigger both functionalities
def process_audio(text, model_choice, generate_user_audio=True):
API_URL = f"https://api-inference.huggingface.co/models/{model_choice}"
text_answer = get_answer_ai(text)
text_answer = remove_extra_spaces(text_answer)
data_ai = genrate_speech(text_answer,model_choice)#query(text_answer, API_URL)
if generate_user_audio: # Generate user audio if needed
data_user =genrate_speech(text,model_choice)# query(text, API_URL)
return data_user, data_ai, text_answer
else:
return data_ai # Return None for user_audio
btn.click(
process_audio, # Call the combined function
inputs=[text_input, model_choices],
outputs=[user_audio, ai_audio, ai_text],
)
#
btn_ai_only.click(
generate_audio_ai,
inputs=[text_input, model_choices],
outputs=[ai_audio2],
)
with gr.Tab("Live "):
gr.Markdown("## VITS: تحويل النص إلى كلام")
with gr.Row():
speaker_id_input = gr.Number(label="معرّف المتحدث (اختياري)", interactive=True)
with gr.Column():
model_choices2 = gr.Dropdown(
choices=[
"wasmdashai/vits-ar-sa",
"wasmdashai/vits-ar-sa-huba",
"wasmdashai/vits-ar-sa-ms",
"wasmdashai/vits-ar-sa-A",
"wasmdashai/model-dash-fahd",
],
label="اختر النموذج",
value="wasmdashai/vits-ar-sa-huba",
)
text_input = gr.Textbox(label="أدخل النص هنا")
generate_button = gr.Button("توليد وتشغيل الصوت")
audio_player = gr.Audio(label="أ audio",streaming=True)
# Update the event binding
generate_button.click(generate_audio, inputs=[text_input,model_choices2], outputs=audio_player)
with gr.Tab("T2T "):
gr.Markdown("## T2T")
text_inputk = gr.Textbox(label="أدخل النص هنا")
text_out = gr.Textbox()
text_inputk.submit(t2t, [text_inputk], [text_out])
with gr.Tab("T2TSTREAM "):
gr.Markdown("## T2TSTREAM ")
text_inputk2 = gr.Textbox(label="أدخل النص هنا")
text_out1 = gr.Textbox()
text_inputk2.submit(t2tstream, [text_inputk2], [text_out1])
with gr.Tab("T2S "):
gr.Markdown("## T2S ")
model_choices3 = gr.Dropdown(
choices=[
"wasmdashai/vits-ar-sa-huba-v1",
"wasmdashai/vits-ar-sa-huba",
"wasmdashai/vits-ar-sa-ms",
"wasmdashai/vits-ar-sa-A",
"wasmdashai/vits-ar-sa-huba-v2",
],
label="اختر النموذج",
value="wasmdashai/vits-ar-sa-huba",
)
text_inputk3 = gr.Textbox(label="أدخل النص هنا")
oudio_out1 =gr.Audio()
text_inputk3.submit(t2s, [text_inputk3,model_choices3], [oudio_out1])
if __name__ == "__main__":
demo.launch(show_error=True)
|