File size: 22,772 Bytes
4c9c42b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d515943
4c9c42b
 
 
 
 
 
 
 
 
 
d515943
4c9c42b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d515943
4c9c42b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d515943
4c9c42b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d515943
4c9c42b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d515943
4c9c42b
 
 
 
 
 
 
 
d515943
4c9c42b
 
 
 
 
 
 
 
 
 
 
 
 
d515943
4c9c42b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d515943
4c9c42b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d515943
4c9c42b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d515943
4c9c42b
 
d515943
 
 
4c9c42b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d515943
4c9c42b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d515943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c9c42b
d515943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
import os
import shutil  
import cv2
import einops
import gradio as gr
import numpy as np
import torch
import torch.optim as optim
import random
import imageio
from torchvision import transforms
import torch.nn as nn
import torch.nn.functional as F
from PIL import Image
import time
import scipy.interpolate
from tqdm import tqdm

from pytorch_lightning import seed_everything
from annotator.util import resize_image, HWC3
from annotator.canny import CannyDetector
from annotator.midas import MidasDetector
from cldm.model import create_model, load_state_dict
from ldm.models.diffusion.ddim import DDIMSampler
from stablevideo.atlas_data import AtlasData
from stablevideo.atlas_utils import get_grid_indices, get_atlas_bounding_box
from stablevideo.aggnet import AGGNet


class StableVideo:
    def __init__(self, base_cfg, canny_model_cfg, depth_model_cfg, save_memory=False):
        self.base_cfg = base_cfg
        self.canny_model_cfg = canny_model_cfg
        self.depth_model_cfg = depth_model_cfg
        self.img2img_model = None
        self.canny_model = None
        self.depth_model = None
        self.b_atlas = None
        self.f_atlas = None
        self.data = None
        self.crops = None
        self.save_memory = save_memory
    
    def load_canny_model(
        self,
        base_cfg='ckpt/cldm_v15.yaml',
        canny_model_cfg='ckpt/control_sd15_canny.pth',
    ):
        self.apply_canny = CannyDetector()
        canny_model = create_model(base_cfg).cpu()
        canny_model.load_state_dict(load_state_dict(canny_model_cfg, location='cpu'), strict=False)
        self.canny_ddim_sampler = DDIMSampler(canny_model)
        self.canny_model = canny_model
        
    def load_depth_model(
        self,
        base_cfg='ckpt/cldm_v15.yaml',
        depth_model_cfg='ckpt/control_sd15_depth.pth',
    ):
        self.apply_midas = MidasDetector()
        depth_model = create_model(base_cfg).cpu()
        depth_model.load_state_dict(load_state_dict(depth_model_cfg, location='cpu'), strict=False)
        self.depth_ddim_sampler = DDIMSampler(depth_model)
        self.depth_model = depth_model

    def load_video(self, video_name):
        self.data = AtlasData(video_name)
        save_name = f"data/{video_name}/{video_name}.mp4"
        if not os.path.exists(save_name):
            imageio.mimwrite(save_name, self.data.original_video.cpu().permute(0, 2, 3, 1))
            print("original video saved.")
        toIMG = transforms.ToPILImage()
        self.f_atlas_origin = toIMG(self.data.cropped_foreground_atlas[0])
        self.b_atlas_origin = toIMG(self.data.background_grid_atlas[0])
        return save_name, self.f_atlas_origin, self.b_atlas_origin
    
    @torch.no_grad()
    def depth_edit(self, input_image=None,
                    prompt="", 
                    a_prompt="best quality, extremely detailed", 
                    n_prompt="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",  
                    image_resolution=512, 
                    detect_resolution=384,
                    ddim_steps=20, 
                    scale=9, 
                    seed=-1, 
                    eta=0,
                    num_samples=1):
        
        size = input_image.size
        model = self.depth_model
        ddim_sampler = self.depth_ddim_sampler
        apply_midas = self.apply_midas
        
        input_image = np.array(input_image)
        input_image = HWC3(input_image)
        detected_map, _ = apply_midas(resize_image(input_image, detect_resolution))
        detected_map = HWC3(detected_map)
        img = resize_image(input_image, image_resolution)
        H, W, C = img.shape

        detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)

        control = torch.from_numpy(detected_map.copy()).float() / 255.0
        control = torch.stack([control for _ in range(1)], dim=0)
        control = einops.rearrange(control, 'b h w c -> b c h w').clone()

        if seed == -1:
            seed = random.randint(0, 65535)
        seed_everything(seed)

        cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
        un_cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
        shape = (4, H // 8, W // 8)
    

        samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
                                                     shape, cond, verbose=False, eta=eta,
                                                     unconditional_guidance_scale=scale,
                                                     unconditional_conditioning=un_cond)
        
        x_samples = model.decode_first_stage(samples)
        x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)

        results = [x_samples[i] for i in range(num_samples)]
        self.b_atlas = Image.fromarray(results[0]).resize(size)
        return self.b_atlas
    
    @torch.no_grad()
    def edit_background(self, *args, **kwargs):
        self.depth_model = self.depth_model
            
        input_image = self.b_atlas_origin
        self.depth_edit(input_image, *args, **kwargs)
        
        if self.save_memory:
            self.depth_model = self.depth_model.cpu()
        return self.b_atlas
    
    @torch.no_grad()
    def advanced_edit_foreground(self, 
                                keyframes="0", 
                                res=2000,
                                prompt="", 
                                a_prompt="best quality, extremely detailed", 
                                n_prompt="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",  
                                image_resolution=512, 
                                low_threshold=100, 
                                high_threshold=200,
                                ddim_steps=20,
                                s=0.9,
                                scale=9, 
                                seed=-1, 
                                eta=0,
                                if_net=False,
                                num_samples=1):

        self.canny_model = self.canny_model
        
        keyframes = [int(x) for x in keyframes.split(",")]
        if self.data is None:
            raise ValueError("Please load video first")
        self.crops = self.data.get_global_crops_multi(keyframes, res)
        n_keyframes = len(keyframes)
        indices = get_grid_indices(0, 0, res, res)
        f_atlas = torch.zeros(size=(n_keyframes, res, res, 3,)).to("cuda")

        img_list = [transforms.ToPILImage()(i[0]) for i in self.crops['original_foreground_crops']]
        result_list = []
        
        # initial setting
        if seed == -1:
            seed = random.randint(0, 65535)
        seed_everything(seed)
        
        self.canny_ddim_sampler.make_schedule(ddim_num_steps=ddim_steps, ddim_eta=eta, verbose=False)
        c_crossattn = [self.canny_model.get_learned_conditioning([prompt + ', ' + a_prompt])]
        uc_crossattn = [self.canny_model.get_learned_conditioning([n_prompt])]
        
        for i in range(n_keyframes):
            # get current keyframe
            current_img = img_list[i]
            img = resize_image(HWC3(np.array(current_img)), image_resolution)
            H, W, C = img.shape
            shape = (4, H // 8, W // 8)
            # get canny control
            detected_map = self.apply_canny(img, low_threshold, high_threshold)
            detected_map = HWC3(detected_map)
            control = torch.from_numpy(detected_map.copy()).float() / 255.0
            control = einops.rearrange(control.unsqueeze(0), 'b h w c -> b c h w').clone()
            
            cond = {"c_concat": [control], "c_crossattn": c_crossattn}
            un_cond = {"c_concat": [control], "c_crossattn": uc_crossattn}
            
            
            # if not the key frame, calculate the mapping from last atlas
            if i == 0:
                latent = torch.randn((1, 4, H // 8, W // 8))
                samples, _ = self.canny_ddim_sampler.sample(ddim_steps, num_samples,
                                                            shape, cond, verbose=False, eta=eta,
                                                            unconditional_guidance_scale=scale,
                                                            unconditional_conditioning=un_cond,
                                                            x_T=latent)
            else:
                last_atlas = f_atlas[i-1:i].permute(0, 3, 2, 1)
                mapped_img = F.grid_sample(last_atlas, self.crops['foreground_uvs'][i].reshape(1, -1, 1, 2), mode="bilinear", align_corners=self.data.config["align_corners"]).clamp(min=0.0, max=1.0).reshape((3, current_img.size[1], current_img.size[0]))
                mapped_img = transforms.ToPILImage()(mapped_img)
                
                mapped_img = mapped_img.resize((W, H))
                mapped_img = np.array(mapped_img).astype(np.float32) / 255.0
                mapped_img = mapped_img[None].transpose(0, 3, 1, 2)
                mapped_img = torch.from_numpy(mapped_img)
                mapped_img = 2. * mapped_img - 1.
                latent = self.canny_model.get_first_stage_encoding(self.canny_model.encode_first_stage(mapped_img))
                
                t_enc = int(ddim_steps * s)
                latent = self.canny_ddim_sampler.stochastic_encode(latent, torch.tensor([t_enc]).to("cuda"))
                samples = self.canny_ddim_sampler.decode(x_latent=latent, 
                                                         cond=cond, 
                                                         t_start=t_enc,
                                                         unconditional_guidance_scale=scale,
                                                         unconditional_conditioning=un_cond)

            x_samples = self.canny_model.decode_first_stage(samples)
            result = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
            result = Image.fromarray(result[0])
            
            result = result.resize(current_img.size)
            result = transforms.ToTensor()(result)
            # times alpha
            alpha = self.crops['foreground_alpha'][i][0].cpu()
            result = alpha * result
            
            # buffer for training
            result_copy = result.clone()
            result_copy.requires_grad = True
            result_list.append(result_copy)
            
            # map to atlas
            uv = (self.crops['foreground_uvs'][i].reshape(-1, 2) * 0.5 + 0.5) * res
            for c in range(3):
                interpolated = scipy.interpolate.griddata(
                    points=uv.cpu().numpy(),
                    values=result[c].reshape(-1, 1).cpu().numpy(),
                    xi=indices.reshape(-1, 2).cpu().numpy(),
                    method="linear",
                ).reshape(res, res)
                interpolated = torch.from_numpy(interpolated).float()
                interpolated[interpolated.isnan()] = 0.0
                f_atlas[i, :, :, c] = interpolated

        f_atlas = f_atlas.permute(0, 3, 2, 1)
        
        # aggregate via simple median as begining
        agg_atlas, _ = torch.median(f_atlas, dim=0)
        
        if if_net == True:
            #####################################
            #           aggregate net           #
            #####################################
            lr, n_epoch = 1e-3, 500
            agg_net = AGGNet()
            loss_fn = nn.L1Loss()
            optimizer = optim.SGD(agg_net.parameters(), lr=lr, momentum=0.9)
            for _ in range(n_epoch):
                loss = 0.
                for i in range(n_keyframes):
                    e_img = result_list[i]
                    temp_agg_atlas = agg_net(agg_atlas)
                    rec_img = F.grid_sample(temp_agg_atlas[None], 
                                            self.crops['foreground_uvs'][i].reshape(1, -1, 1, 2), 
                                            mode="bilinear", 
                                            align_corners=self.data.config["align_corners"])
                    rec_img = rec_img.clamp(min=0.0, max=1.0).reshape(e_img.shape)
                    loss += loss_fn(rec_img, e_img)
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()
            agg_atlas = agg_net(agg_atlas)
        #####################################
        
        agg_atlas, _ = get_atlas_bounding_box(self.data.mask_boundaries, agg_atlas, self.data.foreground_all_uvs)
        self.f_atlas = transforms.ToPILImage()(agg_atlas)
        
        if self.save_memory:
            self.canny_model = self.canny_model.cpu()
        
        return self.f_atlas

    @torch.no_grad()
    def render(self, f_atlas, b_atlas):
        # foreground
        if f_atlas == None:
            f_atlas = transforms.ToTensor()(self.f_atlas_origin).unsqueeze(0)
        else:
            f_atlas, mask = f_atlas["image"], f_atlas["mask"]
            f_atlas_origin = transforms.ToTensor()(self.f_atlas_origin).unsqueeze(0)
            f_atlas = transforms.ToTensor()(f_atlas).unsqueeze(0)
            mask = transforms.ToTensor()(mask).unsqueeze(0)
            if f_atlas.shape != mask.shape:
                print("Warning: truncating mask to atlas shape {}".format(f_atlas.shape))
                mask = mask[:f_atlas.shape[0], :f_atlas.shape[1], :f_atlas.shape[2], :f_atlas.shape[3]]
            f_atlas = f_atlas * (1 - mask) + f_atlas_origin * mask
        
        f_atlas = torch.nn.functional.pad(
            f_atlas,
            pad=(
                self.data.foreground_atlas_bbox[1],
                self.data.foreground_grid_atlas.shape[-1] - (self.data.foreground_atlas_bbox[1] + self.data.foreground_atlas_bbox[3]),
                self.data.foreground_atlas_bbox[0],
                self.data.foreground_grid_atlas.shape[-2] - (self.data.foreground_atlas_bbox[0] + self.data.foreground_atlas_bbox[2]),
            ),
            mode="replicate",
        )
        foreground_edit = F.grid_sample(
            f_atlas, self.data.scaled_foreground_uvs, mode="bilinear", align_corners=self.data.config["align_corners"]
        ).clamp(min=0.0, max=1.0)
        
        foreground_edit = foreground_edit.squeeze().t()  # shape (batch, 3)
        foreground_edit = (
            foreground_edit.reshape(self.data.config["maximum_number_of_frames"], self.data.config["resy"], self.data.config["resx"], 3)
            .permute(0, 3, 1, 2)
            .clamp(min=0.0, max=1.0)
        )
        # background
        if b_atlas == None:
            b_atlas = self.b_atlas_origin

        b_atlas = transforms.ToTensor()(b_atlas).unsqueeze(0)
        background_edit = F.grid_sample(
            b_atlas, self.data.scaled_background_uvs, mode="bilinear", align_corners=self.data.config["align_corners"]
        ).clamp(min=0.0, max=1.0)
        background_edit = background_edit.squeeze().t()  # shape (batch, 3)
        background_edit = (
            background_edit.reshape(self.data.config["maximum_number_of_frames"], self.data.config["resy"], self.data.config["resx"], 3)
            .permute(0, 3, 1, 2)
            .clamp(min=0.0, max=1.0)
        )
        
        output_video = (
                self.data.all_alpha * foreground_edit
                + (1 - self.data.all_alpha) * background_edit
        )
        id = time.time()
        os.mkdir(f"log/{id}")
        save_name = f"log/{id}/video.mp4"
        imageio.mimwrite(save_name, (255 * output_video.detach().cpu()).to(torch.uint8).permute(0, 2, 3, 1))
        
        return save_name

if __name__ == '__main__':
    stablevideo = StableVideo(base_cfg="ckpt/cldm_v15.yaml",
                            canny_model_cfg="ckpt/control_sd15_canny.pth",
                            depth_model_cfg="ckpt/control_sd15_depth.pth",
                            save_memory=True)
    stablevideo.load_canny_model()
    stablevideo.load_depth_model()
    
    block = gr.Blocks().queue()
    with block:
        with gr.Row():
            gr.Markdown("## StableVideo")
        with gr.Row():
            with gr.Column():
                original_video = gr.Video(label="Original Video", interactive=False)
                with gr.Row():
                    foreground_atlas = gr.Image(label="Foreground Atlas", type="pil")
                    background_atlas = gr.Image(label="Background Atlas", type="pil")
                gr.Markdown("### Step 1. select one example video and click **Load Video** buttom and wait for 10 sec.")
                avail_video = [f.name for f in os.scandir("data") if f.is_dir()]
                video_name = gr.Radio(choices=avail_video,
                                    label="Select Example Videos",
                                    value="car-turn")
                load_video_button = gr.Button("Load Video")
                gr.Markdown("### Step 2. write text prompt and advanced options for background and foreground.")
                with gr.Row():
                    f_prompt = gr.Textbox(label="Foreground Prompt", value="a picture of an orange suv")
                    b_prompt = gr.Textbox(label="Background Prompt", value="winter scene, snowy scene, beautiful snow")
                with gr.Row():
                    with gr.Accordion("Advanced Foreground Options", open=False):
                        adv_keyframes = gr.Textbox(label="keyframe", value="20, 40, 60")
                        adv_atlas_resolution = gr.Slider(label="Atlas Resolution", minimum=1000, maximum=3000, value=2000, step=100)
                        adv_image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=256)
                        adv_low_threshold = gr.Slider(label="Canny low threshold", minimum=1, maximum=255, value=100, step=1)
                        adv_high_threshold = gr.Slider(label="Canny high threshold", minimum=1, maximum=255, value=200, step=1)
                        adv_ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
                        adv_s = gr.Slider(label="Noise Scale", minimum=0.0, maximum=1.0, value=0.8, step=0.01)
                        adv_scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=15.0, value=9.0, step=0.1)
                        adv_seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
                        adv_eta = gr.Number(label="eta (DDIM)", value=0.0)
                        adv_a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed, no background')
                        adv_n_prompt = gr.Textbox(label="Negative Prompt", value='lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
                        adv_if_net = gr.gradio.Checkbox(label="if use agg net", value=False)
                        
                    with gr.Accordion("Background Options", open=False):
                        b_image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=256)
                        b_detect_resolution = gr.Slider(label="Depth Resolution", minimum=128, maximum=1024, value=512, step=1)
                        b_ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
                        b_scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
                        b_seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
                        b_eta = gr.Number(label="eta (DDIM)", value=0.0)
                        b_a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed')
                        b_n_prompt = gr.Textbox(label="Negative Prompt",
                                            value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
                gr.Markdown("### Step 3. edit each one and render.")
                with gr.Row():
                    f_advance_run_button = gr.Button("Advanced Edit Foreground (slower, better)")
                    b_run_button = gr.Button("Edit Background")
                run_button = gr.Button("Render")
            with gr.Column():
                output_video = gr.Video(label="Output Video", interactive=False)
                # output_foreground_atlas = gr.Image(label="Output Foreground Atlas", type="pil", interactive=False)
                output_foreground_atlas = gr.ImageMask(label="Editable Output Foreground Atlas", type="pil", tool="sketch", interactive=True)
                output_background_atlas = gr.Image(label="Output Background Atlas", type="pil", interactive=False)
        
        # edit param
        f_adv_edit_param = [adv_keyframes, 
                            adv_atlas_resolution, 
                            f_prompt, 
                            adv_a_prompt, 
                            adv_n_prompt, 
                            adv_image_resolution, 
                            adv_low_threshold, 
                            adv_high_threshold, 
                            adv_ddim_steps, 
                            adv_s,
                            adv_scale, 
                            adv_seed, 
                            adv_eta,
                            adv_if_net]
        b_edit_param = [b_prompt, 
                        b_a_prompt, 
                        b_n_prompt, 
                        b_image_resolution, 
                        b_detect_resolution, 
                        b_ddim_steps, 
                        b_scale, 
                        b_seed,
                        b_eta]
        # action
        load_video_button.click(fn=stablevideo.load_video, inputs=video_name, outputs=[original_video, foreground_atlas, background_atlas])
        f_advance_run_button.click(fn=stablevideo.advanced_edit_foreground, inputs=f_adv_edit_param, outputs=[output_foreground_atlas])
        b_run_button.click(fn=stablevideo.edit_background, inputs=b_edit_param, outputs=[output_background_atlas])
        run_button.click(fn=stablevideo.render, inputs=[output_foreground_atlas, output_background_atlas], outputs=[output_video])
    
    block.launch()