Spaces:
Runtime error
Runtime error
import argparse | |
import json | |
import os | |
import platform | |
import shutil | |
import time | |
from pathlib import Path | |
import cv2 | |
import torch | |
import torch.backends.cudnn as cudnn | |
from numpy import random | |
from models.experimental import attempt_load | |
from utils.datasets import LoadStreams, LoadImages | |
from utils.general import ( | |
check_img_size, non_max_suppression, apply_classifier, scale_coords, | |
xyxy2xywh, plot_one_box, strip_optimizer, set_logging) | |
from utils.torch_utils import select_device, load_classifier, time_synchronized | |
def detect(save_img=False): | |
out, source, weights, view_img, save_txt, imgsz = \ | |
opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size | |
webcam = source.isnumeric() or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt') | |
# Initialize | |
set_logging() | |
device = select_device(opt.device) | |
if os.path.exists(out): | |
shutil.rmtree(out) # delete output folder | |
os.makedirs(out) # make new output folder | |
half = device.type != 'cpu' # half precision only supported on CUDA | |
# Load model | |
model = attempt_load(weights, map_location=device) # load FP32 model | |
imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size | |
if half: | |
model.half() # to FP16 | |
# Second-stage classifier | |
classify = False | |
if classify: | |
modelc = load_classifier(name='resnet101', n=2) # initialize | |
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']) # load weights | |
modelc.to(device).eval() | |
# Set Dataloader | |
vid_path, vid_writer = None, None | |
if webcam: | |
view_img = True | |
cudnn.benchmark = True # set True to speed up constant image size inference | |
dataset = LoadStreams(source, img_size=imgsz) | |
else: | |
save_img = True | |
dataset = LoadImages(source, img_size=imgsz) | |
# Get names and colors | |
names = model.module.names if hasattr(model, 'module') else model.names | |
colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))] | |
# Run inference | |
t0 = time.time() | |
img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img | |
_ = model(img.half() if half else img) if device.type != 'cpu' else None # run once | |
for path, img, im0s, vid_cap in dataset: | |
img = torch.from_numpy(img).to(device) | |
img = img.half() if half else img.float() # uint8 to fp16/32 | |
img /= 255.0 # 0 - 255 to 0.0 - 1.0 | |
if img.ndimension() == 3: | |
img = img.unsqueeze(0) | |
# Inference | |
t1 = time_synchronized() | |
pred = model(img, augment=opt.augment)[0] | |
# Apply NMS | |
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms) | |
t2 = time_synchronized() | |
# Apply Classifier | |
if classify: | |
pred = apply_classifier(pred, modelc, img, im0s) | |
# Process detections | |
for i, det in enumerate(pred): # detections per image | |
if webcam: # batch_size >= 1 | |
p, s, im0 = path[i], '%g: ' % i, im0s[i].copy() | |
else: | |
p, s, im0 = path, '', im0s | |
save_path = str(Path(out) / Path(p).name) | |
txt_path = str(Path(out) / Path(p).stem) + ('_%g' % dataset.frame if dataset.mode == 'video' else '') | |
s += '%gx%g ' % img.shape[2:] # print string | |
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh | |
if det is not None and len(det): | |
# Rescale boxes from img_size to im0 size | |
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() | |
# Print results | |
for c in det[:, -1].unique(): | |
n = (det[:, -1] == c).sum() # detections per class | |
s += '%g %ss, ' % (n, names[int(c)]) # add to string | |
# Write results | |
#for *xyxy, conf, cls in reversed(det): | |
# if save_txt: # Write to file | |
# xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh | |
# with open(txt_path + '.txt', 'a') as f: | |
# f.write(('%g ' * 5 + '\n') % (cls, *xywh)) # label format | |
symbols = [] | |
for *xyxy, conf, cls in reversed(det): | |
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4))).view(-1).tolist() # ADDED BY FRANCOIS | |
symbols.append({ | |
"measurementType": names[int(cls)], | |
"boundingBox": { | |
"x": int(xywh[0] - xywh[2]/2), | |
"y": int(xywh[1] - xywh[3]/2), | |
"width": int(xywh[2]), | |
"height": int(xywh[3]) | |
}, | |
"confidence": float(conf) | |
}) | |
if save_txt: # Write to file | |
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh | |
with open(txt_path + '.txt', 'a') as f: | |
f.write(('%g ' * 5 + '\n') % (cls, *xywh)) # label format | |
if save_img or view_img: # Add bbox to image | |
label = '%s %.2f' % (names[int(cls)], conf) | |
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3) | |
print("\n$$$") | |
print(json.dumps(symbols)) | |
print("$$$\n") | |
if save_img or view_img: # Add bbox to image | |
label = '%s %.2f' % (names[int(cls)], conf) | |
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3) | |
# Print time (inference + NMS) | |
print('%sDone. (%.3fs)' % (s, t2 - t1)) | |
# Stream results | |
if view_img: | |
cv2.imshow(p, im0) | |
if cv2.waitKey(1) == ord('q'): # q to quit | |
raise StopIteration | |
# Save results (image with detections) | |
if save_img: | |
if dataset.mode == 'images': | |
cv2.imwrite(save_path, im0) | |
else: | |
if vid_path != save_path: # new video | |
vid_path = save_path | |
if isinstance(vid_writer, cv2.VideoWriter): | |
vid_writer.release() # release previous video writer | |
fourcc = 'mp4v' # output video codec | |
fps = vid_cap.get(cv2.CAP_PROP_FPS) | |
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h)) | |
vid_writer.write(im0) | |
if save_txt or save_img: | |
print('Results saved to %s' % Path(out)) | |
if platform.system() == 'Darwin' and not opt.update: # MacOS | |
os.system('open ' + save_path) | |
print('Done. (%.3fs)' % (time.time() - t0)) | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)') | |
parser.add_argument('--source', type=str, default='inference/images', help='source') # file/folder, 0 for webcam | |
parser.add_argument('--output', type=str, default='inference/output', help='output folder') # output folder | |
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)') | |
parser.add_argument('--conf-thres', type=float, default=0.4, help='object confidence threshold') | |
parser.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS') | |
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') | |
parser.add_argument('--view-img', action='store_true', help='display results') | |
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') | |
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3') | |
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') | |
parser.add_argument('--augment', action='store_true', help='augmented inference') | |
parser.add_argument('--update', action='store_true', help='update all models') | |
opt = parser.parse_args() | |
print(opt) | |
with torch.no_grad(): | |
if opt.update: # update all models (to fix SourceChangeWarning) | |
for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']: | |
detect() | |
strip_optimizer(opt.weights) | |
else: | |
detect() | |