File size: 5,901 Bytes
ce3552b 3f6a115 94ca5b6 527bf99 ce3552b c590a10 ce3552b 94ca5b6 ce3552b 94ca5b6 ce3552b 94ca5b6 527bf99 fc8546c ce3552b 94ca5b6 ce3552b d42756a ce3552b 527bf99 ce3552b 527bf99 ce3552b 527bf99 ce3552b 527bf99 ce3552b 79488ea 1467efe 79488ea da9710b fce9e32 527bf99 94ca5b6 527bf99 ef7300c fce9e32 251a915 fce9e32 da9710b fce9e32 2104e5b 527bf99 94ca5b6 a8d52ff 94ca5b6 527bf99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
import gradio as gr
import numpy as np
import cv2
from PIL import Image
import torch
import base64
import requests
from io import BytesIO
from region_control import MultiDiffusion, get_views, preprocess_mask
from sketch_helper import get_high_freq_colors, color_quantization, create_binary_matrix
MAX_COLORS = 12
sd = MultiDiffusion("cuda", "2.0")
canvas_html = "<div id='canvas-root'></div>"
load_js = """
async () => {
const url = "https://huggingface.co/datasets/radames/gradio-components/raw/main/sketch-canvas.js"
fetch(url)
.then(res => res.text())
.then(text => {
const script = document.createElement('script');
script.type = "module"
script.src = URL.createObjectURL(new Blob([text], { type: 'application/javascript' }));
document.head.appendChild(script);
});
}
"""
get_js_colors = """
async (canvasData) => {
const canvasEl = document.getElementById("canvas-root");
return [canvasEl._data]
}
"""
set_canvas_size ="""
async (aspect) => {
if(aspect ==='square'){
_updateCanvas(512,512)
}
if(aspect ==='horizontal'){
_updateCanvas(768,512)
}
if(aspect ==='vertical'){
_updateCanvas(512,768)
}
}
"""
def process_sketch(canvas_data, binary_matrixes):
base64_img = canvas_data['image']
image_data = base64.b64decode(base64_img.split(',')[1])
image = Image.open(BytesIO(image_data))
im2arr = np.array(image)
colors = [tuple(int(color.lstrip('#')[i:i+2], 16) for i in (0, 2, 4)) for color in canvas_data['colors']]
colors_fixed = []
for color in colors:
r, g, b = color
if any(c != 255 for c in (r, g, b)):
binary_matrix = create_binary_matrix(im2arr, (r,g,b))
binary_matrixes.append(binary_matrix)
colors_fixed.append(gr.update(value=f'<div style="display:flex;align-items: center;justify-content: center"><img width="20%" style="margin-right: 1em" src="file/{binary_matrix}" /><div class="color-bg-item" style="background-color: rgb({r},{g},{b})"></div></div>'))
visibilities = []
colors = []
for n in range(MAX_COLORS):
visibilities.append(gr.update(visible=False))
colors.append(gr.update(value=f'<div class="color-bg-item" style="background-color: black"></div>'))
for n in range(len(colors)-1):
visibilities[n] = gr.update(visible=True)
colors[n] = colors_fixed[n]
return [gr.update(visible=True), binary_matrixes, *visibilities, *colors]
def process_generation(binary_matrixes, master_prompt, *prompts):
clipped_prompts = prompts[:len(binary_matrixes)]
prompts = [master_prompt] + list(clipped_prompts)
neg_prompts = [""] * len(prompts)
fg_masks = torch.cat([preprocess_mask(mask_path, 512 // 8, 512 // 8, "cuda") for mask_path in binary_matrixes])
bg_mask = 1 - torch.sum(fg_masks, dim=0, keepdim=True)
bg_mask[bg_mask < 0] = 0
masks = torch.cat([bg_mask, fg_masks])
print(masks.size())
image = sd.generate(masks, prompts, neg_prompts, 512, 512, 50, bootstrapping=20)
return(image)
css = '''
#color-bg{display:flex;justify-content: center;align-items: center;}
.color-bg-item{width: 100%; height: 32px}
#main_button{width:100%}
'''
def update_css(aspect):
if(aspect=='Square'):
return [gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)]
elif(aspect == 'Horizontal'):
return [gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)]
elif(aspect=='Vertical'):
return [gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)]
with gr.Blocks(css=css) as demo:
binary_matrixes = gr.State([])
gr.Markdown('''## Control your Stable Diffusion generation with Sketches
This Space demonstrates MultiDiffusion region-based generation using Stable Diffusion model. To get started, draw your masks and type your prompts. More details in the [project page](https://multidiffusion.github.io).
''')
with gr.Row():
with gr.Box(elem_id="main-image"):
#with gr.Row():
canvas_data = gr.JSON(value={}, visible=False)
canvas = gr.HTML(canvas_html)
#image = gr.Image(interactive=True, tool="color-sketch", source="canvas", type="pil", shape=(512,512), brush_radius=45)
#image_horizontal = gr.Image(interactive=True, tool="color-sketch", source="canvas", type="pil", shape=(768,512), visible=False, brush_radius=45)
#image_vertical = gr.Image(interactive=True, tool="color-sketch", source="canvas", type="pil", shape=(512, 768), visible=False, brush_radius=45)
#with gr.Row():
# aspect = gr.Radio(["Square", "Horizontal", "Vertical"], value="Square", label="Aspect Ratio")
button_run = gr.Button("I've finished my sketch",elem_id="main_button", interactive=True, _js=get_js_colors)
prompts = []
colors = []
color_row = [None] * MAX_COLORS
with gr.Column(visible=False) as post_sketch:
general_prompt = gr.Textbox(label="General Prompt")
for n in range(MAX_COLORS):
with gr.Row(visible=False) as color_row[n]:
with gr.Box(elem_id="color-bg"):
colors.append(gr.HTML('<div class="color-bg-item" style="background-color: black"></div>'))
prompts.append(gr.Textbox(label="Prompt for this mask"))
final_run_btn = gr.Button("Generate!")
out_image = gr.Image(label="Result")
gr.Markdown('''
![Examples](https://multidiffusion.github.io/pics/tight.jpg)
''')
#css_height = gr.HTML("<style>#main-image{width: 512px} .fixed-height{height: 512px !important}</style>")
#aspect.change(update_css, inputs=aspect, outputs=[image, image_horizontal, image_vertical])
button_run.click(process_sketch, inputs=[canvas_data, binary_matrixes], outputs=[post_sketch, binary_matrixes, *color_row, *colors])
final_run_btn.click(process_generation, inputs=[binary_matrixes, general_prompt, *prompts], outputs=out_image)
demo.load(None, None, None, _js=load_js)
demo.launch(debug=True) |