import gradio as gr import numpy as np import cv2 from PIL import Image import torch import base64 import requests import random import os from io import BytesIO from region_control import MultiDiffusion, get_views, preprocess_mask, seed_everything from sketch_helper import get_high_freq_colors, color_quantization, create_binary_matrix MAX_COLORS = 12 sd = MultiDiffusion("cuda", "2.1") is_shared_ui = True if "weizmannscience/multidiffusion-region-based" in os.environ['SPACE_ID'] else False is_gpu_associated = True if torch.cuda.is_available() else False canvas_html = "<div id='canvas-root' style='max-width:400px; margin: 0 auto'></div>" load_js = """ async () => { const url = "https://huggingface.co/datasets/radames/gradio-components/raw/main/sketch-canvas.js" fetch(url) .then(res => res.text()) .then(text => { const script = document.createElement('script'); script.type = "module" script.src = URL.createObjectURL(new Blob([text], { type: 'application/javascript' })); document.head.appendChild(script); }); } """ get_js_colors = """ async (canvasData) => { const canvasEl = document.getElementById("canvas-root"); return [canvasEl._data] } """ set_canvas_size =""" async (aspect) => { if(aspect ==='square'){ _updateCanvas(512,512) } if(aspect ==='horizontal'){ _updateCanvas(768,512) } if(aspect ==='vertical'){ _updateCanvas(512,768) } } """ def process_sketch(canvas_data, binary_matrixes): binary_matrixes.clear() base64_img = canvas_data['image'] image_data = base64.b64decode(base64_img.split(',')[1]) image = Image.open(BytesIO(image_data)).convert("RGB") im2arr = np.array(image) colors = [tuple(map(int, rgb[4:-1].split(','))) for rgb in canvas_data['colors']] colors_fixed = [] for color in colors: r, g, b = color if any(c != 255 for c in (r, g, b)): binary_matrix = create_binary_matrix(im2arr, (r,g,b)) binary_matrixes.append(binary_matrix) colors_fixed.append(gr.update(value=f'<div style="display:flex;align-items: center;justify-content: center"><img width="20%" style="margin-right: 1em" src="file/{binary_matrix}" /><div class="color-bg-item" style="background-color: rgb({r},{g},{b})"></div></div>')) visibilities = [] colors = [] for n in range(MAX_COLORS): visibilities.append(gr.update(visible=False)) colors.append(gr.update(value=f'<div class="color-bg-item" style="background-color: black"></div>')) for n in range(len(colors_fixed)): visibilities[n] = gr.update(visible=True) colors[n] = colors_fixed[n] return [gr.update(visible=True), binary_matrixes, *visibilities, *colors] def process_generation(model, binary_matrixes, boostrapping, aspect, steps, seed, master_prompt, negative_prompt, *prompts): global sd if(model != "stabilityai/stable-diffusion-2-1-base"): sd = MultiDiffusion("cuda", model) if(seed == -1): seed = random.randint(1, 2147483647) seed_everything(seed) dimensions = {"square": (512, 512), "horizontal": (768, 512), "vertical": (512, 768)} width, height = dimensions.get(aspect, dimensions["square"]) clipped_prompts = prompts[:len(binary_matrixes)] prompts = [master_prompt] + list(clipped_prompts) neg_prompts = [negative_prompt] * len(prompts) fg_masks = torch.cat([preprocess_mask(mask_path, height // 8, width // 8, "cuda") for mask_path in binary_matrixes]) bg_mask = 1 - torch.sum(fg_masks, dim=0, keepdim=True) bg_mask[bg_mask < 0] = 0 masks = torch.cat([bg_mask, fg_masks]) print(masks.size()) image = sd.generate(masks, prompts, neg_prompts, height, width, steps, bootstrapping=boostrapping) return(image) css = ''' #color-bg{display:flex;justify-content: center;align-items: center;} .color-bg-item{width: 100%; height: 32px} #main_button{width:100%} <style> ''' with gr.Blocks(css=css) as demo: binary_matrixes = gr.State([]) gr.Markdown('''## Control your Stable Diffusion generation with Sketches (_beta_) A beta version demo of [MultiDiffusion](https://arxiv.org/abs/2302.08113) region-based generation using Stable Diffusion 2.1 model. To get started, draw your masks and type your prompts. More details in the [project page](https://multidiffusion.github.io). ''') if(is_shared_ui): gr.HTML(f''' <div style="margin-top:-20px">To skip the queue or try the technique with custom models, you may duplicate the space and associate an A10 GPU to it <a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></div> ''') elif(not is_gpu_associated): gr.HTML(f''' <div>You have succesfully duplicated the Space 🎉, but it is running on CPU - which may break this application. Go to the <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings">settings</a> page to associate a GPU to it</div> ''') with gr.Row(): with gr.Box(elem_id="main-image"): canvas_data = gr.JSON(value={}, visible=False) model = gr.Textbox(label="The id of any Hugging Face model in the diffusers format", value="stabilityai/stable-diffusion-2-1-base", visible=False if is_shared_ui else True) canvas = gr.HTML(canvas_html) aspect = gr.Radio(["square", "horizontal", "vertical"], value="square", label="Aspect Ratio", visible=False if is_shared_ui else True) button_run = gr.Button("I've finished my sketch",elem_id="main_button", interactive=True) prompts = [] colors = [] color_row = [None] * MAX_COLORS with gr.Column(visible=False) as post_sketch: general_prompt = gr.Textbox(label="General Prompt") for n in range(MAX_COLORS): with gr.Row(visible=False) as color_row[n]: with gr.Box(elem_id="color-bg"): colors.append(gr.HTML('<div class="color-bg-item" style="background-color: black"></div>')) prompts.append(gr.Textbox(label="Prompt for this mask")) with gr.Accordion("Advanced options", open=False): negative_prompt = gr.Textbox(label="Global negative prompt for all prompts", value="low quality") boostrapping = gr.Slider(label="Bootstrapping", minimum=1, maximum=100, value=10, step=1) steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=50, step=1) seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, value=-1, step=1) final_run_btn = gr.Button("Generate!") out_image = gr.Image(label="Result", ).style(width=512,height=512) gr.Markdown('''  ''') #css_height = gr.HTML("<style>#main-image{width: 512px} .fixed-height{height: 512px !important}</style>") aspect.change(None, inputs=[aspect], outputs=None, _js = set_canvas_size) button_run.click(process_sketch, inputs=[canvas_data, binary_matrixes], outputs=[post_sketch, binary_matrixes, *color_row, *colors], _js=get_js_colors, queue=False) final_run_btn.click(process_generation, inputs=[model, binary_matrixes, boostrapping, aspect, steps, seed, general_prompt, negative_prompt, *prompts], outputs=out_image) demo.load(None, None, None, _js=load_js) demo.launch(debug=True)