LTEnjoy's picture
Upload 21 files
52da96f verified
raw
history blame
3.7 kB
import torch
from tqdm import tqdm
from torch.nn.functional import normalize
from transformers import EsmConfig, EsmForMaskedLM, EsmTokenizer
class ProteinEncoder(torch.nn.Module):
def __init__(self,
config_path: str,
out_dim: int,
load_pretrained: bool = True,
gradient_checkpointing: bool = False):
"""
Args:
config_path: Path to the config file
out_dim : Output dimension of the protein representation
load_pretrained: Whether to load pretrained weights
gradient_checkpointing: Whether to use gradient checkpointing
"""
super().__init__()
config = EsmConfig.from_pretrained(config_path)
if load_pretrained:
self.model = EsmForMaskedLM.from_pretrained(config_path)
else:
self.model = EsmForMaskedLM(config)
self.out = torch.nn.Linear(config.hidden_size, out_dim)
# Set gradient checkpointing
self.model.esm.encoder.gradient_checkpointing = gradient_checkpointing
# Remove contact head
self.model.esm.contact_head = None
# Remove position embedding if the embedding type is ``rotary``
if config.position_embedding_type == "rotary":
self.model.esm.embeddings.position_embeddings = None
self.tokenizer = EsmTokenizer.from_pretrained(config_path)
def get_repr(self, proteins: list, batch_size: int = 64, verbose: bool = False) -> torch.Tensor:
"""
Compute protein representation for the given proteins
Args:
protein: A list of protein sequences
batch_size: Batch size for inference
verbose: Whether to print progress
"""
device = next(self.parameters()).device
protein_repr = []
if verbose:
iterator = tqdm(range(0, len(proteins), batch_size), desc="Computing protein embeddings")
else:
iterator = range(0, len(proteins), batch_size)
for i in iterator:
protein_inputs = self.tokenizer.batch_encode_plus(proteins[i:i + batch_size],
return_tensors="pt",
padding=True)
protein_inputs = {k: v.to(device) for k, v in protein_inputs.items()}
output, _ = self.forward(protein_inputs)
protein_repr.append(output)
protein_repr = torch.cat(protein_repr, dim=0)
return normalize(protein_repr, dim=-1)
def forward(self, inputs: dict, get_mask_logits: bool = False):
"""
Encode protein sequence into protein representation
Args:
inputs: A dictionary containing the following keys:
- input_ids: [batch, seq_len]
- attention_mask: [batch, seq_len]
get_mask_logits: Whether to return the logits for masked tokens
Returns:
protein_repr: [batch, protein_repr_dim]
mask_logits : [batch, seq_len, vocab_size]
"""
last_hidden_state = self.model.esm(**inputs).last_hidden_state
reprs = last_hidden_state[:, 0, :]
reprs = self.out(reprs)
# Get logits for masked tokens
if get_mask_logits:
mask_logits = self.model.lm_head(last_hidden_state)
else:
mask_logits = None
return reprs, mask_logits