Spaces:
Runtime error
Runtime error
File size: 7,648 Bytes
58a3f69 0f8b731 58a3f69 0f8b731 58a3f69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
# -*- encoding: utf-8 -*-
# @Author: SWHL
# @Contact: liekkaskono@163.com
import copy
import time
import cv2
import numpy as np
import pyclipper
from onnxruntime import InferenceSession
from shapely.geometry import Polygon
from rapid_ch_det import TextDetector
class SimpleDataset():
def __call__(self, img: np.ndarray, bboxes: np.ndarray):
'''
bboxes: (N, 4, 2)
'''
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
gt_instance = np.zeros(img.shape[:2], dtype='uint8')
for i in range(len(bboxes)):
cv2.drawContours(gt_instance, [bboxes[i]], -1, i + 1, -1)
gt_text = gt_instance.copy()
gt_text[gt_text > 0] = 1
gt_text = gt_text[None, None, ...].astype(np.float32)
canvas, shrink_mask, mask_ori = self.get_seg_map(img, bboxes)
soft_mask = canvas + mask_ori
index_mask = np.where(soft_mask > 1)
soft_mask[index_mask] = 1
soft_mask = soft_mask[None, None, ...].astype(np.float32)
img = np.transpose(img, (2, 0, 1)).astype(np.float32) / 255.0
img = img[None, ...]
structure_im = copy.deepcopy(img)
return img, structure_im, gt_text, soft_mask
def draw_border_map(self, polygon, canvas, mask_ori, mask):
polygon = np.array(polygon)
assert polygon.ndim == 2
assert polygon.shape[1] == 2
### shrink box ###
polygon_shape = Polygon(polygon)
distance = polygon_shape.area * \
(1 - np.power(0.95, 2)) / polygon_shape.length
subject = [tuple(l) for l in polygon]
padding = pyclipper.PyclipperOffset()
padding.AddPath(subject, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
padded_polygon = np.array(padding.Execute(-distance)[0])
cv2.fillPoly(mask, [padded_polygon.astype(np.int32)], 1.0)
### shrink box ###
cv2.fillPoly(mask_ori, [polygon.astype(np.int32)], 1.0)
polygon = padded_polygon
polygon_shape = Polygon(padded_polygon)
distance = polygon_shape.area * \
(1 - np.power(0.4, 2)) / polygon_shape.length
subject = [tuple(l) for l in polygon]
padding = pyclipper.PyclipperOffset()
padding.AddPath(subject, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
padded_polygon = np.array(padding.Execute(distance)[0])
xmin = padded_polygon[:, 0].min()
xmax = padded_polygon[:, 0].max()
ymin = padded_polygon[:, 1].min()
ymax = padded_polygon[:, 1].max()
width = xmax - xmin + 1
height = ymax - ymin + 1
polygon[:, 0] = polygon[:, 0] - xmin
polygon[:, 1] = polygon[:, 1] - ymin
xs = np.broadcast_to(
np.linspace(0, width - 1, num=width).reshape(1, width), (height, width))
ys = np.broadcast_to(
np.linspace(0, height - 1, num=height).reshape(height, 1), (height, width))
distance_map = np.zeros(
(polygon.shape[0], height, width), dtype=np.float32)
for i in range(polygon.shape[0]):
j = (i + 1) % polygon.shape[0]
# import pdb;pdb.set_trace()
absolute_distance = self.coumpute_distance(xs, ys, polygon[i], polygon[j])
distance_map[i] = np.clip(absolute_distance / distance, 0, 1)
distance_map = distance_map.min(axis=0)
xmin_valid = min(max(0, xmin), canvas.shape[1] - 1)
xmax_valid = min(max(0, xmax), canvas.shape[1] - 1)
ymin_valid = min(max(0, ymin), canvas.shape[0] - 1)
ymax_valid = min(max(0, ymax), canvas.shape[0] - 1)
canvas[ymin_valid:ymax_valid + 1, xmin_valid:xmax_valid + 1] = np.fmax(
1 - distance_map[
ymin_valid-ymin:ymax_valid-ymax+height,
xmin_valid-xmin:xmax_valid-xmax+width],
canvas[ymin_valid:ymax_valid + 1, xmin_valid:xmax_valid + 1])
@staticmethod
def coumpute_distance(xs, ys, point_1, point_2):
'''
compute the distance from point to a line
ys: coordinates in the first axis
xs: coordinates in the second axis
point_1, point_2: (x, y), the end of the line
'''
height, width = xs.shape[:2]
square_distance_1 = np.square(
xs - point_1[0]) + np.square(ys - point_1[1])
square_distance_2 = np.square(
xs - point_2[0]) + np.square(ys - point_2[1])
square_distance = np.square(
point_1[0] - point_2[0]) + np.square(point_1[1] - point_2[1])
cosin = (square_distance - square_distance_1 - square_distance_2) / \
(2 * np.sqrt(square_distance_1 * square_distance_2) + 1e-50)
square_sin = 1 - np.square(cosin)
square_sin = np.nan_to_num(square_sin)
result = np.sqrt(square_distance_1 * square_distance_2 *
square_sin / square_distance)
result[cosin < 0] = np.sqrt(np.fmin(
square_distance_1, square_distance_2))[cosin < 0]
# extend_line(point_1, point_2, result)
return result
def get_seg_map(self, img, label):
canvas = np.zeros(img.shape[:2], dtype=np.float32)
mask = np.zeros(img.shape[:2], dtype=np.float32)
mask_ori = np.zeros(img.shape[:2], dtype=np.float32)
polygons = label
for i in range(len(polygons)):
self.draw_border_map(polygons[i], canvas, mask_ori, mask=mask)
return canvas, mask, mask_ori
class CTRNetInfer():
def __init__(self, model_path) -> None:
self.session = InferenceSession(model_path,
providers=['CPUExecutionProvider'])
self.dataset = SimpleDataset()
self.text_det = TextDetector()
self.input_shape = (512, 512)
def __call__(self, ori_img):
ori_img_shape = ori_img.shape[:2]
# bboxes = self.text_det(ori_img)[0].astype(np.int64)
# resize img 到512x512
resize_img = cv2.resize(ori_img, self.input_shape,
interpolation=cv2.INTER_LINEAR)
resize_bboxes = self.text_det(resize_img)[0].astype(np.int64)
img, structure_im, gt_text, soft_mask = self.dataset(
resize_img, resize_bboxes)
input_dict = {
'input': img,
'gt_text': gt_text,
'soft_mask': soft_mask,
'structure_im': structure_im
}
prediction = self.session.run(None, input_dict)[3]
withMask_prediction = prediction * soft_mask + img * (1 - soft_mask)
withMask_prediction = np.transpose(withMask_prediction, (0, 2, 3, 1)) * 255
withMask_prediction = withMask_prediction.squeeze().astype(np.uint8)
withMask_prediction = cv2.cvtColor(withMask_prediction,
cv2.COLOR_BGR2RGB)
ori_pred = cv2.resize(withMask_prediction, ori_img_shape[::-1],
interpolation=cv2.INTER_LINEAR)
return ori_pred
@staticmethod
def get_resized_points(cur_points, cur_shape, new_shape):
cur_points = np.array(cur_points)
ratio_x = cur_shape[0] / new_shape[0]
ratio_y = cur_shape[1] / new_shape[1]
cur_points[:, :, 0] = cur_points[:, :, 0] / ratio_x
cur_points[:, :, 1] = cur_points[:, :, 1] / ratio_y
return cur_points.astype(np.int64)
if __name__ == '__main__':
model_path = 'CTRNet_G.onnx'
ctrnet = CTRNetInfer(model_path)
img_path = 'images/1.jpg'
ori_img = cv2.imread(img_path)
s = time.time()
pred = ctrnet(ori_img)
print(f'elapse: {time.time() - s}')
cv2.imwrite('pred_result.jpg', pred)
|