""" # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ # -*- encoding: utf-8 -*- # @Author: SWHL # @Contact: liekkaskono@163.com import sys import warnings from pathlib import Path import cv2 import numpy as np import pyclipper import six import yaml from onnxruntime import (GraphOptimizationLevel, InferenceSession, SessionOptions, get_available_providers, get_device) from shapely.geometry import Polygon root_dir = Path(__file__).resolve().parent.parent class OrtInferSession(): def __init__(self, config): sess_opt = SessionOptions() sess_opt.log_severity_level = 4 sess_opt.enable_cpu_mem_arena = False sess_opt.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL cuda_ep = 'CUDAExecutionProvider' cpu_ep = 'CPUExecutionProvider' cpu_provider_options = { "arena_extend_strategy": "kSameAsRequested", } EP_list = [] if config['use_cuda'] and get_device() == 'GPU' \ and cuda_ep in get_available_providers(): EP_list = [(cuda_ep, config[cuda_ep])] EP_list.append((cpu_ep, cpu_provider_options)) config['model_path'] = str(root_dir / config['model_path']) self._verify_model(config['model_path']) self.session = InferenceSession(config['model_path'], sess_options=sess_opt, providers=EP_list) if config['use_cuda'] and cuda_ep not in self.session.get_providers(): warnings.warn(f'{cuda_ep} is not avaiable for current env, the inference part is automatically shifted to be executed under {cpu_ep}.\n' 'Please ensure the installed onnxruntime-gpu version matches your cuda and cudnn version, ' 'you can check their relations from the offical web site: ' 'https://onnxruntime.ai/docs/execution-providers/CUDA-ExecutionProvider.html', RuntimeWarning) def get_input_name(self, input_idx=0): return self.session.get_inputs()[input_idx].name def get_output_name(self, output_idx=0): return self.session.get_outputs()[output_idx].name @staticmethod def _verify_model(model_path): model_path = Path(model_path) if not model_path.exists(): raise FileNotFoundError(f'{model_path} does not exists.') if not model_path.is_file(): raise FileExistsError(f'{model_path} is not a file.') def read_yaml(yaml_path): with open(yaml_path, 'rb') as f: data = yaml.load(f, Loader=yaml.Loader) return data class DecodeImage(): """ decode image """ def __init__(self, img_mode='RGB', channel_first=False): self.img_mode = img_mode self.channel_first = channel_first def __call__(self, data): img = data['image'] if six.PY2: assert type(img) is str and len(img) > 0, "invalid input 'img' in DecodeImage" else: assert type(img) is bytes and len(img) > 0, "invalid input 'img' in DecodeImage" img = np.frombuffer(img, dtype='uint8') img = cv2.imdecode(img, 1) if img is None: return None if self.img_mode == 'GRAY': img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) elif self.img_mode == 'RGB': assert img.shape[2] == 3, f'invalid shape of image[{img.shape}]' img = img[:, :, ::-1] if self.channel_first: img = img.transpose((2, 0, 1)) data['image'] = img return data class NormalizeImage(): """ normalize image such as substract mean, divide std""" def __init__(self, scale=None, mean=None, std=None, order='chw'): if isinstance(scale, str): scale = eval(scale) self.scale = np.float32(scale if scale is not None else 1.0 / 255.0) mean = mean if mean is not None else [0.485, 0.456, 0.406] std = std if std is not None else [0.229, 0.224, 0.225] shape = (3, 1, 1) if order == 'chw' else (1, 1, 3) self.mean = np.array(mean).reshape(shape).astype('float32') self.std = np.array(std).reshape(shape).astype('float32') def __call__(self, data): img = np.array(data['image']).astype(np.float32) data['image'] = (img * self.scale - self.mean) / self.std return data class ToCHWImage(): """ convert hwc image to chw image""" def __init__(self): pass def __call__(self, data): img = np.array(data['image']) data['image'] = img.transpose((2, 0, 1)) return data class KeepKeys(): def __init__(self, keep_keys): self.keep_keys = keep_keys def __call__(self, data): data_list = [] for key in self.keep_keys: data_list.append(data[key]) return data_list class DetResizeForTest(): def __init__(self, **kwargs): super(DetResizeForTest, self).__init__() self.resize_type = 0 if 'image_shape' in kwargs: self.image_shape = kwargs['image_shape'] self.resize_type = 1 elif 'limit_side_len' in kwargs: self.limit_side_len = kwargs.get('limit_side_len', 736) self.limit_type = kwargs.get('limit_type', 'min') if 'resize_long' in kwargs: self.resize_type = 2 self.resize_long = kwargs.get('resize_long', 960) else: self.limit_side_len = kwargs.get('limit_side_len', 736) self.limit_type = kwargs.get('limit_type', 'min') def __call__(self, data): img = data['image'] src_h, src_w = img.shape[:2] if self.resize_type == 0: # img, shape = self.resize_image_type0(img) img, [ratio_h, ratio_w] = self.resize_image_type0(img) elif self.resize_type == 2: img, [ratio_h, ratio_w] = self.resize_image_type2(img) else: # img, shape = self.resize_image_type1(img) img, [ratio_h, ratio_w] = self.resize_image_type1(img) data['image'] = img data['shape'] = np.array([src_h, src_w, ratio_h, ratio_w]) return data def resize_image_type1(self, img): resize_h, resize_w = self.image_shape ori_h, ori_w = img.shape[:2] # (h, w, c) ratio_h = float(resize_h) / ori_h ratio_w = float(resize_w) / ori_w img = cv2.resize(img, (int(resize_w), int(resize_h))) # return img, np.array([ori_h, ori_w]) return img, [ratio_h, ratio_w] def resize_image_type0(self, img): """ resize image to a size multiple of 32 which is required by the network args: img(array): array with shape [h, w, c] return(tuple): img, (ratio_h, ratio_w) """ limit_side_len = self.limit_side_len h, w = img.shape[:2] # limit the max side if self.limit_type == 'max': if max(h, w) > limit_side_len: if h > w: ratio = float(limit_side_len) / h else: ratio = float(limit_side_len) / w else: ratio = 1. else: if min(h, w) < limit_side_len: if h < w: ratio = float(limit_side_len) / h else: ratio = float(limit_side_len) / w else: ratio = 1. resize_h = int(h * ratio) resize_w = int(w * ratio) resize_h = int(round(resize_h / 32) * 32) resize_w = int(round(resize_w / 32) * 32) try: if int(resize_w) <= 0 or int(resize_h) <= 0: return None, (None, None) img = cv2.resize(img, (int(resize_w), int(resize_h))) except: print(img.shape, resize_w, resize_h) sys.exit(0) ratio_h = resize_h / float(h) ratio_w = resize_w / float(w) return img, [ratio_h, ratio_w] def resize_image_type2(self, img): h, w = img.shape[:2] resize_w = w resize_h = h # Fix the longer side if resize_h > resize_w: ratio = float(self.resize_long) / resize_h else: ratio = float(self.resize_long) / resize_w resize_h = int(resize_h * ratio) resize_w = int(resize_w * ratio) max_stride = 128 resize_h = (resize_h + max_stride - 1) // max_stride * max_stride resize_w = (resize_w + max_stride - 1) // max_stride * max_stride img = cv2.resize(img, (int(resize_w), int(resize_h))) ratio_h = resize_h / float(h) ratio_w = resize_w / float(w) return img, [ratio_h, ratio_w] def transform(data, ops=None): """ transform """ if ops is None: ops = [] for op in ops: data = op(data) if data is None: return None return data def create_operators(op_param_dict): """ create operators based on the config """ ops = [] for op_name, param in op_param_dict.items(): if param is None: param = {} op = eval(op_name)(**param) ops.append(op) return ops def draw_text_det_res(dt_boxes, img_path): src_im = cv2.imread(img_path) for box in dt_boxes: box = np.array(box).astype(np.int32).reshape(-1, 2) cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2) return src_im class DBPostProcess(): """The post process for Differentiable Binarization (DB).""" def __init__(self, thresh=0.3, box_thresh=0.7, max_candidates=1000, unclip_ratio=2.0, score_mode="fast", use_dilation=False): self.thresh = thresh self.box_thresh = box_thresh self.max_candidates = max_candidates self.unclip_ratio = unclip_ratio self.min_size = 3 self.score_mode = score_mode if use_dilation: self.dilation_kernel = np.array([[1, 1], [1, 1]]) else: self.dilation_kernel = None def boxes_from_bitmap(self, pred, _bitmap, dest_width, dest_height): ''' _bitmap: single map with shape (1, H, W), whose values are binarized as {0, 1} ''' bitmap = _bitmap height, width = bitmap.shape outs = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) if len(outs) == 3: img, contours, _ = outs[0], outs[1], outs[2] elif len(outs) == 2: contours, _ = outs[0], outs[1] num_contours = min(len(contours), self.max_candidates) boxes = [] scores = [] for index in range(num_contours): contour = contours[index] points, sside = self.get_mini_boxes(contour) if sside < self.min_size: continue points = np.array(points) if self.score_mode == "fast": score = self.box_score_fast(pred, points.reshape(-1, 2)) else: score = self.box_score_slow(pred, contour) if self.box_thresh > score: continue box = self.unclip(points).reshape(-1, 1, 2) box, sside = self.get_mini_boxes(box) if sside < self.min_size + 2: continue box = np.array(box) box[:, 0] = np.clip( np.round(box[:, 0] / width * dest_width), 0, dest_width) box[:, 1] = np.clip( np.round(box[:, 1] / height * dest_height), 0, dest_height) boxes.append(box.astype(np.int16)) scores.append(score) return np.array(boxes, dtype=np.int16), scores def unclip(self, box): unclip_ratio = self.unclip_ratio poly = Polygon(box) distance = poly.area * unclip_ratio / poly.length offset = pyclipper.PyclipperOffset() offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON) expanded = np.array(offset.Execute(distance)) return expanded def get_mini_boxes(self, contour): bounding_box = cv2.minAreaRect(contour) points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0]) index_1, index_2, index_3, index_4 = 0, 1, 2, 3 if points[1][1] > points[0][1]: index_1 = 0 index_4 = 1 else: index_1 = 1 index_4 = 0 if points[3][1] > points[2][1]: index_2 = 2 index_3 = 3 else: index_2 = 3 index_3 = 2 box = [ points[index_1], points[index_2], points[index_3], points[index_4] ] return box, min(bounding_box[1]) def box_score_fast(self, bitmap, _box): h, w = bitmap.shape[:2] box = _box.copy() xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int32), 0, w - 1) xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int32), 0, w - 1) ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int32), 0, h - 1) ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int32), 0, h - 1) mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8) box[:, 0] = box[:, 0] - xmin box[:, 1] = box[:, 1] - ymin cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1) return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0] def box_score_slow(self, bitmap, contour): ''' box_score_slow: use polyon mean score as the mean score ''' h, w = bitmap.shape[:2] contour = contour.copy() contour = np.reshape(contour, (-1, 2)) xmin = np.clip(np.min(contour[:, 0]), 0, w - 1) xmax = np.clip(np.max(contour[:, 0]), 0, w - 1) ymin = np.clip(np.min(contour[:, 1]), 0, h - 1) ymax = np.clip(np.max(contour[:, 1]), 0, h - 1) mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8) contour[:, 0] = contour[:, 0] - xmin contour[:, 1] = contour[:, 1] - ymin cv2.fillPoly(mask, contour.reshape(1, -1, 2).astype(np.int32), 1) return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0] def __call__(self, pred, shape_list): pred = pred[:, 0, :, :] segmentation = pred > self.thresh boxes_batch = [] for batch_index in range(pred.shape[0]): src_h, src_w, ratio_h, ratio_w = shape_list[batch_index] if self.dilation_kernel is not None: mask = cv2.dilate( np.array(segmentation[batch_index]).astype(np.uint8), self.dilation_kernel) else: mask = segmentation[batch_index] boxes, scores = self.boxes_from_bitmap(pred[batch_index], mask, src_w, src_h) boxes_batch.append({'points': boxes}) return boxes_batch