# -*- encoding: utf-8 -*- # @Author: SWHL # @Contact: liekkaskono@163.com import copy import time import cv2 import numpy as np import pyclipper from onnxruntime import InferenceSession from shapely.geometry import Polygon from rapid_ch_det import TextDetector class SimpleDataset(): def __call__(self, img: np.ndarray, bboxes: np.ndarray): ''' bboxes: (N, 4, 2) ''' img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) gt_instance = np.zeros(img.shape[:2], dtype='uint8') for i in range(len(bboxes)): cv2.drawContours(gt_instance, [bboxes[i]], -1, i + 1, -1) gt_text = gt_instance.copy() gt_text[gt_text > 0] = 1 gt_text = gt_text[None, None, ...].astype(np.float32) canvas, shrink_mask, mask_ori = self.get_seg_map(img, bboxes) soft_mask = canvas + mask_ori index_mask = np.where(soft_mask > 1) soft_mask[index_mask] = 1 soft_mask = soft_mask[None, None, ...].astype(np.float32) img = np.transpose(img, (2, 0, 1)).astype(np.float32) / 255.0 img = img[None, ...] structure_im = copy.deepcopy(img) return img, structure_im, gt_text, soft_mask def draw_border_map(self, polygon, canvas, mask_ori, mask): polygon = np.array(polygon) assert polygon.ndim == 2 assert polygon.shape[1] == 2 ### shrink box ### polygon_shape = Polygon(polygon) distance = polygon_shape.area * \ (1 - np.power(0.95, 2)) / polygon_shape.length subject = [tuple(l) for l in polygon] padding = pyclipper.PyclipperOffset() padding.AddPath(subject, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON) padded_polygon = np.array(padding.Execute(-distance)[0]) cv2.fillPoly(mask, [padded_polygon.astype(np.int32)], 1.0) ### shrink box ### cv2.fillPoly(mask_ori, [polygon.astype(np.int32)], 1.0) polygon = padded_polygon polygon_shape = Polygon(padded_polygon) distance = polygon_shape.area * \ (1 - np.power(0.4, 2)) / polygon_shape.length subject = [tuple(l) for l in polygon] padding = pyclipper.PyclipperOffset() padding.AddPath(subject, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON) padded_polygon = np.array(padding.Execute(distance)[0]) xmin = padded_polygon[:, 0].min() xmax = padded_polygon[:, 0].max() ymin = padded_polygon[:, 1].min() ymax = padded_polygon[:, 1].max() width = xmax - xmin + 1 height = ymax - ymin + 1 polygon[:, 0] = polygon[:, 0] - xmin polygon[:, 1] = polygon[:, 1] - ymin xs = np.broadcast_to( np.linspace(0, width - 1, num=width).reshape(1, width), (height, width)) ys = np.broadcast_to( np.linspace(0, height - 1, num=height).reshape(height, 1), (height, width)) distance_map = np.zeros( (polygon.shape[0], height, width), dtype=np.float32) for i in range(polygon.shape[0]): j = (i + 1) % polygon.shape[0] # import pdb;pdb.set_trace() absolute_distance = self.coumpute_distance(xs, ys, polygon[i], polygon[j]) distance_map[i] = np.clip(absolute_distance / distance, 0, 1) distance_map = distance_map.min(axis=0) xmin_valid = min(max(0, xmin), canvas.shape[1] - 1) xmax_valid = min(max(0, xmax), canvas.shape[1] - 1) ymin_valid = min(max(0, ymin), canvas.shape[0] - 1) ymax_valid = min(max(0, ymax), canvas.shape[0] - 1) canvas[ymin_valid:ymax_valid + 1, xmin_valid:xmax_valid + 1] = np.fmax( 1 - distance_map[ ymin_valid-ymin:ymax_valid-ymax+height, xmin_valid-xmin:xmax_valid-xmax+width], canvas[ymin_valid:ymax_valid + 1, xmin_valid:xmax_valid + 1]) @staticmethod def coumpute_distance(xs, ys, point_1, point_2): ''' compute the distance from point to a line ys: coordinates in the first axis xs: coordinates in the second axis point_1, point_2: (x, y), the end of the line ''' height, width = xs.shape[:2] square_distance_1 = np.square( xs - point_1[0]) + np.square(ys - point_1[1]) square_distance_2 = np.square( xs - point_2[0]) + np.square(ys - point_2[1]) square_distance = np.square( point_1[0] - point_2[0]) + np.square(point_1[1] - point_2[1]) cosin = (square_distance - square_distance_1 - square_distance_2) / \ (2 * np.sqrt(square_distance_1 * square_distance_2) + 1e-50) square_sin = 1 - np.square(cosin) square_sin = np.nan_to_num(square_sin) result = np.sqrt(square_distance_1 * square_distance_2 * square_sin / square_distance) result[cosin < 0] = np.sqrt(np.fmin( square_distance_1, square_distance_2))[cosin < 0] # extend_line(point_1, point_2, result) return result def get_seg_map(self, img, label): canvas = np.zeros(img.shape[:2], dtype=np.float32) mask = np.zeros(img.shape[:2], dtype=np.float32) mask_ori = np.zeros(img.shape[:2], dtype=np.float32) polygons = label for i in range(len(polygons)): self.draw_border_map(polygons[i], canvas, mask_ori, mask=mask) return canvas, mask, mask_ori class CTRNetInfer(): def __init__(self, model_path) -> None: self.session = InferenceSession(model_path, providers=['CPUExecutionProvider']) self.dataset = SimpleDataset() self.text_det = TextDetector() self.input_shape = (512, 512) def __call__(self, ori_img): ori_img_shape = ori_img.shape[:2] # bboxes = self.text_det(ori_img)[0].astype(np.int64) # resize img 到512x512 resize_img = cv2.resize(ori_img, self.input_shape, interpolation=cv2.INTER_LINEAR) resize_bboxes = self.text_det(resize_img)[0].astype(np.int64) img, structure_im, gt_text, soft_mask = self.dataset( resize_img, resize_bboxes) input_dict = { 'input': img, 'gt_text': gt_text, 'soft_mask': soft_mask, 'structure_im': structure_im } prediction = self.session.run(None, input_dict)[3] withMask_prediction = prediction * soft_mask + img * (1 - soft_mask) withMask_prediction = np.transpose(withMask_prediction, (0, 2, 3, 1)) * 255 withMask_prediction = withMask_prediction.squeeze().astype(np.uint8) withMask_prediction = cv2.cvtColor(withMask_prediction, cv2.COLOR_BGR2RGB) ori_pred = cv2.resize(withMask_prediction, ori_img_shape[::-1], interpolation=cv2.INTER_LINEAR) return ori_pred @staticmethod def get_resized_points(cur_points, cur_shape, new_shape): cur_points = np.array(cur_points) ratio_x = cur_shape[0] / new_shape[0] ratio_y = cur_shape[1] / new_shape[1] cur_points[:, :, 0] = cur_points[:, :, 0] / ratio_x cur_points[:, :, 1] = cur_points[:, :, 1] / ratio_y return cur_points.astype(np.int64) if __name__ == '__main__': model_path = 'CTRNet_G.onnx' ctrnet = CTRNetInfer(model_path) img_path = 'images/1.jpg' ori_img = cv2.imread(img_path) s = time.time() pred = ctrnet(ori_img) print(f'elapse: {time.time() - s}') cv2.imwrite('pred_result.jpg', pred)