Spaces:
Runtime error
Runtime error
william4416
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -3,29 +3,25 @@ import gradio as gr
|
|
3 |
import torch
|
4 |
import json
|
5 |
|
6 |
-
|
7 |
title = "AI ChatBot"
|
8 |
description = "A State-of-the-Art Large-scale Pretrained Response generation model (DialoGPT)"
|
9 |
examples = [["How are you?"]]
|
10 |
|
11 |
-
|
12 |
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large")
|
13 |
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large")
|
14 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
-
|
16 |
model.to(device)
|
17 |
|
18 |
# Load courses data from JSON file
|
19 |
with open("uts_courses.json", "r") as f:
|
20 |
courses_data = json.load(f)
|
21 |
|
22 |
-
|
23 |
-
def predict(input, history=[]):
|
24 |
# Check if the input question is about courses
|
25 |
-
if "courses" in
|
26 |
# Check if the input question contains a specific field (e.g., Engineering, Information Technology, etc.)
|
27 |
for field in courses_data["courses"]:
|
28 |
-
if field.lower() in
|
29 |
# Get the list of courses for the specified field
|
30 |
courses_list = courses_data["courses"][field]
|
31 |
# Format the response
|
@@ -35,7 +31,7 @@ def predict(input, history=[]):
|
|
35 |
# If the input question is not about courses, use the dialogue model to generate a response
|
36 |
# tokenize the new input sentence
|
37 |
new_user_input_ids = tokenizer.encode(
|
38 |
-
|
39 |
).to(device)
|
40 |
|
41 |
# append the new user input tokens to the chat history
|
@@ -43,37 +39,30 @@ def predict(input, history=[]):
|
|
43 |
|
44 |
# generate a response
|
45 |
history = model.generate(
|
46 |
-
bot_input_ids, max_length=
|
47 |
).tolist()
|
48 |
|
49 |
# convert the tokens to text, and then split the responses into lines
|
50 |
-
response = tokenizer.decode(history[0]).split(
|
51 |
-
response
|
52 |
-
(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)
|
53 |
-
] # convert to tuples of list
|
54 |
-
return response, history
|
55 |
-
|
56 |
|
57 |
def main():
|
58 |
# Load courses data from JSON file
|
59 |
with open("uts_courses.json", "r") as f:
|
60 |
courses_data = json.load(f)
|
61 |
-
|
62 |
print("Contents of uts_courses.json:")
|
63 |
print(courses_data)
|
64 |
print()
|
65 |
|
66 |
-
|
67 |
if __name__ == "__main__":
|
68 |
main()
|
69 |
|
70 |
-
|
71 |
gr.Interface(
|
72 |
fn=predict,
|
73 |
title=title,
|
74 |
description=description,
|
75 |
examples=examples,
|
76 |
-
inputs=["text", "
|
77 |
-
outputs=["
|
78 |
-
theme="finlaymacklon/boxy_violet"
|
79 |
).launch()
|
|
|
3 |
import torch
|
4 |
import json
|
5 |
|
|
|
6 |
title = "AI ChatBot"
|
7 |
description = "A State-of-the-Art Large-scale Pretrained Response generation model (DialoGPT)"
|
8 |
examples = [["How are you?"]]
|
9 |
|
|
|
10 |
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large")
|
11 |
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large")
|
12 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
13 |
model.to(device)
|
14 |
|
15 |
# Load courses data from JSON file
|
16 |
with open("uts_courses.json", "r") as f:
|
17 |
courses_data = json.load(f)
|
18 |
|
19 |
+
def predict(input_text, history=[]):
|
|
|
20 |
# Check if the input question is about courses
|
21 |
+
if "courses" in input_text.lower():
|
22 |
# Check if the input question contains a specific field (e.g., Engineering, Information Technology, etc.)
|
23 |
for field in courses_data["courses"]:
|
24 |
+
if field.lower() in input_text.lower():
|
25 |
# Get the list of courses for the specified field
|
26 |
courses_list = courses_data["courses"][field]
|
27 |
# Format the response
|
|
|
31 |
# If the input question is not about courses, use the dialogue model to generate a response
|
32 |
# tokenize the new input sentence
|
33 |
new_user_input_ids = tokenizer.encode(
|
34 |
+
input_text + tokenizer.eos_token, return_tensors="pt"
|
35 |
).to(device)
|
36 |
|
37 |
# append the new user input tokens to the chat history
|
|
|
39 |
|
40 |
# generate a response
|
41 |
history = model.generate(
|
42 |
+
bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id
|
43 |
).tolist()
|
44 |
|
45 |
# convert the tokens to text, and then split the responses into lines
|
46 |
+
response = tokenizer.decode(history[0]).split()
|
47 |
+
return " ".join(response), history
|
|
|
|
|
|
|
|
|
48 |
|
49 |
def main():
|
50 |
# Load courses data from JSON file
|
51 |
with open("uts_courses.json", "r") as f:
|
52 |
courses_data = json.load(f)
|
|
|
53 |
print("Contents of uts_courses.json:")
|
54 |
print(courses_data)
|
55 |
print()
|
56 |
|
|
|
57 |
if __name__ == "__main__":
|
58 |
main()
|
59 |
|
|
|
60 |
gr.Interface(
|
61 |
fn=predict,
|
62 |
title=title,
|
63 |
description=description,
|
64 |
examples=examples,
|
65 |
+
inputs=["text", "text"], # Changed input from "state" to "text"
|
66 |
+
outputs=["text", "state"], # Changed output to match the tuple return type
|
67 |
+
theme="finlaymacklon/boxy_violet"
|
68 |
).launch()
|