from transformers import GPT2LMHeadModel, GPT2Tokenizer import gradio as gr import torch import json title = "AI ChatBot" description = "A State-of-the-Art Large-scale Pretrained Response generation model (GEMMA)" examples = [["How are you?"]] tokenizer = GPT2Tokenizer.from_pretrained("gpt2") model = GPT2LMHeadModel.from_pretrained("gpt2") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) # Load courses data from JSON file with open("uts_courses.json", "r") as f: courses_data = json.load(f) # Define the predict function as before def main(): # Load courses data from JSON file with open("uts_courses.json", "r") as f: courses_data = json.load(f) print("Contents of uts_courses.json:") print(courses_data) print() if __name__ == "__main__": main() gr.Interface( fn=predict, title=title, description=description, examples=examples, inputs=["text"], outputs=["text", "state"], theme="finlaymacklon/boxy_violet" ).launch()