Spaces:
Runtime error
Runtime error
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import gradio as gr | |
from transformers import pipeline | |
import jsonl | |
# Load the model | |
qa_pipeline = pipeline("question-answering", model="william4416/bewtesttwo") | |
# Define the function to process the JSONL file | |
def process_jsonl(file_path): | |
with open(file_path, "r", encoding="utf-8") as f: | |
data = f.readlines() | |
return [eval(line) for line in data] | |
# Define the function to answer questions from the model | |
def answer_question(context, question): | |
# Process the context from the JSONL file | |
contexts = [item["context"] for item in context] | |
# Perform question answering | |
answers = [] | |
for ctxt in contexts: | |
answer = qa_pipeline(question=question, context=ctxt) | |
answers.append(answer["answer"]) | |
return answers | |
# Create the interface | |
context_input = gr.inputs.File(label="utsdata.jsonl") | |
question_input = gr.inputs.Textbox(label="Enter your question", lines=3) | |
output_text = gr.outputs.Textbox(label="Answer") | |
# Create the interface | |
gr.Interface( | |
fn=answer_question, | |
inputs=[context_input, question_input], | |
outputs=output_text, | |
title="Question Answering with Hugging Face Transformers", | |
description="Upload a JSONL file containing contexts and ask a question to get answers.", | |
).launch() | |