williamberman's picture
update dep
d89243e
raw
history blame
2.33 kB
import torch
default_num_train_timesteps = 1000
@torch.no_grad()
def make_sigmas(beta_start=0.00085, beta_end=0.012, num_train_timesteps=default_num_train_timesteps, device=None):
betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32, device=device) ** 2
alphas = 1.0 - betas
alphas_cumprod = torch.cumprod(alphas, dim=0)
# TODO - would be nice to use a direct expression for this
sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5
return sigmas
_with_tqdm = False
def set_with_tqdm(it):
global _with_tqdm
_with_tqdm = it
@torch.no_grad()
def rk_ode_solver_diffusion_loop(eps_theta, timesteps, sigmas, x_T, rk_steps_weights):
x_t = x_T
iter_over = range(len(timesteps) - 1, -1, -1)
if _with_tqdm:
from tqdm import tqdm
iter_over = tqdm(iter_over)
for i in iter_over:
t = timesteps[i].unsqueeze(0)
sigma = sigmas[t]
if i == 0:
eps_hat = eps_theta(x_t=x_t, t=t, sigma=sigma)
x_0_hat = x_t - sigma * eps_hat
else:
dt = sigmas[timesteps[i - 1]] - sigma
dx_by_dt = torch.zeros_like(x_t)
dx_by_dt_cur = torch.zeros_like(x_t)
for rk_step, rk_weight in rk_steps_weights:
dt_ = dt * rk_step
t_ = t + dt_
x_t_ = x_t + dx_by_dt_cur * dt_
eps_hat = eps_theta(x_t=x_t_, t=t_, sigma=sigma)
# TODO - note which specific ode this is the solution to and
# how input scaling does/doesn't effect the solution
# dx_by_dt_cur = (x_t_ - sigma * eps_hat) / sigma
dx_by_dt_cur = eps_hat
dx_by_dt += dx_by_dt_cur * rk_weight
x_t_minus_1 = x_t + dx_by_dt * dt
x_t = x_t_minus_1
return x_0_hat
euler_ode_solver_diffusion_loop = lambda *args, **kwargs: rk_ode_solver_diffusion_loop(*args, **kwargs, rk_steps_weights=[[0, 1]])
heun_ode_solver_diffusion_loop = lambda *args, **kwargs: rk_ode_solver_diffusion_loop(*args, **kwargs, rk_steps_weights=[[0, 0.5], [1, 0.5]])
rk4_ode_solver_diffusion_loop = lambda *args, **kwargs: rk_ode_solver_diffusion_loop(*args, **kwargs, rk_steps_weights=[[0, 1 / 6], [1 / 2, 1 / 3], [1 / 2, 1 / 3], [1, 1 / 6]])