File size: 11,192 Bytes
36de638
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3dd5d3e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel, AutoFeatureExtractor
import numpy as np
import math
import warnings
warnings.filterwarnings("ignore")


device = torch.device("cpu")
vision_model_name = "google/vit-base-patch16-224-in21k"
language_model_name = "vinai/phobert-base"



def generate_padding_mask(sequences, padding_idx):
    if sequences is None:
        return None
    if len(sequences.shape) == 2:
        __seq = sequences.unsqueeze(dim=-1)
    else:
        __seq = sequences
    mask = (torch.sum(__seq, dim=-1) == (padding_idx*__seq.shape[-1])).long() * -10e4
    return mask.unsqueeze(1).unsqueeze(1)


class ScaledDotProduct(nn.Module):
    def __init__(self, d_model = 512, h = 8, d_k = 64, d_v = 64):
        super().__init__()

        self.fc_q = nn.Linear(d_model, h * d_k)
        self.fc_k = nn.Linear(d_model, h * d_k)
        self.fc_v = nn.Linear(d_model, h * d_v)
        self.fc_o = nn.Linear(h * d_v, d_model)

        self.d_model = d_model
        self.d_k = d_k
        self.d_v = d_v
        self.h = h

        self.init_weights()

    def init_weights(self):
        nn.init.xavier_uniform_(self.fc_q.weight)
        nn.init.xavier_uniform_(self.fc_k.weight)
        nn.init.xavier_uniform_(self.fc_v.weight)
        nn.init.xavier_uniform_(self.fc_o.weight)
        nn.init.constant_(self.fc_q.bias, 0)
        nn.init.constant_(self.fc_k.bias, 0)
        nn.init.constant_(self.fc_v.bias, 0)
        nn.init.constant_(self.fc_o.bias, 0)

    def forward(self, queries, keys, values, attention_mask=None, **kwargs):
        b_s, nq = queries.shape[:2]
        nk = keys.shape[1]
        q = self.fc_q(queries).view(b_s, nq, self.h, self.d_k).permute(0, 2, 1, 3)  # (b_s, h, nq, d_k)
        k = self.fc_k(keys).view(b_s, nk, self.h, self.d_k).permute(0, 2, 3, 1)  # (b_s, h, d_k, nk)
        v = self.fc_v(values).view(b_s, nk, self.h, self.d_v).permute(0, 2, 1, 3)  # (b_s, h, nk, d_v)

        att = torch.matmul(q, k) / np.sqrt(self.d_k)  # (b_s, h, nq, nk)
        if attention_mask is not None:
            att += attention_mask
        att = torch.softmax(att, dim=-1)
        out = torch.matmul(att, v).permute(0, 2, 1, 3).contiguous().view(b_s, nq, self.h * self.d_v)  # (b_s, nq, h*d_v)
        out = self.fc_o(out)  # (b_s, nq, d_model)

        return out, att


class MultiheadAttention(nn.Module):
    
    def __init__(self, d_model = 512, dropout = 0.1, use_aoa = True):
        super().__init__()
        self.d_model = d_model
        self.use_aoa = use_aoa
        
        self.attention = ScaledDotProduct()
        self.norm = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(dropout)
        if self.use_aoa:
            self.infomative_attention = nn.Linear(2 * self.d_model, self.d_model)
            self.gated_attention = nn.Linear(2 * self.d_model, self.d_model)
        
    def forward(self, q, k, v, mask = None):
        out, _  = self.attention(q, k, v, mask)
        if self.use_aoa:
            aoa_input = torch.cat([q, out], dim = -1)
            i = self.infomative_attention(aoa_input)
            g = torch.sigmoid(self.gated_attention(aoa_input))
            out = i * g
        return out
    

class PositionWiseFeedForward(nn.Module):
    def __init__(self, d_model = 512, d_ff = 2048, dropout = 0.1):
        super().__init__()
        self.fc1 = nn.Linear(d_model, d_ff)
        self.fc2 = nn.Linear(d_ff, d_model)
        self.relu = nn.ReLU()
        
    def forward(self, input):
        out = self.fc1(input)
        out = self.fc2(self.relu(out))
        return out
    
class AddNorm(nn.Module):
    def __init__(self, dim = 512, dropout = 0.1):
        super().__init__()
        self.dropout = nn.Dropout(dropout)
        self.norm = nn.LayerNorm(dim)
    
    def forward(self, x, y):
        return self.norm(x + self.dropout(y))
   
    
class SinusoidPositionalEmbedding(nn.Module):
    def __init__(self, num_pos_feats=512, temperature=10000, normalize=False, scale=None):
        super().__init__()
        self.num_pos_feats = num_pos_feats
        self.temperature = temperature
        self.normalize = normalize
        if scale is not None and normalize is False:
            raise ValueError("normalize should be True if scale is passed")
        if scale is None:
            scale = 2 * math.pi
        self.scale = scale

    def forward(self, x, mask=None):
        if mask is None:
            mask = torch.zeros(x.shape[:-1], dtype=torch.bool, device=x.device)
        not_mask = (mask == False)
        embed = not_mask.cumsum(1, dtype=torch.float32)
        if self.normalize:
            eps = 1e-6
            embed = embed / (embed[:, -1:] + eps) * self.scale

        dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
        dim_t = self.temperature ** (2 * (torch.div(dim_t, 2, rounding_mode="floor")) / self.num_pos_feats)

        pos = embed[:, :, None] / dim_t
        pos = torch.stack((pos[:, :, 0::2].sin(), pos[:, :, 1::2].cos()), dim=-1).flatten(-2)

        return pos


class GuidedEncoderLayer(nn.Module):
    def __init__(self):
        super().__init__()
        self.self_mhatt = MultiheadAttention()
        self.guided_mhatt = MultiheadAttention()
        self.pwff = PositionWiseFeedForward()
        self.first_norm = AddNorm()
        self.second_norm = AddNorm()
        self.third_norm = AddNorm()
    def forward(self, q, k, v, self_mask, guided_mask):
        self_att = self.self_mhatt(q, q, q, self_mask)
        self_att = self.first_norm(self_att, q)
        guided_att = self.guided_mhatt(self_att, k, v, guided_mask)
        guided_att = self.second_norm(guided_att, self_att)
        out = self.pwff(guided_att)
        out = self.third_norm(out, guided_att)
        return out


class GuidedAttentionEncoder(nn.Module):
    def __init__(self, num_layers = 2, d_model = 512):
        super().__init__()
        self.pos_embedding = SinusoidPositionalEmbedding()
        self.layer_norm = nn.LayerNorm(d_model)
        
        self.guided_layers = nn.ModuleList([GuidedEncoderLayer() for _ in range(num_layers)])
        self.language_layers = nn.ModuleList(GuidedEncoderLayer() for _ in range(num_layers))
    
    def forward(self, vision_features, vision_mask, language_features, language_mask):
        vision_features = self.layer_norm(vision_features) + self.pos_embedding(vision_features)
        language_features = self.layer_norm(language_features) + self.pos_embedding(language_features)
        
        for layers in zip(self.guided_layers, self.language_layers):
            guided_layer, language_layer = layers
            vision_features = guided_layer(q = vision_features,
                                          k = language_features,
                                          v = language_features,
                                          self_mask = vision_mask,
                                          guided_mask = language_mask)
            language_features = language_layer(q = language_features,
                                              k = vision_features,
                                              v = vision_features,
                                              self_mask = language_mask,
                                              guided_mask = vision_mask)
            
            return vision_features, language_features


class VisionEmbedding(nn.Module):
    def __init__(self, out_dim = 768, hidden_dim = 512, dropout = 0.1):
        super().__init__()
        self.prep = AutoFeatureExtractor.from_pretrained(vision_model_name)
        self.backbone = AutoModel.from_pretrained(vision_model_name)
        for param in self.backbone.parameters():
            param.requires_grad = False
        
        self.proj = nn.Linear(out_dim, hidden_dim)
        self.dropout = nn.Dropout(dropout)
        self.gelu = nn.GELU()
    def forward(self, images):
        inputs = self.prep(images = images, return_tensors = "pt").to(device)
        with torch.no_grad():
            outputs = self.backbone(**inputs)
        features = outputs.last_hidden_state
        vision_mask = generate_padding_mask(features, padding_idx = 0)
        out = self.proj(features)
        out = self.gelu(out)
        out = self.dropout(out)
        return out, vision_mask
    

class LanguageEmbedding(nn.Module):
    def __init__(self, out_dim = 768, hidden_dim = 512, dropout = 0.1):
        super().__init__()
        self.tokenizer = AutoTokenizer.from_pretrained(language_model_name)
        self.embeding = AutoModel.from_pretrained(language_model_name)
        for param in self.embeding.parameters():
            param.requires_grad = False
        self.proj = nn.Linear(out_dim, hidden_dim)
        self.dropout = nn.Dropout(dropout)
        self.gelu = nn.GELU()
    def forward(self, questions):
        inputs = self.tokenizer(questions,
                                padding = 'max_length',
                                max_length = 30,
                                truncation = True,
                                return_tensors = 'pt',
                                return_token_type_ids = True,
                                return_attention_mask = True).to(device)
        
        features = self.embeding(**inputs).last_hidden_state
        language_mask = generate_padding_mask(inputs.input_ids, padding_idx=self.tokenizer.pad_token_id)
        out = self.proj(features)
        out = self.gelu(out)
        out = self.dropout(out)
        return out, language_mask

class BaseModel(nn.Module):
    def __init__(self, num_classes = 353, d_model = 512):
        super().__init__()
        self.vision_embedding = VisionEmbedding()
        self.language_embedding = LanguageEmbedding()
        self.encoder = GuidedAttentionEncoder()
        self.fusion = nn.Sequential(nn.Linear(2 * d_model, d_model),
                                  nn.ReLU(),
                                  nn.Dropout(0.2))
        self.classify = nn.Linear(d_model, num_classes)
        self.attention_weights = nn.Linear(d_model, 1)
    
    def forward(self, images, questions):
        embedded_text, text_mask = self.language_embedding(questions)
        embedded_vision, vison_mask = self.vision_embedding(images)

        encoded_image, encoded_text = self.encoder(embedded_vision, vison_mask,embedded_text, text_mask)
        text_attended = self.attention_weights(torch.tanh(encoded_text))
        image_attended = self.attention_weights(torch.tanh(encoded_image))
        
        attention_weights = torch.softmax(torch.cat([text_attended, image_attended], dim=1), dim=1)
        
        attended_text = torch.sum(attention_weights[:, 0].unsqueeze(-1) * encoded_text, dim=1)
        attended_image = torch.sum(attention_weights[:, 1].unsqueeze(-1) * encoded_image, dim=1)
        
        fused_output = self.fusion(torch.cat([attended_text, attended_image], dim=1))
        logits = self.classify(fused_output)
        logits = F.log_softmax(logits, dim=-1)
        return logits
    


if __name__ == "__main__":
    model = BaseModel().to(device)
    print(model.eval)