Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Create a new FastAPI app instance
|
5 |
+
app = FastAPI()
|
6 |
+
|
7 |
+
# Initialize the text generation pipeline
|
8 |
+
# This function will be able to generate text
|
9 |
+
# given an input.
|
10 |
+
pipe = pipeline("text2text-generation",
|
11 |
+
model="google/flan-t5-small")
|
12 |
+
|
13 |
+
# Define a function to handle the GET request at `/generate`
|
14 |
+
# The generate() function is defined as a FastAPI route that takes a
|
15 |
+
# string parameter called text. The function generates text based on the # input using the pipeline() object, and returns a JSON response
|
16 |
+
# containing the generated text under the key "output"
|
17 |
+
@app.get("/generate")
|
18 |
+
def generate(text: str):
|
19 |
+
"""
|
20 |
+
Using the text2text-generation pipeline from `transformers`, generate text
|
21 |
+
from the given input text. The model used is `google/flan-t5-small`, which
|
22 |
+
can be found [here](<https://huggingface.co/google/flan-t5-small>).
|
23 |
+
"""
|
24 |
+
# Use the pipeline to generate text from the given input text
|
25 |
+
output = pipe(text)
|
26 |
+
|
27 |
+
# Return the generated text in a JSON response
|
28 |
+
return {"output": output[0]["generated_text"]}
|