from fastapi import APIRouter, File, UploadFile, Form from typing import Optional from PIL import Image import urllib.request from io import BytesIO from config import settings import utils import os import json from routers.donut_inference import process_document_donut router = APIRouter() def count_values(obj): if isinstance(obj, dict): count = 0 for value in obj.values(): count += count_values(value) return count elif isinstance(obj, list): count = 0 for item in obj: count += count_values(item) return count else: return 1 @router.post("/inference") async def run_inference(file: Optional[UploadFile] = File(None), image_url: Optional[str] = Form(None), model_in_use: str = Form('donut'), sparrow_key: str = Form(None)): if sparrow_key != settings.sparrow_key: return {"error": "Invalid Sparrow key."} result = [] if file: # Ensure the uploaded file is a JPG image if file.content_type not in ["image/jpeg", "image/jpg"]: return {"error": "Invalid file type. Only JPG images are allowed."} image = Image.open(BytesIO(await file.read())) processing_time = 0 if model_in_use == 'donut': result, processing_time = process_document_donut(image) utils.log_stats(settings.inference_stats_file, [processing_time, count_values(result), file.filename, settings.model]) print(f"Processing time: {processing_time:.2f} seconds") elif image_url: # test image url: https://raw.githubusercontent.com/katanaml/sparrow/main/sparrow-data/docs/input/invoices/processed/images/invoice_10.jpg with urllib.request.urlopen(image_url) as url: image = Image.open(BytesIO(url.read())) processing_time = 0 if model_in_use == 'donut': result, processing_time = process_document_donut(image) # parse file name from url file_name = image_url.split("/")[-1] utils.log_stats(settings.inference_stats_file, [processing_time, count_values(result), file_name, settings.model]) print(f"Processing time inference: {processing_time:.2f} seconds") else: result = {"info": "No input provided"} return result @router.get("/statistics") async def get_statistics(): file_path = settings.inference_stats_file # Check if the file exists, and read its content if os.path.exists(file_path): with open(file_path, 'r') as file: try: content = json.load(file) except json.JSONDecodeError: content = [] else: content = [] return content