File size: 10,545 Bytes
227a7da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4486afa
 
227a7da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import gradio as gr
import pandas as pd
import redis
import json
import requests
from config import *
import functools
from embedding_setup import retriever, find_similar_occupation, compare_docs_with_context,generate_exp,generate_prompt_exp
from data_process import  get_occupations_from_csv, get_courses_from_BA, get_occupation_detial, build_occupation_query
with open('/app/data/redis_data.json', 'r') as file:
    data_dict = json.load(file)
#r = redis.Redis(host=REDIS_HOST, port=REDIS_PORT, db=REDIS_DB, decode_responses=True)

skill_details_mapping = {}


# Function to retrieve documents based on selected skills
def retrieve_documents(occupation,skills):
    output = []
    output.append(f"<div style=\"text-align: center; font-size: 24px;\">Empfehlungsergebnisse:</div>")
    oc_uri = occupations.get(occupation, "")
    skill_query = ''
    candidate_docs = []
    if isinstance(oc_uri, int):
        df = pd.read_csv("/app/data/berufe_info.csv")
        target_occupation = df[df['id'] == oc_uri]
        target_occupation_name = target_occupation['short name'].values[0]
        target_occupation_dsp = target_occupation['description'].values[0]
        target_occupation_query = target_occupation_name + ' ' + target_occupation_dsp
        target_occupation_query = target_occupation_query
    else:
        target_occupation = get_occupation_detial(oc_uri)
        target_occupation_name, target_occupation_dsp, target_occupation_query = build_occupation_query(target_occupation)
    for german_label in skills:
        skill_query += german_label + ' '
        ocsk_query = target_occupation_name + ' ' + german_label
        skills_docs = retriever.get_relevant_documents(ocsk_query)
        candidate_docs.extend(skills_docs[:2])
    query =  target_occupation_query + ' ' + skill_query
    llama_query = 'info:' + target_occupation_name + ' ' + 'Skills gap:' + skill_query
    print(query)
    docs = retriever.get_relevant_documents(query)
    candidate_docs.extend(docs[:5])

    #remove duplicates
    seen_course_ids = set()
    candidate_doc_unique = []

    for doc in candidate_docs:
        course_id = doc.metadata.get('id','')
        if course_id not in seen_course_ids:
            candidate_doc_unique.append(doc)
            seen_course_ids.add(course_id)

    partial_compare_docs = functools.partial(compare_docs_with_context, target_occupation_name=target_occupation_name, target_occupation_dsp=target_occupation_dsp,skill_gap = skill_query)
    sorted_docs = sorted(candidate_doc_unique, key=functools.cmp_to_key(partial_compare_docs), reverse=True)

    
    batch_output = []
    for doc in sorted_docs[:5]:
        doc_name = doc.metadata.get('name', 'Unnamed Document')
        doc_skill = doc.metadata.get('skills', '')
        input_text = f"target occupation: {llama_query}\n Recommended course: name: {doc_name}, learning objectives: {doc_skill[:2000]}"
        prompt = generate_prompt_exp(input_text)
        generate_ouput = generate_exp(prompt)
        batch_output.append(generate_ouput)

    # Evaluate the current batch of prompts
    output.append(f"<b>Zielberuf:</b> {target_occupation_name}")
    output.append(f"<b>Qualifikationslücke:</b> {skill_query}")
    output.append(f"<b>Empfohlene Kurse:</b>")
    for i in range(5):
        doc = sorted_docs[i]
        doc_name = doc.metadata.get('name', 'Unnamed Document')
        doc_url = doc.metadata.get('url', '#')
        doc_skill = doc.metadata.get('skills', '')
        output.append(f"<a href='{doc_url}' target='_blank'>{doc_name}</a>") 
        output.append(f"<b>Empfehlungsgrund:</b> {batch_output[i]}")
    

    output.append(f"<br>")
    return "<br>".join(output)


def get_candidate_courses(occupation, skills):
    output = []
    output.append(f"<div style=\"text-align: center; font-size: 24px;\">Empfehlungsergebnisse:</div>")
    df_lookup = pd.read_csv('/app/data/kldb_isco_lookup.csv')
    df_berufe = pd.read_csv('/app/data/berufe_info.csv')
    occupation_codes = set()
    kldB_set = set()
    occupation_hrefs = set()
    BA_berufe = set()
    oc_uri = occupations.get(occupation, "")
    target_occupation = get_occupation_detial(oc_uri)
    target_occupation_query = build_occupation_query(target_occupation)
    
    for german_label in skills:
        skill = skill_details_mapping.get(german_label, {})
        uri = f'https://ec.europa.eu/esco/api/resource/skill?selectedVersion=v1.0.9&language=en&uri={skill["uri"]}'
        try:
            skill_response = requests.get(uri)
            skill_response.raise_for_status()
            skill_json = skill_response.json()
            
            # Combine essential and optional occupations
            skill_related_occupations = (skill_json['_links'].get('isEssentialForOccupation', []) +
                                          skill_json['_links'].get('isOptionalForOccupation', []))
            
            for occupation in skill_related_occupations:
                href = occupation.get('href')
                if href:
                    occupation_hrefs.add(href)
        except requests.RequestException as e:
            print(f"Error while fetching skill details: {e}")
                
    for href in occupation_hrefs:
        try:
            occupation_response = requests.get(href)
            occupation_response.raise_for_status()
            occupation_details = occupation_response.json()
            
            code = occupation_details.get('code')
            if code:
                occupation_codes.add(code.split('.')[0])
        except requests.RequestException as e:
            print(f"Error while fetching occupation details: {e}")
            
    for isco_code in occupation_codes:
        kldB_codes = df_lookup[df_lookup['isco08'] == int(isco_code)]['kldb2010'].values
        for code in kldB_codes:
            kldB_set.add(str(code))
    dfs = []
    for kldb in kldB_set:
        berufe = df_berufe[df_berufe['KldB codes']=='B '+kldb]
        dfs.append(berufe)

    merged_df = pd.concat(dfs, ignore_index=True)  
    top_k_berufe = find_similar_occupation(target_occupation_query,merged_df,5,'cosine')
    for beruf in top_k_berufe:
        entry_requirement = beruf.metadata['entry_requirements']
        corrected_json_string = entry_requirement.replace("'", '"')
        entry_requirement_json = json.loads(corrected_json_string)
        for js in entry_requirement_json:
            BA_berufe.add(str(js['data_idref']))
                
    result = get_courses_from_BA(BA_berufe)
    courses = result
    for course in courses['_embedded']['termine']:
        output.append(f"<a href='{course['angebot']['link']}' target='_blank'>{course['angebot']['titel']}</a>") 

    return "<br>".join(output)


def get_occupation_skills(oc_uri):
    #skills_json = r.get(oc_uri)
    skills_json = data_dict.get(oc_uri, None)
    skill_labels = []
    if skills_json:
        skills = json.loads(skills_json)
        for skill in skills:
            german_label = skill['preferredLabel']['de']
            skill_details_mapping[german_label] = skill
            skill_labels.append(german_label)
        return skill_labels
    else:
        return skill_labels
    
def get_occupation_skills_BA(oc_uri):
    df = pd.read_csv("/app/data/berufe_info.csv")
    essential_skills = df[df['id'] == oc_uri]['essential skills'].values
    optional_skills = df[df['id'] == oc_uri]['optional skills'].values
    combined_skills = essential_skills[0][:-1] + ',' + optional_skills[0][1:]
    combined_skills = combined_skills.replace("'", "\"")
    skills = json.loads(combined_skills)
    skill_labels = []
    for skill in skills:
        german_label = skill['skill']
        skill_details_mapping[german_label] = skill
        skill_labels.append(german_label)
    return skill_labels

# Function to update the skills dropdown
def update_skills(occupation):
    oc_uri = occupations.get(occupation, "")
    if isinstance(oc_uri, int):
        skills = get_occupation_skills_BA(oc_uri)
        return gr.Dropdown(skills,label="aktuelle Fähigkeiten", multiselect=True,info='Bitte wählen Sie die Fähigkeiten aus, die Sie derzeit besitzen')
    else:
        skills = get_occupation_skills(oc_uri)
        return gr.Dropdown(skills,label="aktuelle Fähigkeiten", multiselect=True,info='Bitte wählen Sie die Fähigkeiten aus, die Sie derzeit besitzen')
    return 

def update_skillgap(occupation, current_skills):
    oc_uri = occupations.get(occupation, "")
    if isinstance(oc_uri, int):
        ocupation_skills = get_occupation_skills_BA(oc_uri)
    else:
        ocupation_skills = get_occupation_skills(oc_uri)
    skill_gap = [skill for skill in ocupation_skills if skill not in current_skills]
    
    return gr.Dropdown(skill_gap, label="Qualifikationslücke", multiselect=True, info='Bitte wählen Sie die Fähigkeiten aus, die Sie lernen möchten.')

if __name__ == "__main__":
    # Load occupations from CSV
    occupations_esco = get_occupations_from_csv(CSV_FILE_PATH)
    df = pd.read_csv("/app/data/berufe_info.csv")
    occupations_BA = df[['short name', 'id']].set_index('short name').to_dict()['id']
    occupations = {**occupations_esco, **occupations_BA}
    # Gradio interface
    with gr.Blocks(title="MyEduLife Kursempfehlungssystem") as demo:
        occupation_dropdown = gr.Dropdown(list(occupations.keys()), label="Zielberuf",info='Bitte wählen Sie Ihren Zielberuf aus.')
        currentskill_dropdown = gr.Dropdown([],label="aktuelle Fähigkeiten", multiselect=True,info='Bitte wählen Sie die Fähigkeiten aus, die Sie derzeit besitzen')
        sb_btn = gr.Button("Absenden")
        skillgap_dropdown = gr.Dropdown([],label="Fähigkeiten", multiselect=True,info='Bitte wählen Sie die Fähigkeiten aus, die Sie lernen möchten.')
                # Use gr.HTML to display the HTML content
        button = gr.Button("Kursempfehlungen")
        documents_output = gr.HTML()

        occupation_dropdown.change(update_skills, inputs=occupation_dropdown, outputs=currentskill_dropdown)

        sb_btn.click(
                    update_skillgap, 
                    inputs=[occupation_dropdown,currentskill_dropdown], 
                    outputs=skillgap_dropdown
                )

        button.click(
                    retrieve_documents, 
                    inputs=[occupation_dropdown,skillgap_dropdown],
                    outputs=documents_output
                    )
    print('Initialization completed')
    demo.launch(server_name="0.0.0.0", server_port=7860)