Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
import redis | |
import json | |
import requests | |
from config import * | |
import functools | |
from embedding_setup import retriever, find_similar_occupation, compare_docs_with_context,generate_exp,generate_prompt_exp | |
from data_process import get_occupations_from_csv, get_courses_from_BA, get_occupation_detial, build_occupation_query | |
with open('/app/data/redis_data.json', 'r') as file: | |
data_dict = json.load(file) | |
#r = redis.Redis(host=REDIS_HOST, port=REDIS_PORT, db=REDIS_DB, decode_responses=True) | |
skill_details_mapping = {} | |
# Function to retrieve documents based on selected skills | |
def retrieve_documents(occupation,skills): | |
output = [] | |
output.append(f"<div style=\"text-align: center; font-size: 24px;\">Empfehlungsergebnisse:</div>") | |
oc_uri = occupations.get(occupation, "") | |
skill_query = '' | |
candidate_docs = [] | |
if isinstance(oc_uri, int): | |
df = pd.read_csv("/app/data/berufe_info.csv") | |
target_occupation = df[df['id'] == oc_uri] | |
target_occupation_name = target_occupation['short name'].values[0] | |
target_occupation_dsp = target_occupation['description'].values[0] | |
target_occupation_query = target_occupation_name + ' ' + target_occupation_dsp | |
target_occupation_query = target_occupation_query | |
else: | |
target_occupation = get_occupation_detial(oc_uri) | |
target_occupation_name, target_occupation_dsp, target_occupation_query = build_occupation_query(target_occupation) | |
for german_label in skills: | |
skill_query += german_label + ' ' | |
ocsk_query = target_occupation_name + ' ' + german_label | |
skills_docs = retriever.get_relevant_documents(ocsk_query) | |
candidate_docs.extend(skills_docs[:2]) | |
query = target_occupation_query + ' ' + skill_query | |
llama_query = 'info:' + target_occupation_name + ' ' + 'Skills gap:' + skill_query | |
print(query) | |
docs = retriever.get_relevant_documents(query) | |
candidate_docs.extend(docs[:5]) | |
#remove duplicates | |
seen_course_ids = set() | |
candidate_doc_unique = [] | |
for doc in candidate_docs: | |
course_id = doc.metadata.get('id','') | |
if course_id not in seen_course_ids: | |
candidate_doc_unique.append(doc) | |
seen_course_ids.add(course_id) | |
partial_compare_docs = functools.partial(compare_docs_with_context, target_occupation_name=target_occupation_name, target_occupation_dsp=target_occupation_dsp,skill_gap = skill_query) | |
sorted_docs = sorted(candidate_doc_unique, key=functools.cmp_to_key(partial_compare_docs), reverse=True) | |
batch_output = [] | |
for doc in sorted_docs[:5]: | |
doc_name = doc.metadata.get('name', 'Unnamed Document') | |
doc_skill = doc.metadata.get('skills', '') | |
input_text = f"target occupation: {llama_query}\n Recommended course: name: {doc_name}, learning objectives: {doc_skill[:2000]}" | |
prompt = generate_prompt_exp(input_text) | |
batch_output += generate_exp(prompt) | |
# Evaluate the current batch of prompts | |
output.append(f"<b>Zielberuf:</b> {target_occupation_name}") | |
output.append(f"<b>Qualifikationslücke:</b> {skill_query}") | |
output.append(f"<b>Empfohlene Kurse:</b>") | |
for i in range(5): | |
doc = sorted_docs[i] | |
doc_name = doc.metadata.get('name', 'Unnamed Document') | |
doc_url = doc.metadata.get('url', '#') | |
doc_skill = doc.metadata.get('skills', '') | |
output.append(f"<a href='{doc_url}' target='_blank'>{doc_name}</a>") | |
output.append(f"<b>Empfehlungsgrund:</b> {batch_output[i]}") | |
output.append(f"<br>") | |
return "<br>".join(output) | |
def get_candidate_courses(occupation, skills): | |
output = [] | |
output.append(f"<div style=\"text-align: center; font-size: 24px;\">Empfehlungsergebnisse:</div>") | |
df_lookup = pd.read_csv('/app/data/kldb_isco_lookup.csv') | |
df_berufe = pd.read_csv('/app/data/berufe_info.csv') | |
occupation_codes = set() | |
kldB_set = set() | |
occupation_hrefs = set() | |
BA_berufe = set() | |
oc_uri = occupations.get(occupation, "") | |
target_occupation = get_occupation_detial(oc_uri) | |
target_occupation_query = build_occupation_query(target_occupation) | |
for german_label in skills: | |
skill = skill_details_mapping.get(german_label, {}) | |
uri = f'https://ec.europa.eu/esco/api/resource/skill?selectedVersion=v1.0.9&language=en&uri={skill["uri"]}' | |
try: | |
skill_response = requests.get(uri) | |
skill_response.raise_for_status() | |
skill_json = skill_response.json() | |
# Combine essential and optional occupations | |
skill_related_occupations = (skill_json['_links'].get('isEssentialForOccupation', []) + | |
skill_json['_links'].get('isOptionalForOccupation', [])) | |
for occupation in skill_related_occupations: | |
href = occupation.get('href') | |
if href: | |
occupation_hrefs.add(href) | |
except requests.RequestException as e: | |
print(f"Error while fetching skill details: {e}") | |
for href in occupation_hrefs: | |
try: | |
occupation_response = requests.get(href) | |
occupation_response.raise_for_status() | |
occupation_details = occupation_response.json() | |
code = occupation_details.get('code') | |
if code: | |
occupation_codes.add(code.split('.')[0]) | |
except requests.RequestException as e: | |
print(f"Error while fetching occupation details: {e}") | |
for isco_code in occupation_codes: | |
kldB_codes = df_lookup[df_lookup['isco08'] == int(isco_code)]['kldb2010'].values | |
for code in kldB_codes: | |
kldB_set.add(str(code)) | |
dfs = [] | |
for kldb in kldB_set: | |
berufe = df_berufe[df_berufe['KldB codes']=='B '+kldb] | |
dfs.append(berufe) | |
merged_df = pd.concat(dfs, ignore_index=True) | |
top_k_berufe = find_similar_occupation(target_occupation_query,merged_df,5,'cosine') | |
for beruf in top_k_berufe: | |
entry_requirement = beruf.metadata['entry_requirements'] | |
corrected_json_string = entry_requirement.replace("'", '"') | |
entry_requirement_json = json.loads(corrected_json_string) | |
for js in entry_requirement_json: | |
BA_berufe.add(str(js['data_idref'])) | |
result = get_courses_from_BA(BA_berufe) | |
courses = result | |
for course in courses['_embedded']['termine']: | |
output.append(f"<a href='{course['angebot']['link']}' target='_blank'>{course['angebot']['titel']}</a>") | |
return "<br>".join(output) | |
def get_occupation_skills(oc_uri): | |
#skills_json = r.get(oc_uri) | |
skills_json = data_dict.get(oc_uri, None) | |
skill_labels = [] | |
if skills_json: | |
skills = json.loads(skills_json) | |
for skill in skills: | |
german_label = skill['preferredLabel']['de'] | |
skill_details_mapping[german_label] = skill | |
skill_labels.append(german_label) | |
return skill_labels | |
else: | |
return skill_labels | |
def get_occupation_skills_BA(oc_uri): | |
df = pd.read_csv("/app/data/berufe_info.csv") | |
essential_skills = df[df['id'] == oc_uri]['essential skills'].values | |
optional_skills = df[df['id'] == oc_uri]['optional skills'].values | |
combined_skills = essential_skills[0][:-1] + ',' + optional_skills[0][1:] | |
combined_skills = combined_skills.replace("'", "\"") | |
skills = json.loads(combined_skills) | |
skill_labels = [] | |
for skill in skills: | |
german_label = skill['skill'] | |
skill_details_mapping[german_label] = skill | |
skill_labels.append(german_label) | |
return skill_labels | |
# Function to update the skills dropdown | |
def update_skills(occupation): | |
oc_uri = occupations.get(occupation, "") | |
if isinstance(oc_uri, int): | |
skills = get_occupation_skills_BA(oc_uri) | |
return gr.Dropdown(skills,label="aktuelle Fähigkeiten", multiselect=True,info='Bitte wählen Sie die Fähigkeiten aus, die Sie derzeit besitzen') | |
else: | |
skills = get_occupation_skills(oc_uri) | |
return gr.Dropdown(skills,label="aktuelle Fähigkeiten", multiselect=True,info='Bitte wählen Sie die Fähigkeiten aus, die Sie derzeit besitzen') | |
return | |
def update_skillgap(occupation, current_skills): | |
oc_uri = occupations.get(occupation, "") | |
if isinstance(oc_uri, int): | |
ocupation_skills = get_occupation_skills_BA(oc_uri) | |
else: | |
ocupation_skills = get_occupation_skills(oc_uri) | |
skill_gap = [skill for skill in ocupation_skills if skill not in current_skills] | |
return gr.Dropdown(skill_gap, label="Qualifikationslücke", multiselect=True, info='Bitte wählen Sie die Fähigkeiten aus, die Sie lernen möchten.') | |
if __name__ == "__main__": | |
# Load occupations from CSV | |
occupations_esco = get_occupations_from_csv(CSV_FILE_PATH) | |
df = pd.read_csv("/app/data/berufe_info.csv") | |
occupations_BA = df[['short name', 'id']].set_index('short name').to_dict()['id'] | |
occupations = {**occupations_esco, **occupations_BA} | |
# Gradio interface | |
with gr.Blocks(title="MyEduLife Kursempfehlungssystem") as demo: | |
occupation_dropdown = gr.Dropdown(list(occupations.keys()), label="Zielberuf",info='Bitte wählen Sie Ihren Zielberuf aus.') | |
currentskill_dropdown = gr.Dropdown([],label="aktuelle Fähigkeiten", multiselect=True,info='Bitte wählen Sie die Fähigkeiten aus, die Sie derzeit besitzen') | |
sb_btn = gr.Button("Absenden") | |
skillgap_dropdown = gr.Dropdown([],label="Fähigkeiten", multiselect=True,info='Bitte wählen Sie die Fähigkeiten aus, die Sie lernen möchten.') | |
# Use gr.HTML to display the HTML content | |
button = gr.Button("Kursempfehlungen") | |
documents_output = gr.HTML() | |
occupation_dropdown.change(update_skills, inputs=occupation_dropdown, outputs=currentskill_dropdown) | |
sb_btn.click( | |
update_skillgap, | |
inputs=[occupation_dropdown,currentskill_dropdown], | |
outputs=skillgap_dropdown | |
) | |
button.click( | |
retrieve_documents, | |
inputs=[occupation_dropdown,skillgap_dropdown], | |
outputs=documents_output | |
) | |
print('Initialization completed') | |
demo.launch(server_name="0.0.0.0", server_port=7860) | |