File size: 9,081 Bytes
d4f6669 f461022 b6e96dd f461022 d4f6669 dd68660 d4f6669 f461022 d4f6669 f461022 d4f6669 f461022 29f94bf f461022 d4f6669 f461022 d4f6669 f461022 29f94bf f461022 d4f6669 f461022 d4f6669 f461022 d4f6669 f461022 d4f6669 f461022 29f94bf f461022 c942053 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
import os, sys
import argparse
import cv2
import gradio as gr
import torch
# from basicsr.archs.srvgg_arch import SRVGGNetCompact
from srvgg_arch import SRVGGNetCompact
from realesrgan.utils import RealESRGANer
from glob import glob
from RestoreFormer import RestoreFormer
if not os.path.exists('experiments/pretrained_models'):
os.makedirs('experiments/pretrained_models')
realesr_model_path = 'experiments/pretrained_models/RealESRGAN_x4plus.pth'
if not os.path.exists(realesr_model_path):
os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -O experiments/pretrained_models/RealESRGAN_x4plus.pth")
if not os.path.exists('experiments/RestoreFormer/'):
os.makedirs('experiments/RestoreFormer/')
restoreformer_model_path = 'experiments/RestoreFormer/last.ckpt'
if not os.path.exists(restoreformer_model_path):
os.system("wget https://github.com/wzhouxiff/RestoreFormerPlusPlus/releases/download/v1.0.0/RestoreFormer.ckpt -O experiments/RestoreFormer/last.ckpt")
if not os.path.exists('experiments/RestoreFormerPlusPlus/'):
os.makedirs('experiments/RestoreFormerPlusPlus/')
restoreformerplusplus_model_path = 'experiments/RestoreFormerPlusPlus/last.ckpt'
if not os.path.exists(restoreformerplusplus_model_path):
os.system("wget https://github.com/wzhouxiff/RestoreFormerPlusPlus/releases/download/v1.0.0/RestoreFormer++.ckpt -O experiments/RestoreFormerPlusPlus/last.ckpt")
# background enhancer with RealESRGAN
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
half = True if torch.cuda.is_available() else False
upsampler = RealESRGANer(scale=4, model_path=realesr_model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
os.makedirs('output', exist_ok=True)
# def inference(img, version, scale, weight):
def inference(img, version, aligned, scale):
# weight /= 100
print(img, version, scale)
if scale > 4:
scale = 4 # avoid too large scale value
try:
extension = os.path.splitext(os.path.basename(str(img)))[1]
img = cv2.imread(img, cv2.IMREAD_UNCHANGED)
if len(img.shape) == 3 and img.shape[2] == 4:
img_mode = 'RGBA'
elif len(img.shape) == 2: # for gray inputs
img_mode = None
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
else:
img_mode = None
h, w = img.shape[0:2]
if h > 3500 or w > 3500:
print('too large size')
return None, None
if h < 300:
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
if version == 'RestoreFormer':
face_enhancer = RestoreFormer(
model_path=restoreformer_model_path, upscale=2, arch='RestoreFormer', bg_upsampler=upsampler)
elif version == 'RestoreFormer++':
face_enhancer = RestoreFormer(
model_path=restoreformerplusplus_model_path, upscale=2, arch='RestoreFormer++', bg_upsampler=upsampler)
try:
# _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True, weight=weight)
has_aligned = True if aligned == 'aligned' else False
_, restored_aligned, restored_img = face_enhancer.enhance(img, has_aligned=has_aligned, only_center_face=False, paste_back=True)
if has_aligned:
output = restored_aligned[0]
else:
output = restored_img
except RuntimeError as error:
print('Error', error)
try:
if scale != 2:
interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
h, w = img.shape[0:2]
output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation)
except Exception as error:
print('wrong scale input.', error)
if img_mode == 'RGBA': # RGBA images should be saved in png format
extension = 'png'
else:
extension = 'jpg'
save_path = f'output/out.{extension}'
cv2.imwrite(save_path, output)
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
return output, save_path
except Exception as error:
print('global exception', error)
return None, None
title = "RestoreFormer++: Towards Real-World Blind Face Restoration from Undegraded Key-Value Paris"
important_links=r'''
<div align='center'>
[![paper_RestroeForemer++](https://img.shields.io/badge/TPAMI-Restorformer%2B%2B-green
)](https://openaccess.thecvf.com/content/CVPR2022/papers/Wang_RestoreFormer_High-Quality_Blind_Face_Restoration_From_Undegraded_Key-Value_Pairs_CVPR_2022_paper.pdf)
[![paere_RestroeForemer](https://img.shields.io/badge/CVPR22-Restorformer-green)](https://openaccess.thecvf.com/content/CVPR2022/papers/Wang_RestoreFormer_High-Quality_Blind_Face_Restoration_From_Undegraded_Key-Value_Pairs_CVPR_2022_paper.pdf)
[![code_RestroeForemer++](https://img.shields.io/badge/GitHub-RestoreFormer%2B%2B-red
)](https://github.com/wzhouxiff/RestoreFormerPlusPlus)
[![code_RestroeForemer](https://img.shields.io/badge/GitHub-RestoreFormer-red)](https://github.com/wzhouxiff/RestoreFormer)
[![demo](https://img.shields.io/badge/Demo-Gradio-orange
)](https://gradio.app/hub/wzhouxiff/RestoreFormerPlusPlus)
</div>
'''
description = r"""
<div align='center'>
<a target='_blank' href='https://arxiv.org/pdf/2308.07228.pdf' style='float: left'>
<img src='https://img.shields.io/badge/TPAMI-RestorFormer%2B%2B-green' alt='paper_RestroeForemer++'>
</a>
      
<a target='_blank' href='https://openaccess.thecvf.com/content/CVPR2022/papers/Wang_RestoreFormer_High-Quality_Blind_Face_Restoration_From_Undegraded_Key-Value_Pairs_CVPR_2022_paper.pdf' style='float: left'>
<img src='https://img.shields.io/badge/CVPR22-RestorFormer-green' alt='paere_RestroeForemer' >
</a>
      
<a target='_blank' href='https://github.com/wzhouxiff/RestoreFormerPlusPlus' style='float: left'>
<img src='https://img.shields.io/badge/GitHub-RestoreFormer%2B%2B-red' alt='code_RestroeForemer++'>
</a>
      
<a target='_blank' href='https://github.com/wzhouxiff/RestoreFormer' style='float: left'>
<img src='https://img.shields.io/badge/GitHub-RestoreFormer-red' alt='code_RestroeForemer' >
</a>
      
<a target='_blank' href='https://huggingface.co/spaces/wzhouxiff/RestoreFormerPlusPlus' style='float: left' >
<img src='https://img.shields.io/badge/Demo-Gradio-orange' alt='demo' >
</a>
      
</div>
<br>
Gradio demo for <a href='https://github.com/wzhouxiff/RestoreFormerPlusPlus' target='_blank'><b>RestoreFormer++: Towards Real-World Blind Face Restoration from Undegraded Key-Value Paris</b></a>.
<br>
It is used to restore your Old Photos.
<br>
To use it, simply upload your image.<br>
"""
article = r"""
If the proposed algorithm is helpful, please help to ⭐ the GitHub Repositories: <a href='https://github.com/wzhouxiff/RestoreFormer' target='_blank'>RestoreFormer</a> and
<a href='https://github.com/wzhouxiff/RestoreFormerPlusPlus' target='_blank'>RestoreFormer++</a>. Thanks!
[![GitHub Stars](https://img.shields.io/github/stars/wzhouxiff%2FRestoreFormer
)](https://github.com/wzhouxiff/RestoreFormer)
[![GitHub Stars](https://img.shields.io/github/stars/wzhouxiff%2FRestoreFormerPlusPlus
)](https://github.com/wzhouxiff/RestoreFormerPlusPlus)
---
📝 **Citation**
<br>
If our work is useful for your research, please consider citing:
```bibtex
@article{wang2023restoreformer++,
title={RestoreFormer++: Towards Real-World Blind Face Restoration from Undegraded Key-Value Paris},
author={Wang, Zhouxia and Zhang, Jiawei and Chen, Tianshui and Wang, Wenping and Luo, Ping},
booktitle={IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI)},
year={2023}
}
@article{wang2022restoreformer,
title={RestoreFormer: High-Quality Blind Face Restoration from Undegraded Key-Value Pairs},
author={Wang, Zhouxia and Zhang, Jiawei and Chen, Runjian and Wang, Wenping and Luo, Ping},
booktitle={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2022}
}
```
If you have any question, please email 📧 `wzhoux@connect.hku.hk`.
"""
css=r"""
"""
demo = gr.Interface(
inference, [
gr.Image(type="filepath", label="Input"),
gr.Radio(['RestoreFormer', 'RestoreFormer++'], type="value", value='RestoreFormer++', label='version'),
gr.Radio(['aligned', 'unaligned'], type="value", value='unaligned', label='Image Alignment'),
gr.Number(label="Rescaling factor", value=2),
], [
gr.Image(type="numpy", label="Output (The whole image)"),
gr.File(label="Download the output image")
],
title=title,
description=description,
article=article,
)
demo.queue(max_size=20).launch() |