File size: 9,081 Bytes
d4f6669
 
f461022
 
 
b6e96dd
 
f461022
d4f6669
 
dd68660
d4f6669
 
 
 
 
 
 
 
 
 
 
 
f461022
d4f6669
 
 
 
 
f461022
 
 
 
d4f6669
f461022
 
 
 
 
29f94bf
f461022
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4f6669
f461022
 
d4f6669
f461022
 
 
29f94bf
 
 
 
 
 
f461022
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4f6669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f461022
 
d4f6669
f461022
d4f6669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f461022
 
d4f6669
 
 
 
 
f461022
 
 
 
29f94bf
f461022
 
 
 
 
 
 
 
c942053
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import os, sys
import argparse
import cv2
import gradio as gr
import torch
# from basicsr.archs.srvgg_arch import SRVGGNetCompact
from srvgg_arch import SRVGGNetCompact
from realesrgan.utils import RealESRGANer
from glob import glob

from RestoreFormer import RestoreFormer

if not os.path.exists('experiments/pretrained_models'):
    os.makedirs('experiments/pretrained_models')
realesr_model_path = 'experiments/pretrained_models/RealESRGAN_x4plus.pth'
if not os.path.exists(realesr_model_path):
    os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -O experiments/pretrained_models/RealESRGAN_x4plus.pth")

if not os.path.exists('experiments/RestoreFormer/'):
    os.makedirs('experiments/RestoreFormer/')
restoreformer_model_path = 'experiments/RestoreFormer/last.ckpt'
if not os.path.exists(restoreformer_model_path):
    os.system("wget https://github.com/wzhouxiff/RestoreFormerPlusPlus/releases/download/v1.0.0/RestoreFormer.ckpt -O experiments/RestoreFormer/last.ckpt")

if not os.path.exists('experiments/RestoreFormerPlusPlus/'):
    os.makedirs('experiments/RestoreFormerPlusPlus/')
restoreformerplusplus_model_path = 'experiments/RestoreFormerPlusPlus/last.ckpt'
if not os.path.exists(restoreformerplusplus_model_path):
    os.system("wget https://github.com/wzhouxiff/RestoreFormerPlusPlus/releases/download/v1.0.0/RestoreFormer++.ckpt -O experiments/RestoreFormerPlusPlus/last.ckpt")

# background enhancer with RealESRGAN
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
half = True if torch.cuda.is_available() else False
upsampler = RealESRGANer(scale=4, model_path=realesr_model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)

os.makedirs('output', exist_ok=True)


# def inference(img, version, scale, weight):
def inference(img, version, aligned, scale):
    # weight /= 100
    print(img, version, scale)
    if scale > 4:
        scale = 4  # avoid too large scale value
    try:
        extension = os.path.splitext(os.path.basename(str(img)))[1]
        img = cv2.imread(img, cv2.IMREAD_UNCHANGED)
        if len(img.shape) == 3 and img.shape[2] == 4:
            img_mode = 'RGBA'
        elif len(img.shape) == 2:  # for gray inputs
            img_mode = None
            img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
        else:
            img_mode = None

        h, w = img.shape[0:2]
        if h > 3500 or w > 3500:
            print('too large size')
            return None, None
        
        if h < 300:
            img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)

        if version == 'RestoreFormer':
            face_enhancer = RestoreFormer(
            model_path=restoreformer_model_path, upscale=2, arch='RestoreFormer', bg_upsampler=upsampler)
        elif version == 'RestoreFormer++':
            face_enhancer = RestoreFormer(
            model_path=restoreformerplusplus_model_path, upscale=2, arch='RestoreFormer++', bg_upsampler=upsampler)

        try:
            # _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True, weight=weight)
            has_aligned = True if aligned == 'aligned' else False
            _, restored_aligned, restored_img = face_enhancer.enhance(img, has_aligned=has_aligned, only_center_face=False, paste_back=True)
            if has_aligned:
                output = restored_aligned[0]
            else:
                output = restored_img
        except RuntimeError as error:
            print('Error', error)

        try:
            if scale != 2:
                interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
                h, w = img.shape[0:2]
                output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation)
        except Exception as error:
            print('wrong scale input.', error)
        if img_mode == 'RGBA':  # RGBA images should be saved in png format
            extension = 'png'
        else:
            extension = 'jpg'
        save_path = f'output/out.{extension}'
        cv2.imwrite(save_path, output)

        output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
        return output, save_path
    except Exception as error:
        print('global exception', error)
        return None, None


title = "RestoreFormer++: Towards Real-World Blind Face Restoration from Undegraded Key-Value Paris"
important_links=r'''
<div align='center'>
[![paper_RestroeForemer++](https://img.shields.io/badge/TPAMI-Restorformer%2B%2B-green
)](https://openaccess.thecvf.com/content/CVPR2022/papers/Wang_RestoreFormer_High-Quality_Blind_Face_Restoration_From_Undegraded_Key-Value_Pairs_CVPR_2022_paper.pdf)
&nbsp; 
[![paere_RestroeForemer](https://img.shields.io/badge/CVPR22-Restorformer-green)](https://openaccess.thecvf.com/content/CVPR2022/papers/Wang_RestoreFormer_High-Quality_Blind_Face_Restoration_From_Undegraded_Key-Value_Pairs_CVPR_2022_paper.pdf)
&nbsp;
[![code_RestroeForemer++](https://img.shields.io/badge/GitHub-RestoreFormer%2B%2B-red

)](https://github.com/wzhouxiff/RestoreFormerPlusPlus)
&nbsp; 
[![code_RestroeForemer](https://img.shields.io/badge/GitHub-RestoreFormer-red)](https://github.com/wzhouxiff/RestoreFormer)
&nbsp;
[![demo](https://img.shields.io/badge/Demo-Gradio-orange
)](https://gradio.app/hub/wzhouxiff/RestoreFormerPlusPlus)
</div>
'''
description = r"""
<div align='center'>
<a target='_blank' href='https://arxiv.org/pdf/2308.07228.pdf' style='float: left'>
<img src='https://img.shields.io/badge/TPAMI-RestorFormer%2B%2B-green' alt='paper_RestroeForemer++'>
</a>
&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;
<a target='_blank' href='https://openaccess.thecvf.com/content/CVPR2022/papers/Wang_RestoreFormer_High-Quality_Blind_Face_Restoration_From_Undegraded_Key-Value_Pairs_CVPR_2022_paper.pdf' style='float: left'>
<img src='https://img.shields.io/badge/CVPR22-RestorFormer-green' alt='paere_RestroeForemer' >
</a>
&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;
<a target='_blank' href='https://github.com/wzhouxiff/RestoreFormerPlusPlus' style='float: left'>
<img src='https://img.shields.io/badge/GitHub-RestoreFormer%2B%2B-red' alt='code_RestroeForemer++'>
</a>
&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;
<a target='_blank' href='https://github.com/wzhouxiff/RestoreFormer' style='float: left'>
<img src='https://img.shields.io/badge/GitHub-RestoreFormer-red' alt='code_RestroeForemer' >
</a>
&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;
<a target='_blank' href='https://huggingface.co/spaces/wzhouxiff/RestoreFormerPlusPlus' style='float: left' >
<img src='https://img.shields.io/badge/Demo-Gradio-orange' alt='demo' >
</a>
&ensp;&ensp;&ensp;&ensp;&ensp;&ensp;
</div>
<br>
Gradio demo for <a href='https://github.com/wzhouxiff/RestoreFormerPlusPlus' target='_blank'><b>RestoreFormer++: Towards Real-World Blind Face Restoration from Undegraded Key-Value Paris</b></a>.
<br>
It is used to restore your Old Photos.
<br>
To use it, simply upload your image.<br>
"""

article = r"""
If the proposed algorithm is helpful, please help to ⭐ the GitHub Repositories: <a href='https://github.com/wzhouxiff/RestoreFormer' target='_blank'>RestoreFormer</a> and
<a href='https://github.com/wzhouxiff/RestoreFormerPlusPlus' target='_blank'>RestoreFormer++</a>. Thanks! 
[![GitHub Stars](https://img.shields.io/github/stars/wzhouxiff%2FRestoreFormer
)](https://github.com/wzhouxiff/RestoreFormer)
[![GitHub Stars](https://img.shields.io/github/stars/wzhouxiff%2FRestoreFormerPlusPlus
)](https://github.com/wzhouxiff/RestoreFormerPlusPlus)

---

📝 **Citation**
<br>
If our work is useful for your research, please consider citing:
```bibtex
@article{wang2023restoreformer++,
    title={RestoreFormer++: Towards Real-World Blind Face Restoration from Undegraded Key-Value Paris},
    author={Wang, Zhouxia and Zhang, Jiawei and Chen, Tianshui and Wang, Wenping and Luo, Ping},
    booktitle={IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI)},
    year={2023}
}
@article{wang2022restoreformer,
    title={RestoreFormer: High-Quality Blind Face Restoration from Undegraded Key-Value Pairs},
    author={Wang, Zhouxia and Zhang, Jiawei and Chen, Runjian and Wang, Wenping and Luo, Ping},
    booktitle={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    year={2022}
}
```

If you have any question, please email 📧 `wzhoux@connect.hku.hk`.
"""

css=r"""

"""

demo = gr.Interface(
    inference, [
        gr.Image(type="filepath", label="Input"),
        gr.Radio(['RestoreFormer', 'RestoreFormer++'], type="value", value='RestoreFormer++', label='version'),
        gr.Radio(['aligned', 'unaligned'], type="value", value='unaligned', label='Image Alignment'),
        gr.Number(label="Rescaling factor", value=2),
    ], [
        gr.Image(type="numpy", label="Output (The whole image)"),
        gr.File(label="Download the output image")
    ],
    title=title,
    description=description,
    article=article,
    )

demo.queue(max_size=20).launch()