File size: 5,054 Bytes
f461022 29adef7 9272ffd f461022 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
import os
import cv2
import torch
from img_utils import img2tensor, tensor2img
from utils import load_file_from_url
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
from torchvision.transforms.functional import normalize
from RestoreFormer_arch import VQVAEGANMultiHeadTransformer
ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
class RestoreFormer():
"""Helper for restoration with RestoreFormer.
It will detect and crop faces, and then resize the faces to 512x512.
RestoreFormer is used to restored the resized faces.
The background is upsampled with the bg_upsampler.
Finally, the faces will be pasted back to the upsample background image.
Args:
model_path (str): The path to the GFPGAN model. It can be urls (will first download it automatically).
upscale (float): The upscale of the final output. Default: 2.
arch (str): The RestoreFormer architecture. Option: RestoreFormer | RestoreFormer++. Default: RestoreFormer++.
bg_upsampler (nn.Module): The upsampler for the background. Default: None.
"""
def __init__(self, model_path, upscale=2, arch='RestoreFromerPlusPlus', bg_upsampler=None, device=None):
self.upscale = upscale
self.bg_upsampler = bg_upsampler
self.arch = arch
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if device is None else device
if arch == 'RestoreFormer':
self.RF = VQVAEGANMultiHeadTransformer(head_size = 8, ex_multi_scale_num = 0)
elif arch == 'RestoreFormer++':
self.RF = VQVAEGANMultiHeadTransformer(head_size = 4, ex_multi_scale_num = 1)
else:
raise NotImplementedError(f'Not support arch: {arch}.')
# initialize face helper
self.face_helper = FaceRestoreHelper(
upscale,
face_size=512,
crop_ratio=(1, 1),
det_model='retinaface_resnet50',
save_ext='png',
use_parse=True,
device=self.device,
model_rootpath=None)
if model_path.startswith('https://'):
model_path = load_file_from_url(
url=model_path, model_dir=os.path.join(ROOT_DIR, 'experiments/weights'), progress=True, file_name=None)
loadnet = torch.load(model_path)
strict=False
weights = loadnet['state_dict']
new_weights = {}
for k, v in weights.items():
if k.startswith('vqvae.'):
k = k.replace('vqvae.', '')
new_weights[k] = v
self.RF.load_state_dict(new_weights, strict=strict)
self.RF.eval()
self.RF = self.RF.to(self.device)
@torch.no_grad()
def enhance(self, img, has_aligned=False, only_center_face=False, paste_back=True):
self.face_helper.clean_all()
if has_aligned: # the inputs are already aligned
img = cv2.resize(img, (512, 512))
self.face_helper.cropped_faces = [img]
else:
self.face_helper.read_image(img)
self.face_helper.get_face_landmarks_5(only_center_face=only_center_face, eye_dist_threshold=5)
# eye_dist_threshold=5: skip faces whose eye distance is smaller than 5 pixels
# TODO: even with eye_dist_threshold, it will still introduce wrong detections and restorations.
# align and warp each face
self.face_helper.align_warp_face()
# face restoration
for cropped_face in self.face_helper.cropped_faces:
# prepare data
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
cropped_face_t = cropped_face_t.unsqueeze(0).to(self.device)
try:
output = self.RF(cropped_face_t)[0]
restored_face = tensor2img(output.squeeze(0), rgb2bgr=True, min_max=(-1, 1))
except RuntimeError as error:
print(f'\tFailed inference for RestoreFormer: {error}.')
restored_face = cropped_face
restored_face = restored_face.astype('uint8')
self.face_helper.add_restored_face(restored_face)
if not has_aligned and paste_back:
# upsample the background
if self.bg_upsampler is not None:
# Now only support RealESRGAN for upsampling background
bg_img = self.bg_upsampler.enhance(img, outscale=self.upscale)[0]
else:
bg_img = None
self.face_helper.get_inverse_affine(None)
# paste each restored face to the input image
restored_img = self.face_helper.paste_faces_to_input_image(upsample_img=bg_img)
return self.face_helper.cropped_faces, self.face_helper.restored_faces, restored_img
else:
return self.face_helper.cropped_faces, self.face_helper.restored_faces, None
|