|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
class VectorQuantizer(nn.Module): |
|
""" |
|
see https://github.com/MishaLaskin/vqvae/blob/d761a999e2267766400dc646d82d3ac3657771d4/models/quantizer.py |
|
____________________________________________ |
|
Discretization bottleneck part of the VQ-VAE. |
|
Inputs: |
|
- n_e : number of embeddings |
|
- e_dim : dimension of embedding |
|
- beta : commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2 |
|
_____________________________________________ |
|
""" |
|
|
|
def __init__(self, n_e, e_dim, beta): |
|
super(VectorQuantizer, self).__init__() |
|
self.n_e = n_e |
|
self.e_dim = e_dim |
|
self.beta = beta |
|
|
|
self.embedding = nn.Embedding(self.n_e, self.e_dim) |
|
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e) |
|
|
|
def forward(self, z): |
|
""" |
|
Inputs the output of the encoder network z and maps it to a discrete |
|
one-hot vector that is the index of the closest embedding vector e_j |
|
z (continuous) -> z_q (discrete) |
|
z.shape = (batch, channel, height, width) |
|
quantization pipeline: |
|
1. get encoder input (B,C,H,W) |
|
2. flatten input to (B*H*W,C) |
|
""" |
|
|
|
z = z.permute(0, 2, 3, 1).contiguous() |
|
z_flattened = z.view(-1, self.e_dim) |
|
|
|
|
|
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \ |
|
torch.sum(self.embedding.weight**2, dim=1) - 2 * \ |
|
torch.matmul(z_flattened, self.embedding.weight.t()) |
|
|
|
|
|
|
|
|
|
|
|
min_value, min_encoding_indices = torch.min(d, dim=1) |
|
|
|
min_encoding_indices = min_encoding_indices.unsqueeze(1) |
|
|
|
min_encodings = torch.zeros( |
|
min_encoding_indices.shape[0], self.n_e).to(z) |
|
min_encodings.scatter_(1, min_encoding_indices, 1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
z_q = torch.matmul(min_encodings, self.embedding.weight).view(z.shape) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
loss = torch.mean((z_q.detach()-z)**2) + self.beta * \ |
|
torch.mean((z_q - z.detach()) ** 2) |
|
|
|
|
|
z_q = z + (z_q - z).detach() |
|
|
|
|
|
|
|
e_mean = torch.mean(min_encodings, dim=0) |
|
perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10))) |
|
|
|
|
|
z_q = z_q.permute(0, 3, 1, 2).contiguous() |
|
|
|
return z_q, loss, (perplexity, min_encodings, min_encoding_indices, d) |
|
|
|
def get_codebook_entry(self, indices, shape): |
|
|
|
|
|
min_encodings = torch.zeros(indices.shape[0], self.n_e).to(indices) |
|
min_encodings.scatter_(1, indices[:,None], 1) |
|
|
|
|
|
z_q = torch.matmul(min_encodings.float(), self.embedding.weight) |
|
|
|
if shape is not None: |
|
z_q = z_q.view(shape) |
|
|
|
|
|
z_q = z_q.permute(0, 3, 1, 2).contiguous() |
|
|
|
return z_q |
|
|
|
|
|
def nonlinearity(x): |
|
|
|
return x*torch.sigmoid(x) |
|
|
|
|
|
def Normalize(in_channels): |
|
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) |
|
|
|
|
|
class Upsample(nn.Module): |
|
def __init__(self, in_channels, with_conv): |
|
super().__init__() |
|
self.with_conv = with_conv |
|
if self.with_conv: |
|
self.conv = torch.nn.Conv2d(in_channels, |
|
in_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1) |
|
|
|
def forward(self, x): |
|
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") |
|
if self.with_conv: |
|
x = self.conv(x) |
|
return x |
|
|
|
|
|
class Downsample(nn.Module): |
|
def __init__(self, in_channels, with_conv): |
|
super().__init__() |
|
self.with_conv = with_conv |
|
if self.with_conv: |
|
|
|
self.conv = torch.nn.Conv2d(in_channels, |
|
in_channels, |
|
kernel_size=3, |
|
stride=2, |
|
padding=0) |
|
|
|
def forward(self, x): |
|
if self.with_conv: |
|
pad = (0,1,0,1) |
|
x = torch.nn.functional.pad(x, pad, mode="constant", value=0) |
|
x = self.conv(x) |
|
else: |
|
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) |
|
return x |
|
|
|
|
|
class ResnetBlock(nn.Module): |
|
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, |
|
dropout, temb_channels=512): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
out_channels = in_channels if out_channels is None else out_channels |
|
self.out_channels = out_channels |
|
self.use_conv_shortcut = conv_shortcut |
|
|
|
self.norm1 = Normalize(in_channels) |
|
self.conv1 = torch.nn.Conv2d(in_channels, |
|
out_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1) |
|
if temb_channels > 0: |
|
self.temb_proj = torch.nn.Linear(temb_channels, |
|
out_channels) |
|
self.norm2 = Normalize(out_channels) |
|
self.dropout = torch.nn.Dropout(dropout) |
|
self.conv2 = torch.nn.Conv2d(out_channels, |
|
out_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1) |
|
if self.in_channels != self.out_channels: |
|
if self.use_conv_shortcut: |
|
self.conv_shortcut = torch.nn.Conv2d(in_channels, |
|
out_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1) |
|
else: |
|
self.nin_shortcut = torch.nn.Conv2d(in_channels, |
|
out_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0) |
|
|
|
def forward(self, x, temb): |
|
h = x |
|
h = self.norm1(h) |
|
h = nonlinearity(h) |
|
h = self.conv1(h) |
|
|
|
if temb is not None: |
|
h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None] |
|
|
|
h = self.norm2(h) |
|
h = nonlinearity(h) |
|
h = self.dropout(h) |
|
h = self.conv2(h) |
|
|
|
if self.in_channels != self.out_channels: |
|
if self.use_conv_shortcut: |
|
x = self.conv_shortcut(x) |
|
else: |
|
x = self.nin_shortcut(x) |
|
|
|
return x+h |
|
|
|
|
|
class MultiHeadAttnBlock(nn.Module): |
|
def __init__(self, in_channels, head_size=1): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.head_size = head_size |
|
self.att_size = in_channels // head_size |
|
assert(in_channels % head_size == 0), 'The size of head should be divided by the number of channels.' |
|
|
|
self.norm1 = Normalize(in_channels) |
|
self.norm2 = Normalize(in_channels) |
|
|
|
self.q = torch.nn.Conv2d(in_channels, |
|
in_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0) |
|
self.k = torch.nn.Conv2d(in_channels, |
|
in_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0) |
|
self.v = torch.nn.Conv2d(in_channels, |
|
in_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0) |
|
self.proj_out = torch.nn.Conv2d(in_channels, |
|
in_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0) |
|
self.num = 0 |
|
|
|
def forward(self, x, y=None): |
|
h_ = x |
|
h_ = self.norm1(h_) |
|
if y is None: |
|
y = h_ |
|
else: |
|
y = self.norm2(y) |
|
|
|
q = self.q(y) |
|
k = self.k(h_) |
|
v = self.v(h_) |
|
|
|
|
|
b,c,h,w = q.shape |
|
q = q.reshape(b, self.head_size, self.att_size ,h*w) |
|
q = q.permute(0, 3, 1, 2) |
|
|
|
k = k.reshape(b, self.head_size, self.att_size ,h*w) |
|
k = k.permute(0, 3, 1, 2) |
|
|
|
v = v.reshape(b, self.head_size, self.att_size ,h*w) |
|
v = v.permute(0, 3, 1, 2) |
|
|
|
|
|
q = q.transpose(1, 2) |
|
v = v.transpose(1, 2) |
|
k = k.transpose(1, 2).transpose(2,3) |
|
|
|
scale = int(self.att_size)**(-0.5) |
|
q.mul_(scale) |
|
w_ = torch.matmul(q, k) |
|
w_ = F.softmax(w_, dim=3) |
|
|
|
w_ = w_.matmul(v) |
|
|
|
w_ = w_.transpose(1, 2).contiguous() |
|
w_ = w_.view(b, h, w, -1) |
|
w_ = w_.permute(0, 3, 1, 2) |
|
|
|
w_ = self.proj_out(w_) |
|
|
|
return x+w_ |
|
|
|
|
|
class MultiHeadEncoder(nn.Module): |
|
def __init__(self, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks=2, |
|
attn_resolutions=[16], dropout=0.0, resamp_with_conv=True, in_channels=3, |
|
resolution=512, z_channels=256, double_z=True, enable_mid=True, |
|
head_size=1, **ignore_kwargs): |
|
super().__init__() |
|
self.ch = ch |
|
self.temb_ch = 0 |
|
self.num_resolutions = len(ch_mult) |
|
self.num_res_blocks = num_res_blocks |
|
self.resolution = resolution |
|
self.in_channels = in_channels |
|
self.enable_mid = enable_mid |
|
|
|
|
|
self.conv_in = torch.nn.Conv2d(in_channels, |
|
self.ch, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1) |
|
|
|
curr_res = resolution |
|
in_ch_mult = (1,)+tuple(ch_mult) |
|
self.down = nn.ModuleList() |
|
for i_level in range(self.num_resolutions): |
|
block = nn.ModuleList() |
|
attn = nn.ModuleList() |
|
block_in = ch*in_ch_mult[i_level] |
|
block_out = ch*ch_mult[i_level] |
|
for i_block in range(self.num_res_blocks): |
|
block.append(ResnetBlock(in_channels=block_in, |
|
out_channels=block_out, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout)) |
|
block_in = block_out |
|
if curr_res in attn_resolutions: |
|
attn.append(MultiHeadAttnBlock(block_in, head_size)) |
|
down = nn.Module() |
|
down.block = block |
|
down.attn = attn |
|
if i_level != self.num_resolutions-1: |
|
down.downsample = Downsample(block_in, resamp_with_conv) |
|
curr_res = curr_res // 2 |
|
self.down.append(down) |
|
|
|
|
|
if self.enable_mid: |
|
self.mid = nn.Module() |
|
self.mid.block_1 = ResnetBlock(in_channels=block_in, |
|
out_channels=block_in, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout) |
|
self.mid.attn_1 = MultiHeadAttnBlock(block_in, head_size) |
|
self.mid.block_2 = ResnetBlock(in_channels=block_in, |
|
out_channels=block_in, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout) |
|
|
|
|
|
self.norm_out = Normalize(block_in) |
|
self.conv_out = torch.nn.Conv2d(block_in, |
|
2*z_channels if double_z else z_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1) |
|
|
|
|
|
def forward(self, x): |
|
|
|
|
|
hs = {} |
|
|
|
temb = None |
|
|
|
|
|
h = self.conv_in(x) |
|
hs['in'] = h |
|
for i_level in range(self.num_resolutions): |
|
for i_block in range(self.num_res_blocks): |
|
h = self.down[i_level].block[i_block](h, temb) |
|
if len(self.down[i_level].attn) > 0: |
|
h = self.down[i_level].attn[i_block](h) |
|
|
|
if i_level != self.num_resolutions-1: |
|
|
|
hs['block_'+str(i_level)] = h |
|
h = self.down[i_level].downsample(h) |
|
|
|
|
|
|
|
if self.enable_mid: |
|
h = self.mid.block_1(h, temb) |
|
hs['block_'+str(i_level)+'_atten'] = h |
|
h = self.mid.attn_1(h) |
|
h = self.mid.block_2(h, temb) |
|
hs['mid_atten'] = h |
|
|
|
|
|
h = self.norm_out(h) |
|
h = nonlinearity(h) |
|
h = self.conv_out(h) |
|
|
|
hs['out'] = h |
|
|
|
return hs |
|
|
|
class MultiHeadDecoder(nn.Module): |
|
def __init__(self, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks=2, |
|
attn_resolutions=16, dropout=0.0, resamp_with_conv=True, in_channels=3, |
|
resolution=512, z_channels=256, give_pre_end=False, enable_mid=True, |
|
head_size=1, **ignorekwargs): |
|
super().__init__() |
|
self.ch = ch |
|
self.temb_ch = 0 |
|
self.num_resolutions = len(ch_mult) |
|
self.num_res_blocks = num_res_blocks |
|
self.resolution = resolution |
|
self.in_channels = in_channels |
|
self.give_pre_end = give_pre_end |
|
self.enable_mid = enable_mid |
|
|
|
|
|
in_ch_mult = (1,)+tuple(ch_mult) |
|
block_in = ch*ch_mult[self.num_resolutions-1] |
|
curr_res = resolution // 2**(self.num_resolutions-1) |
|
self.z_shape = (1,z_channels,curr_res,curr_res) |
|
print("Working with z of shape {} = {} dimensions.".format( |
|
self.z_shape, np.prod(self.z_shape))) |
|
|
|
|
|
self.conv_in = torch.nn.Conv2d(z_channels, |
|
block_in, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1) |
|
|
|
|
|
if self.enable_mid: |
|
self.mid = nn.Module() |
|
self.mid.block_1 = ResnetBlock(in_channels=block_in, |
|
out_channels=block_in, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout) |
|
self.mid.attn_1 = MultiHeadAttnBlock(block_in, head_size) |
|
self.mid.block_2 = ResnetBlock(in_channels=block_in, |
|
out_channels=block_in, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout) |
|
|
|
|
|
self.up = nn.ModuleList() |
|
for i_level in reversed(range(self.num_resolutions)): |
|
block = nn.ModuleList() |
|
attn = nn.ModuleList() |
|
block_out = ch*ch_mult[i_level] |
|
for i_block in range(self.num_res_blocks+1): |
|
block.append(ResnetBlock(in_channels=block_in, |
|
out_channels=block_out, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout)) |
|
block_in = block_out |
|
if curr_res in attn_resolutions: |
|
attn.append(MultiHeadAttnBlock(block_in, head_size)) |
|
up = nn.Module() |
|
up.block = block |
|
up.attn = attn |
|
if i_level != 0: |
|
up.upsample = Upsample(block_in, resamp_with_conv) |
|
curr_res = curr_res * 2 |
|
self.up.insert(0, up) |
|
|
|
|
|
self.norm_out = Normalize(block_in) |
|
self.conv_out = torch.nn.Conv2d(block_in, |
|
out_ch, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1) |
|
|
|
def forward(self, z): |
|
|
|
self.last_z_shape = z.shape |
|
|
|
|
|
temb = None |
|
|
|
|
|
h = self.conv_in(z) |
|
|
|
|
|
if self.enable_mid: |
|
h = self.mid.block_1(h, temb) |
|
h = self.mid.attn_1(h) |
|
h = self.mid.block_2(h, temb) |
|
|
|
|
|
for i_level in reversed(range(self.num_resolutions)): |
|
for i_block in range(self.num_res_blocks+1): |
|
h = self.up[i_level].block[i_block](h, temb) |
|
if len(self.up[i_level].attn) > 0: |
|
h = self.up[i_level].attn[i_block](h) |
|
if i_level != 0: |
|
h = self.up[i_level].upsample(h) |
|
|
|
|
|
if self.give_pre_end: |
|
return h |
|
|
|
h = self.norm_out(h) |
|
h = nonlinearity(h) |
|
h = self.conv_out(h) |
|
return h |
|
|
|
class MultiHeadDecoderTransformer(nn.Module): |
|
def __init__(self, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks=2, |
|
attn_resolutions=16, dropout=0.0, resamp_with_conv=True, in_channels=3, |
|
resolution=512, z_channels=256, give_pre_end=False, enable_mid=True, |
|
head_size=1, **ignorekwargs): |
|
super().__init__() |
|
self.ch = ch |
|
self.temb_ch = 0 |
|
self.num_resolutions = len(ch_mult) |
|
self.num_res_blocks = num_res_blocks |
|
self.resolution = resolution |
|
self.in_channels = in_channels |
|
self.give_pre_end = give_pre_end |
|
self.enable_mid = enable_mid |
|
|
|
|
|
in_ch_mult = (1,)+tuple(ch_mult) |
|
block_in = ch*ch_mult[self.num_resolutions-1] |
|
curr_res = resolution // 2**(self.num_resolutions-1) |
|
self.z_shape = (1,z_channels,curr_res,curr_res) |
|
print("Working with z of shape {} = {} dimensions.".format( |
|
self.z_shape, np.prod(self.z_shape))) |
|
|
|
|
|
self.conv_in = torch.nn.Conv2d(z_channels, |
|
block_in, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1) |
|
|
|
|
|
if self.enable_mid: |
|
self.mid = nn.Module() |
|
self.mid.block_1 = ResnetBlock(in_channels=block_in, |
|
out_channels=block_in, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout) |
|
self.mid.attn_1 = MultiHeadAttnBlock(block_in, head_size) |
|
self.mid.block_2 = ResnetBlock(in_channels=block_in, |
|
out_channels=block_in, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout) |
|
|
|
|
|
self.up = nn.ModuleList() |
|
for i_level in reversed(range(self.num_resolutions)): |
|
block = nn.ModuleList() |
|
attn = nn.ModuleList() |
|
block_out = ch*ch_mult[i_level] |
|
for i_block in range(self.num_res_blocks+1): |
|
block.append(ResnetBlock(in_channels=block_in, |
|
out_channels=block_out, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout)) |
|
block_in = block_out |
|
if curr_res in attn_resolutions: |
|
attn.append(MultiHeadAttnBlock(block_in, head_size)) |
|
up = nn.Module() |
|
up.block = block |
|
up.attn = attn |
|
if i_level != 0: |
|
up.upsample = Upsample(block_in, resamp_with_conv) |
|
curr_res = curr_res * 2 |
|
self.up.insert(0, up) |
|
|
|
|
|
self.norm_out = Normalize(block_in) |
|
self.conv_out = torch.nn.Conv2d(block_in, |
|
out_ch, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1) |
|
|
|
def forward(self, z, hs): |
|
|
|
|
|
|
|
|
|
temb = None |
|
|
|
|
|
h = self.conv_in(z) |
|
|
|
|
|
if self.enable_mid: |
|
h = self.mid.block_1(h, temb) |
|
h = self.mid.attn_1(h, hs['mid_atten']) |
|
h = self.mid.block_2(h, temb) |
|
|
|
|
|
for i_level in reversed(range(self.num_resolutions)): |
|
for i_block in range(self.num_res_blocks+1): |
|
h = self.up[i_level].block[i_block](h, temb) |
|
if len(self.up[i_level].attn) > 0: |
|
if 'block_'+str(i_level)+'_atten' in hs: |
|
h = self.up[i_level].attn[i_block](h, hs['block_'+str(i_level)+'_atten']) |
|
else: |
|
h = self.up[i_level].attn[i_block](h, hs['block_'+str(i_level)]) |
|
if i_level != 0: |
|
h = self.up[i_level].upsample(h) |
|
|
|
|
|
if self.give_pre_end: |
|
return h |
|
|
|
h = self.norm_out(h) |
|
h = nonlinearity(h) |
|
h = self.conv_out(h) |
|
return h |
|
|
|
|
|
class VQVAEGAN(nn.Module): |
|
def __init__(self, n_embed=1024, embed_dim=256, ch=128, out_ch=3, ch_mult=(1,2,4,8), |
|
num_res_blocks=2, attn_resolutions=16, dropout=0.0, in_channels=3, |
|
resolution=512, z_channels=256, double_z=False, enable_mid=True, |
|
fix_decoder=False, fix_codebook=False, head_size=1, **ignore_kwargs): |
|
super(VQVAEGAN, self).__init__() |
|
|
|
self.encoder = MultiHeadEncoder(ch=ch, out_ch=out_ch, ch_mult=ch_mult, num_res_blocks=num_res_blocks, |
|
attn_resolutions=attn_resolutions, dropout=dropout, in_channels=in_channels, |
|
resolution=resolution, z_channels=z_channels, double_z=double_z, |
|
enable_mid=enable_mid, head_size=head_size) |
|
self.decoder = MultiHeadDecoder(ch=ch, out_ch=out_ch, ch_mult=ch_mult, num_res_blocks=num_res_blocks, |
|
attn_resolutions=attn_resolutions, dropout=dropout, in_channels=in_channels, |
|
resolution=resolution, z_channels=z_channels, enable_mid=enable_mid, head_size=head_size) |
|
|
|
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25) |
|
|
|
self.quant_conv = torch.nn.Conv2d(z_channels, embed_dim, 1) |
|
self.post_quant_conv = torch.nn.Conv2d(embed_dim, z_channels, 1) |
|
|
|
if fix_decoder: |
|
for _, param in self.decoder.named_parameters(): |
|
param.requires_grad = False |
|
for _, param in self.post_quant_conv.named_parameters(): |
|
param.requires_grad = False |
|
for _, param in self.quantize.named_parameters(): |
|
param.requires_grad = False |
|
elif fix_codebook: |
|
for _, param in self.quantize.named_parameters(): |
|
param.requires_grad = False |
|
|
|
def encode(self, x): |
|
|
|
hs = self.encoder(x) |
|
h = self.quant_conv(hs['out']) |
|
quant, emb_loss, info = self.quantize(h) |
|
return quant, emb_loss, info, hs |
|
|
|
def decode(self, quant): |
|
quant = self.post_quant_conv(quant) |
|
dec = self.decoder(quant) |
|
|
|
return dec |
|
|
|
def forward(self, input): |
|
quant, diff, info, hs = self.encode(input) |
|
dec = self.decode(quant) |
|
|
|
return dec, diff, info, hs |
|
|
|
class VQVAEGANMultiHeadTransformer(nn.Module): |
|
def __init__(self, |
|
n_embed=1024, |
|
embed_dim=256, |
|
ch=64, |
|
out_ch=3, |
|
ch_mult=(1, 2, 2, 4, 4, 8), |
|
num_res_blocks=2, |
|
attn_resolutions=(16, ), |
|
dropout=0.0, |
|
in_channels=3, |
|
resolution=512, |
|
z_channels=256, |
|
double_z=False, |
|
enable_mid=True, |
|
fix_decoder=False, |
|
fix_codebook=True, |
|
fix_encoder=False, |
|
head_size=4, |
|
ex_multi_scale_num=1): |
|
super(VQVAEGANMultiHeadTransformer, self).__init__() |
|
|
|
self.encoder = MultiHeadEncoder(ch=ch, out_ch=out_ch, ch_mult=ch_mult, num_res_blocks=num_res_blocks, |
|
attn_resolutions=attn_resolutions, dropout=dropout, in_channels=in_channels, |
|
resolution=resolution, z_channels=z_channels, double_z=double_z, |
|
enable_mid=enable_mid, head_size=head_size) |
|
for i in range(ex_multi_scale_num): |
|
attn_resolutions = [attn_resolutions[0], attn_resolutions[-1]*2] |
|
self.decoder = MultiHeadDecoderTransformer(ch=ch, out_ch=out_ch, ch_mult=ch_mult, num_res_blocks=num_res_blocks, |
|
attn_resolutions=attn_resolutions, dropout=dropout, in_channels=in_channels, |
|
resolution=resolution, z_channels=z_channels, enable_mid=enable_mid, head_size=head_size) |
|
|
|
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25) |
|
|
|
self.quant_conv = torch.nn.Conv2d(z_channels, embed_dim, 1) |
|
self.post_quant_conv = torch.nn.Conv2d(embed_dim, z_channels, 1) |
|
|
|
if fix_decoder: |
|
for _, param in self.decoder.named_parameters(): |
|
param.requires_grad = False |
|
for _, param in self.post_quant_conv.named_parameters(): |
|
param.requires_grad = False |
|
for _, param in self.quantize.named_parameters(): |
|
param.requires_grad = False |
|
elif fix_codebook: |
|
for _, param in self.quantize.named_parameters(): |
|
param.requires_grad = False |
|
|
|
if fix_encoder: |
|
for _, param in self.encoder.named_parameters(): |
|
param.requires_grad = False |
|
for _, param in self.quant_conv.named_parameters(): |
|
param.requires_grad = False |
|
|
|
|
|
def encode(self, x): |
|
|
|
hs = self.encoder(x) |
|
h = self.quant_conv(hs['out']) |
|
quant, emb_loss, info = self.quantize(h) |
|
return quant, emb_loss, info, hs |
|
|
|
def decode(self, quant, hs): |
|
quant = self.post_quant_conv(quant) |
|
dec = self.decoder(quant, hs) |
|
|
|
return dec |
|
|
|
def forward(self, input): |
|
quant, diff, info, hs = self.encode(input) |
|
dec = self.decode(quant, hs) |
|
|
|
return dec, diff, info, hs |