Create realesrgan.py
Browse files- realesrgan.py +350 -0
realesrgan.py
ADDED
@@ -0,0 +1,350 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
import os
|
5 |
+
import queue
|
6 |
+
import threading
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from torch.nn import functional as F
|
10 |
+
|
11 |
+
import requests
|
12 |
+
from torch.hub import download_url_to_file, get_dir
|
13 |
+
|
14 |
+
from urllib.parse import urlparse
|
15 |
+
|
16 |
+
from .misc import sizeof_fmt
|
17 |
+
|
18 |
+
ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
19 |
+
|
20 |
+
def load_file_from_url(url, model_dir=None, progress=True, file_name=None):
|
21 |
+
"""Load file form http url, will download models if necessary.
|
22 |
+
|
23 |
+
Reference: https://github.com/1adrianb/face-alignment/blob/master/face_alignment/utils.py
|
24 |
+
|
25 |
+
Args:
|
26 |
+
url (str): URL to be downloaded.
|
27 |
+
model_dir (str): The path to save the downloaded model. Should be a full path. If None, use pytorch hub_dir.
|
28 |
+
Default: None.
|
29 |
+
progress (bool): Whether to show the download progress. Default: True.
|
30 |
+
file_name (str): The downloaded file name. If None, use the file name in the url. Default: None.
|
31 |
+
|
32 |
+
Returns:
|
33 |
+
str: The path to the downloaded file.
|
34 |
+
"""
|
35 |
+
if model_dir is None: # use the pytorch hub_dir
|
36 |
+
hub_dir = get_dir()
|
37 |
+
model_dir = os.path.join(hub_dir, 'checkpoints')
|
38 |
+
|
39 |
+
os.makedirs(model_dir, exist_ok=True)
|
40 |
+
|
41 |
+
parts = urlparse(url)
|
42 |
+
filename = os.path.basename(parts.path)
|
43 |
+
if file_name is not None:
|
44 |
+
filename = file_name
|
45 |
+
cached_file = os.path.abspath(os.path.join(model_dir, filename))
|
46 |
+
if not os.path.exists(cached_file):
|
47 |
+
print(f'Downloading: "{url}" to {cached_file}\n')
|
48 |
+
download_url_to_file(url, cached_file, hash_prefix=None, progress=progress)
|
49 |
+
return cached_file
|
50 |
+
|
51 |
+
class RealESRGANer():
|
52 |
+
"""A helper class for upsampling images with RealESRGAN.
|
53 |
+
|
54 |
+
Args:
|
55 |
+
scale (int): Upsampling scale factor used in the networks. It is usually 2 or 4.
|
56 |
+
model_path (str): The path to the pretrained model. It can be urls (will first download it automatically).
|
57 |
+
model (nn.Module): The defined network. Default: None.
|
58 |
+
tile (int): As too large images result in the out of GPU memory issue, so this tile option will first crop
|
59 |
+
input images into tiles, and then process each of them. Finally, they will be merged into one image.
|
60 |
+
0 denotes for do not use tile. Default: 0.
|
61 |
+
tile_pad (int): The pad size for each tile, to remove border artifacts. Default: 10.
|
62 |
+
pre_pad (int): Pad the input images to avoid border artifacts. Default: 10.
|
63 |
+
half (float): Whether to use half precision during inference. Default: False.
|
64 |
+
"""
|
65 |
+
|
66 |
+
def __init__(self,
|
67 |
+
scale,
|
68 |
+
model_path,
|
69 |
+
dni_weight=None,
|
70 |
+
model=None,
|
71 |
+
tile=0,
|
72 |
+
tile_pad=10,
|
73 |
+
pre_pad=10,
|
74 |
+
half=False,
|
75 |
+
device=None,
|
76 |
+
gpu_id=None):
|
77 |
+
self.scale = scale
|
78 |
+
self.tile_size = tile
|
79 |
+
self.tile_pad = tile_pad
|
80 |
+
self.pre_pad = pre_pad
|
81 |
+
self.mod_scale = None
|
82 |
+
self.half = half
|
83 |
+
|
84 |
+
# initialize model
|
85 |
+
if gpu_id:
|
86 |
+
self.device = torch.device(
|
87 |
+
f'cuda:{gpu_id}' if torch.cuda.is_available() else 'cpu') if device is None else device
|
88 |
+
else:
|
89 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if device is None else device
|
90 |
+
|
91 |
+
if isinstance(model_path, list):
|
92 |
+
# dni
|
93 |
+
assert len(model_path) == len(dni_weight), 'model_path and dni_weight should have the save length.'
|
94 |
+
loadnet = self.dni(model_path[0], model_path[1], dni_weight)
|
95 |
+
else:
|
96 |
+
# if the model_path starts with https, it will first download models to the folder: weights
|
97 |
+
if model_path.startswith('https://'):
|
98 |
+
model_path = load_file_from_url(
|
99 |
+
url=model_path, model_dir=os.path.join(ROOT_DIR, 'weights'), progress=True, file_name=None)
|
100 |
+
loadnet = torch.load(model_path, map_location=torch.device('cpu'))
|
101 |
+
|
102 |
+
# prefer to use params_ema
|
103 |
+
if 'params_ema' in loadnet:
|
104 |
+
keyname = 'params_ema'
|
105 |
+
else:
|
106 |
+
keyname = 'params'
|
107 |
+
model.load_state_dict(loadnet[keyname], strict=True)
|
108 |
+
|
109 |
+
model.eval()
|
110 |
+
self.model = model.to(self.device)
|
111 |
+
if self.half:
|
112 |
+
self.model = self.model.half()
|
113 |
+
|
114 |
+
def dni(self, net_a, net_b, dni_weight, key='params', loc='cpu'):
|
115 |
+
"""Deep network interpolation.
|
116 |
+
|
117 |
+
``Paper: Deep Network Interpolation for Continuous Imagery Effect Transition``
|
118 |
+
"""
|
119 |
+
net_a = torch.load(net_a, map_location=torch.device(loc))
|
120 |
+
net_b = torch.load(net_b, map_location=torch.device(loc))
|
121 |
+
for k, v_a in net_a[key].items():
|
122 |
+
net_a[key][k] = dni_weight[0] * v_a + dni_weight[1] * net_b[key][k]
|
123 |
+
return net_a
|
124 |
+
|
125 |
+
def pre_process(self, img):
|
126 |
+
"""Pre-process, such as pre-pad and mod pad, so that the images can be divisible
|
127 |
+
"""
|
128 |
+
img = torch.from_numpy(np.transpose(img, (2, 0, 1))).float()
|
129 |
+
self.img = img.unsqueeze(0).to(self.device)
|
130 |
+
if self.half:
|
131 |
+
self.img = self.img.half()
|
132 |
+
|
133 |
+
# pre_pad
|
134 |
+
if self.pre_pad != 0:
|
135 |
+
self.img = F.pad(self.img, (0, self.pre_pad, 0, self.pre_pad), 'reflect')
|
136 |
+
# mod pad for divisible borders
|
137 |
+
if self.scale == 2:
|
138 |
+
self.mod_scale = 2
|
139 |
+
elif self.scale == 1:
|
140 |
+
self.mod_scale = 4
|
141 |
+
if self.mod_scale is not None:
|
142 |
+
self.mod_pad_h, self.mod_pad_w = 0, 0
|
143 |
+
_, _, h, w = self.img.size()
|
144 |
+
if (h % self.mod_scale != 0):
|
145 |
+
self.mod_pad_h = (self.mod_scale - h % self.mod_scale)
|
146 |
+
if (w % self.mod_scale != 0):
|
147 |
+
self.mod_pad_w = (self.mod_scale - w % self.mod_scale)
|
148 |
+
self.img = F.pad(self.img, (0, self.mod_pad_w, 0, self.mod_pad_h), 'reflect')
|
149 |
+
|
150 |
+
def process(self):
|
151 |
+
# model inference
|
152 |
+
self.output = self.model(self.img)
|
153 |
+
|
154 |
+
def tile_process(self):
|
155 |
+
"""It will first crop input images to tiles, and then process each tile.
|
156 |
+
Finally, all the processed tiles are merged into one images.
|
157 |
+
|
158 |
+
Modified from: https://github.com/ata4/esrgan-launcher
|
159 |
+
"""
|
160 |
+
batch, channel, height, width = self.img.shape
|
161 |
+
output_height = height * self.scale
|
162 |
+
output_width = width * self.scale
|
163 |
+
output_shape = (batch, channel, output_height, output_width)
|
164 |
+
|
165 |
+
# start with black image
|
166 |
+
self.output = self.img.new_zeros(output_shape)
|
167 |
+
tiles_x = math.ceil(width / self.tile_size)
|
168 |
+
tiles_y = math.ceil(height / self.tile_size)
|
169 |
+
|
170 |
+
# loop over all tiles
|
171 |
+
for y in range(tiles_y):
|
172 |
+
for x in range(tiles_x):
|
173 |
+
# extract tile from input image
|
174 |
+
ofs_x = x * self.tile_size
|
175 |
+
ofs_y = y * self.tile_size
|
176 |
+
# input tile area on total image
|
177 |
+
input_start_x = ofs_x
|
178 |
+
input_end_x = min(ofs_x + self.tile_size, width)
|
179 |
+
input_start_y = ofs_y
|
180 |
+
input_end_y = min(ofs_y + self.tile_size, height)
|
181 |
+
|
182 |
+
# input tile area on total image with padding
|
183 |
+
input_start_x_pad = max(input_start_x - self.tile_pad, 0)
|
184 |
+
input_end_x_pad = min(input_end_x + self.tile_pad, width)
|
185 |
+
input_start_y_pad = max(input_start_y - self.tile_pad, 0)
|
186 |
+
input_end_y_pad = min(input_end_y + self.tile_pad, height)
|
187 |
+
|
188 |
+
# input tile dimensions
|
189 |
+
input_tile_width = input_end_x - input_start_x
|
190 |
+
input_tile_height = input_end_y - input_start_y
|
191 |
+
tile_idx = y * tiles_x + x + 1
|
192 |
+
input_tile = self.img[:, :, input_start_y_pad:input_end_y_pad, input_start_x_pad:input_end_x_pad]
|
193 |
+
|
194 |
+
# upscale tile
|
195 |
+
try:
|
196 |
+
with torch.no_grad():
|
197 |
+
output_tile = self.model(input_tile)
|
198 |
+
except RuntimeError as error:
|
199 |
+
print('Error', error)
|
200 |
+
print(f'\tTile {tile_idx}/{tiles_x * tiles_y}')
|
201 |
+
|
202 |
+
# output tile area on total image
|
203 |
+
output_start_x = input_start_x * self.scale
|
204 |
+
output_end_x = input_end_x * self.scale
|
205 |
+
output_start_y = input_start_y * self.scale
|
206 |
+
output_end_y = input_end_y * self.scale
|
207 |
+
|
208 |
+
# output tile area without padding
|
209 |
+
output_start_x_tile = (input_start_x - input_start_x_pad) * self.scale
|
210 |
+
output_end_x_tile = output_start_x_tile + input_tile_width * self.scale
|
211 |
+
output_start_y_tile = (input_start_y - input_start_y_pad) * self.scale
|
212 |
+
output_end_y_tile = output_start_y_tile + input_tile_height * self.scale
|
213 |
+
|
214 |
+
# put tile into output image
|
215 |
+
self.output[:, :, output_start_y:output_end_y,
|
216 |
+
output_start_x:output_end_x] = output_tile[:, :, output_start_y_tile:output_end_y_tile,
|
217 |
+
output_start_x_tile:output_end_x_tile]
|
218 |
+
|
219 |
+
def post_process(self):
|
220 |
+
# remove extra pad
|
221 |
+
if self.mod_scale is not None:
|
222 |
+
_, _, h, w = self.output.size()
|
223 |
+
self.output = self.output[:, :, 0:h - self.mod_pad_h * self.scale, 0:w - self.mod_pad_w * self.scale]
|
224 |
+
# remove prepad
|
225 |
+
if self.pre_pad != 0:
|
226 |
+
_, _, h, w = self.output.size()
|
227 |
+
self.output = self.output[:, :, 0:h - self.pre_pad * self.scale, 0:w - self.pre_pad * self.scale]
|
228 |
+
return self.output
|
229 |
+
|
230 |
+
@torch.no_grad()
|
231 |
+
def enhance(self, img, outscale=None, alpha_upsampler='realesrgan'):
|
232 |
+
h_input, w_input = img.shape[0:2]
|
233 |
+
# img: numpy
|
234 |
+
img = img.astype(np.float32)
|
235 |
+
if np.max(img) > 256: # 16-bit image
|
236 |
+
max_range = 65535
|
237 |
+
print('\tInput is a 16-bit image')
|
238 |
+
else:
|
239 |
+
max_range = 255
|
240 |
+
img = img / max_range
|
241 |
+
if len(img.shape) == 2: # gray image
|
242 |
+
img_mode = 'L'
|
243 |
+
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
|
244 |
+
elif img.shape[2] == 4: # RGBA image with alpha channel
|
245 |
+
img_mode = 'RGBA'
|
246 |
+
alpha = img[:, :, 3]
|
247 |
+
img = img[:, :, 0:3]
|
248 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
249 |
+
if alpha_upsampler == 'realesrgan':
|
250 |
+
alpha = cv2.cvtColor(alpha, cv2.COLOR_GRAY2RGB)
|
251 |
+
else:
|
252 |
+
img_mode = 'RGB'
|
253 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
254 |
+
|
255 |
+
# ------------------- process image (without the alpha channel) ------------------- #
|
256 |
+
self.pre_process(img)
|
257 |
+
if self.tile_size > 0:
|
258 |
+
self.tile_process()
|
259 |
+
else:
|
260 |
+
self.process()
|
261 |
+
output_img = self.post_process()
|
262 |
+
output_img = output_img.data.squeeze().float().cpu().clamp_(0, 1).numpy()
|
263 |
+
output_img = np.transpose(output_img[[2, 1, 0], :, :], (1, 2, 0))
|
264 |
+
if img_mode == 'L':
|
265 |
+
output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2GRAY)
|
266 |
+
|
267 |
+
# ------------------- process the alpha channel if necessary ------------------- #
|
268 |
+
if img_mode == 'RGBA':
|
269 |
+
if alpha_upsampler == 'realesrgan':
|
270 |
+
self.pre_process(alpha)
|
271 |
+
if self.tile_size > 0:
|
272 |
+
self.tile_process()
|
273 |
+
else:
|
274 |
+
self.process()
|
275 |
+
output_alpha = self.post_process()
|
276 |
+
output_alpha = output_alpha.data.squeeze().float().cpu().clamp_(0, 1).numpy()
|
277 |
+
output_alpha = np.transpose(output_alpha[[2, 1, 0], :, :], (1, 2, 0))
|
278 |
+
output_alpha = cv2.cvtColor(output_alpha, cv2.COLOR_BGR2GRAY)
|
279 |
+
else: # use the cv2 resize for alpha channel
|
280 |
+
h, w = alpha.shape[0:2]
|
281 |
+
output_alpha = cv2.resize(alpha, (w * self.scale, h * self.scale), interpolation=cv2.INTER_LINEAR)
|
282 |
+
|
283 |
+
# merge the alpha channel
|
284 |
+
output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2BGRA)
|
285 |
+
output_img[:, :, 3] = output_alpha
|
286 |
+
|
287 |
+
# ------------------------------ return ------------------------------ #
|
288 |
+
if max_range == 65535: # 16-bit image
|
289 |
+
output = (output_img * 65535.0).round().astype(np.uint16)
|
290 |
+
else:
|
291 |
+
output = (output_img * 255.0).round().astype(np.uint8)
|
292 |
+
|
293 |
+
if outscale is not None and outscale != float(self.scale):
|
294 |
+
output = cv2.resize(
|
295 |
+
output, (
|
296 |
+
int(w_input * outscale),
|
297 |
+
int(h_input * outscale),
|
298 |
+
), interpolation=cv2.INTER_LANCZOS4)
|
299 |
+
|
300 |
+
return output, img_mode
|
301 |
+
|
302 |
+
|
303 |
+
class PrefetchReader(threading.Thread):
|
304 |
+
"""Prefetch images.
|
305 |
+
|
306 |
+
Args:
|
307 |
+
img_list (list[str]): A image list of image paths to be read.
|
308 |
+
num_prefetch_queue (int): Number of prefetch queue.
|
309 |
+
"""
|
310 |
+
|
311 |
+
def __init__(self, img_list, num_prefetch_queue):
|
312 |
+
super().__init__()
|
313 |
+
self.que = queue.Queue(num_prefetch_queue)
|
314 |
+
self.img_list = img_list
|
315 |
+
|
316 |
+
def run(self):
|
317 |
+
for img_path in self.img_list:
|
318 |
+
img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED)
|
319 |
+
self.que.put(img)
|
320 |
+
|
321 |
+
self.que.put(None)
|
322 |
+
|
323 |
+
def __next__(self):
|
324 |
+
next_item = self.que.get()
|
325 |
+
if next_item is None:
|
326 |
+
raise StopIteration
|
327 |
+
return next_item
|
328 |
+
|
329 |
+
def __iter__(self):
|
330 |
+
return self
|
331 |
+
|
332 |
+
|
333 |
+
class IOConsumer(threading.Thread):
|
334 |
+
|
335 |
+
def __init__(self, opt, que, qid):
|
336 |
+
super().__init__()
|
337 |
+
self._queue = que
|
338 |
+
self.qid = qid
|
339 |
+
self.opt = opt
|
340 |
+
|
341 |
+
def run(self):
|
342 |
+
while True:
|
343 |
+
msg = self._queue.get()
|
344 |
+
if isinstance(msg, str) and msg == 'quit':
|
345 |
+
break
|
346 |
+
|
347 |
+
output = msg['output']
|
348 |
+
save_path = msg['save_path']
|
349 |
+
cv2.imwrite(save_path, output)
|
350 |
+
print(f'IO worker {self.qid} is done.')
|