File size: 21,736 Bytes
cf7c183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
from enum import Enum
import json
import os
from tqdm import tqdm
from collections import Counter, defaultdict
from document_preprocessor import Tokenizer
import gzip


class IndexType(Enum):
    # The three types of index currently supported are InvertedIndex, PositionalIndex and OnDiskInvertedIndex
    InvertedIndex = 'BasicInvertedIndex'
    # NOTE: You don't need to support the following three
    PositionalIndex = 'PositionalIndex'
    OnDiskInvertedIndex = 'OnDiskInvertedIndex'
    SampleIndex = 'SampleIndex'


class InvertedIndex:
    def __init__(self) -> None:
        """
        The base interface representing the data structure for all index classes.
        The functions are meant to be implemented in the actual index classes and not as part of this interface.
        """
        self.statistics = defaultdict(Counter)  # Central statistics of the index
        self.index = {}  # Index
        self.document_metadata = {}  # Metadata like length, number of unique tokens of the documents

    # NOTE: The following functions have to be implemented in the three inherited classes and not in this class

    def remove_doc(self, docid: int) -> None:
        """
        Removes a document from the index and updates the index's metadata on the basis of this
        document's deletion.

        Args:
            docid: The id of the document
        """
        # TODO: Implement this to remove a document from the entire index and statistics
        raise NotImplementedError

    def add_doc(self, docid: int, tokens: list[str]) -> None:
        """
        Adds a document to the index and updates the index's metadata on the basis of this
        document's addition (e.g., collection size, average document length).

        Args:
            docid: The id of the document
            tokens: The tokens of the document
                Tokens that should not be indexed will have been replaced with None in this list.
                The length of the list should be equal to the number of tokens prior to any token removal.
        """
        # TODO: Implement this to add documents to the index
        raise NotImplementedError

    def get_postings(self, term: str) -> list[tuple[int, int]]:
        """
        Returns the list of postings, which contains (at least) all the documents that have that term.
        In most implementation, this information is represented as list of tuples where each tuple
        contains the docid and the term's frequency in that document.
        
        Args:
            term: The term to be searched for

        Returns:
            A list of tuples containing a document id for a document
            that had that search term and an int value indicating the term's frequency in 
            the document
        """
        # TODO: Implement this to fetch a term's postings from the index
        raise NotImplementedError

    def get_doc_metadata(self, doc_id: int) -> dict[str, int]:
        """
        For the given document id, returns a dictionary with metadata about that document.
        Metadata should include keys such as the following:
            "unique_tokens": How many unique tokens are in the document (among those not-filtered)
            "length": how long the document is in terms of tokens (including those filtered)

        Args:
            docid: The id of the document

        Returns:
            A dictionary with metadata about the document
        """
        # TODO: Implement to fetch a particular document stored in metadata
        raise NotImplementedError

    def get_term_metadata(self, term: str) -> dict[str, int]:
        """
        For the given term, returns a dictionary with metadata about that term in the index.
        Metadata should include keys such as the following:
            "count": How many times this term appeared in the corpus as a whole

        Args:
            term: The term to be searched for

        Returns:
            A dictionary with metadata about the term in the index
        """
        # TODO: Implement to fetch a particular term stored in metadata
        raise NotImplementedError

    def get_statistics(self) -> dict[str, int]:
        """
        Returns a dictionary mapping statistical properties (named as strings) about the index to their values.  
        Keys should include at least the following:
            "unique_token_count": how many unique terms are in the index
            "total_token_count": how many total tokens are indexed including filterd tokens), 
                i.e., the sum of the lengths of all documents
            "stored_total_token_count": how many total tokens are indexed excluding filterd tokens
            "number_of_documents": the number of documents indexed
            "mean_document_length": the mean number of tokens in a document (including filter tokens)

        Returns:
              A dictionary mapping statistical properties (named as strings) about the index to their values
        """
        # TODO: Calculate statistics like 'unique_token_count', 'total_token_count',
        #       'number_of_documents', 'mean_document_length' and any other relevant central statistic
        raise NotImplementedError

    def save(self, index_directory_name: str) -> None:
        """
        Saves the state of this index to the provided directory.
        The save state should include the inverted index as well as
        any metadata need to load this index back from disk.

        Args:
            index_directory_name: The name of the directory where the index will be saved
        """
        # TODO: Save the index files to disk
        raise NotImplementedError

    def load(self, index_directory_name: str) -> None:
        """
        Loads the inverted index and any associated metadata from files located in the directory.
        This method will only be called after save() has been called, so the directory should
        match the filenames used in save().

        Args:
            index_directory_name: The name of the directory that contains the index
        """
        # TODO: Load the index files from disk to a Python object
        raise NotImplementedError


class BasicInvertedIndex(InvertedIndex):
    def __init__(self) -> None:
        """
        An inverted index implementation where everything is kept in memory
        """
        super().__init__()
        self.statistics['index_type'] = 'BasicInvertedIndex'
        # For example, you can initialize the index and statistics here:
        #    self.statistics['docmap'] = {}
        #    self.index = defaultdict(list)
        #    self.doc_id = 0
        self.statistics['term_metadata'] = defaultdict(list)
        self.statistics['unique_token_count'] = 0
        self.statistics['total_token_count'] = 0
        self.statistics['stored_total_token_count'] = 0
        self.statistics['number_of_documents'] = 0
        self.statistics['mean_document_length'] = 0
        self.index = defaultdict(list)
  
    # TODO: Implement all the functions mentioned in the interface
    # This is the typical inverted index where each term keeps track of documents and the term count per document
    def remove_doc(self, docid: int) -> None:
        # TODO implement this to remove a document from the entire index and statistics
        for token in self.index:
            for i, (doc, count) in enumerate(self.index[token]):
                if doc == docid:
                    self.index[token].pop(i)
                    self.statistics['stored_total_token_count'] -= count
                    self.statistics['term_metadata'][token][0] -= 1
                    self.statistics['term_metadata'][token][1] -= count
                    break
        self.statistics['total_token_count'] -= self.document_metadata[docid]['length']
        self.statistics['number_of_documents'] -= 1
        del self.document_metadata[docid]
        self.get_statistics()


    def add_doc(self, docid: int, tokens: list[str]) -> None:
        '''
        Adds a document to the index and updates the index's metadata on the basis of this
        document's addition (e.g., collection size, average document length, etc.)

        Arguments:
            docid [int]: the identifier of the document

            tokens list[str]: the tokens of the document. Tokens that should not be indexed will have 
            been replaced with None in this list. The length of the list should be equal to the number
            of tokens prior to any token removal.
        '''
        # TODO implement this to add documents to the index
        if not tokens:
            return
        
        token_counts = Counter(tokens)
        for token in token_counts:
            if token is None:
                continue
            self.index[token].append((docid, token_counts[token]))
            self.statistics['stored_total_token_count'] += token_counts[token]
            if token in self.statistics['term_metadata']:
                self.statistics['term_metadata'][token][0] += 1
                self.statistics['term_metadata'][token][1] += token_counts[token]
            else:
                self.statistics['term_metadata'][token] = [1, token_counts[token]]

        self.document_metadata[docid] = {'unique_tokens': len(token_counts), 'length': len(tokens)}
        self.statistics['total_token_count'] += len(tokens)
        self.statistics['number_of_documents'] += 1
        

    def get_postings(self, term: str) -> list[tuple[int, int]]:
        '''
        Returns the list of postings, which contains (at least) all the documents that have that term.
        In most implementation this information is represented as list of tuples where each tuple
        contains the docid and the term's frequency in that document.
        
        Arguments:
            term [str]: the term to be searched for

        Returns:
            list[tuple[int,str]] : A list of tuples containing a document id for a document
            that had that search term and an int value indicating the term's frequency in 
            the document.
        '''
        # TODO implement this to fetch a term's postings from the index
        if term not in self.index:
            return []
        return self.index[term]

    def get_doc_metadata(self, doc_id: int) -> dict[str, int]:
        '''
        For the given document id, returns a dictionary with metadata about that document. Metadata
        should include keys such as the following:
            "unique_tokens": How many unique tokens are in the document (among those not-filtered)
            "length": how long the document is in terms of tokens (including those filtered)             
        '''
        # TODO implement to fetch a particular documents stored metadata
        if doc_id in self.document_metadata:
            return self.document_metadata[doc_id]
        return {'unique_tokens': 0, 'length': 0}

    def get_term_metadata(self, term: str) -> dict[str, int]:
        '''
        For the given term, returns a dictionary with metadata about that term in the index. Metadata
        should include keys such as the following:
            "count": How many times this term appeared in the corpus as a whole.          
        '''        
        # TODO implement to fetch a particular terms stored metadata
        if term not in self.statistics['term_metadata']:
            return {'document_count': 0, 'count': 0}
        document_count = self.statistics['term_metadata'][term][0]
        term_frequency = self.statistics['term_metadata'][term][1]
        return {'document_count': document_count, 'count': term_frequency}

    def get_statistics(self) -> dict[str, int]:
        '''
        Returns a dictionary mapping statistical properties (named as strings) about the index to their values.  
        Keys should include at least the following:

            "unique_token_count": how many unique terms are in the index
            "total_token_count": how many total tokens are indexed including filterd tokens), 
                i.e., the sum of the lengths of all documents
            "stored_total_token_count": how many total tokens are indexed excluding filterd tokens
            "number_of_documents": the number of documents indexed
            "mean_document_length": the mean number of tokens in a document (including filter tokens)                
        '''
        # TODO calculate statistics like 'unique_token_count', 'total_token_count', 
        #  'number_of_documents', 'mean_document_length' and any other relevant central statistic.
        self.statistics['unique_token_count'] = len(self.index)
        self.statistics['mean_document_length'] = self.statistics['total_token_count']/self.statistics['number_of_documents'] if self.statistics['number_of_documents'] else 0
        return {'unique_token_count': self.statistics['unique_token_count'], 
                'total_token_count': self.statistics['total_token_count'], 
                'stored_total_token_count': self.statistics['stored_total_token_count'], 
                'number_of_documents': self.statistics['number_of_documents'], 
                'mean_document_length': self.statistics['mean_document_length']}

    # NOTE: changes in this method for HW2
    def save(self, index_directory_name) -> None:
        '''
        Saves the state of this index to the provided directory. The save state should include the
        inverted index as well as any meta data need to load this index back from disk
        '''
        # TODO save the index files to disk
        if not os.path.exists(index_directory_name):
            os.mkdir(index_directory_name)
        with open(index_directory_name+'/'+'index.json', 'w', encoding='utf-8') as f:
            json.dump(self.index, f)
        with open(index_directory_name+'/'+'document_metadata.json', 'w', encoding='utf-8') as f:
            json.dump(self.document_metadata, f)
        with open(index_directory_name+'/'+'statistics.json', 'w', encoding='utf-8') as f:
            json.dump(self.statistics, f)
        print('Index saved!')

    # NOTE: changes in this method for HW2
    def load(self, index_directory_name) -> None:
        '''
        Loads the inverted index and any associated metadata from files located in the directory.
        This method will only be called after save() has been called, so the directory should
        match the filenames used in save()
        '''
        # TODO load the index files from disk to a Python object
        with open(index_directory_name+'/'+'index.json', 'r', encoding='utf-8') as f:
            self.index = json.load(f)
        with open(index_directory_name+'/'+'document_metadata.json', 'r', encoding='utf-8') as f:
            document_metadata = json.load(f)
            self.document_metadata = {int(k): v for k, v in document_metadata.items()}
        with open(index_directory_name+'/'+'statistics.json', 'r', encoding='utf-8') as f:
            self.statistics = json.load(f)


class Indexer:
    """
    The Indexer class is responsible for creating the index used by the search/ranking algorithm.
    """
    @staticmethod
    def create_index(index_type: IndexType, dataset_path: str,
                     document_preprocessor: Tokenizer, stopwords: set[str],
                     minimum_word_frequency: int, text_key="prompt",
                     max_docs: int = -1, doc_augment_dict: dict[int, list[str]] | None = None) -> InvertedIndex:
        """
        Creates an inverted index.

        Args:
            index_type: This parameter tells you which type of index to create, e.g., BasicInvertedIndex
            dataset_path: The file path to your dataset
            document_preprocessor: A class which has a 'tokenize' function which would read each document's text
                and return a list of valid tokens
            stopwords: The set of stopwords to remove during preprocessing or 'None' if no stopword filtering is to be done
            minimum_word_frequency: An optional configuration which sets the minimum word frequency of a particular token to be indexed
                If the token does not appear in the document at least for the set frequency, it will not be indexed.
                Setting a value of 0 will completely ignore the parameter.
            text_key: The key in the JSON to use for loading the text
            max_docs: The maximum number of documents to index
                Documents are processed in the order they are seen.
            doc_augment_dict: An optional argument; This is a dict created from the doc2query.csv where the keys are
                the document id and the values are the list of queries for a particular document.

        Returns:
            An inverted index
        """
        # TODO (HW3): This function now has an optional argument doc_augment_dict; check README
       
        # HINT: Think of what to do when doc_augment_dict exists, how can you deal with the extra information?
        #       How can you use that information with the tokens?
        #       If doc_augment_dict doesn't exist, it's the same as before, tokenizing just the document text
          
        # TODO: Implement this class properly. This is responsible for going through the documents
        #       one by one and inserting them into the index after tokenizing the document

        # TODO: Figure out what type of InvertedIndex to create.
        #       For HW3, only the BasicInvertedIndex is required to be supported

        # TODO: If minimum word frequencies are specified, process the collection to get the
        #       word frequencies

        # NOTE: Make sure to support both .jsonl.gz and .jsonl as input
                      
        # TODO: Figure out which set of words to not index because they are stopwords or
        #       have too low of a frequency

        # HINT: This homework should work fine on a laptop with 8GB of memory but if you need,
        #       you can delete some unused objects here to free up some space

        # TODO: Read the collection and process/index each document.
        #       Only index the terms that are not stopwords and have high-enough frequency

        index = None
        if index_type == IndexType.InvertedIndex:
            index = BasicInvertedIndex()
        else:
            raise NameError
        

        filtered_tokens = set()
        if minimum_word_frequency:
            word_frequency = Counter()
            if dataset_path.endswith('jsonl'):
                with open(dataset_path, 'r', encoding='utf-8') as f:
                    for i, line in tqdm(enumerate(f)):
                        if max_docs > 0 and i >= max_docs:
                            break
                        docid = json.loads(line)['docid']
                        doc = json.loads(line)[text_key]
                        if doc_augment_dict and docid in doc_augment_dict:
                            doc = ' '.join([doc] + doc_augment_dict[docid])
                        tokens = document_preprocessor.tokenize(doc)
                        word_frequency.update(tokens)
            elif dataset_path.endswith('jsonl.gz'):
                with gzip.open(dataset_path, 'rt', encoding='utf-8') as f:
                    for i, line in tqdm(enumerate(f)):
                        if max_docs > 0 and i >= max_docs:
                            break
                        docid = json.loads(line)['docid']
                        doc = json.loads(line)[text_key]
                        if doc_augment_dict and docid in doc_augment_dict:
                            doc = ' '.join([doc] + doc_augment_dict[docid])
                        tokens = document_preprocessor.tokenize(doc)
                        word_frequency.update(tokens)
            else:
                raise TypeError('Dataset type not supported')
            for word in word_frequency:
                if word_frequency[word] < minimum_word_frequency:
                    filtered_tokens.add(word)

        if stopwords:
            filtered_tokens |= stopwords

        if dataset_path.endswith('jsonl'):
            with open(dataset_path, 'r', encoding='utf-8') as f:
                for i, line in tqdm(enumerate(f)):
                    if max_docs > 0 and i >= max_docs:
                        break
                    docid = json.loads(line)['docid']
                    doc = json.loads(line)[text_key]
                    if doc_augment_dict and docid in doc_augment_dict:
                        doc = ' '.join([doc] + doc_augment_dict[docid])
                    tokens = document_preprocessor.tokenize(doc)
                    for j, token in enumerate(tokens):
                        if token in filtered_tokens:
                            tokens[j] = None
                    index.add_doc(docid, tokens)
        elif dataset_path.endswith('jsonl.gz'):
            with gzip.open(dataset_path, 'rt', encoding='utf-8') as f:
                for i, line in tqdm(enumerate(f)):
                    if max_docs > 0 and i >= max_docs:
                        break
                    docid = json.loads(line)['docid']
                    doc = json.loads(line)[text_key]
                    if doc_augment_dict and docid in doc_augment_dict:
                        doc = ' '.join([doc] + doc_augment_dict[docid])
                    tokens = document_preprocessor.tokenize(doc)
                    for j, token in enumerate(tokens):
                        if token in filtered_tokens:
                            tokens[j] = None
                    index.add_doc(docid, tokens)
        index.get_statistics()

        return index