diff --git a/.gitattributes b/.gitattributes
index c7d9f3332a950355d5a77d85000f05e6f45435ea..9d490647f82b60a4b042e20532a788fad14ef73d 100644
--- a/.gitattributes
+++ b/.gitattributes
@@ -32,3 +32,88 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
*.zip filter=lfs diff=lfs merge=lfs -text
*.zst filter=lfs diff=lfs merge=lfs -text
*tfevents* filter=lfs diff=lfs merge=lfs -text
+images/animals.png filter=lfs diff=lfs merge=lfs -text
+images/region_retrieval.png filter=lfs diff=lfs merge=lfs -text
+xdecoder_focalt_last_novg.pt filter=lfs diff=lfs merge=lfs -text
+xdecoder_focalt_last.pt filter=lfs diff=lfs merge=lfs -text
+v_emb.da filter=lfs diff=lfs merge=lfs -text
+images/coco/077.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/071.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/022.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/026.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/036.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/039.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/052.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/057.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/061.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/017.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/021.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/030.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/056.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/064.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/072.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/014.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/025.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/027.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/038.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/044.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/049.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/053.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/078.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/002.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/005.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/007.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/008.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/011.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/013.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/020.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/034.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/000.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/066.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/074.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/065.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/023.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/024.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/033.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/040.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/041.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/046.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/060.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/003.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/058.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/073.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/042.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/015.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/016.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/018.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/051.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/054.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/063.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/010.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/050.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/070.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/037.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/031.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/062.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/067.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/069.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/029.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/012.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/068.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/075.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/006.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/035.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/001.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/055.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/048.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/019.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/028.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/043.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/059.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/079.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/004.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/032.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/045.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/047.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/076.jpg filter=lfs diff=lfs merge=lfs -text
+images/coco/009.jpg filter=lfs diff=lfs merge=lfs -text
diff --git a/.gitignore b/.gitignore
new file mode 100644
index 0000000000000000000000000000000000000000..778ba5818143c429c56bb4562ca204c720c9adaa
--- /dev/null
+++ b/.gitignore
@@ -0,0 +1,103 @@
+# IntelliJ project files
+.idea
+*.iml
+out
+gen
+
+### Vim template
+[._]*.s[a-w][a-z]
+[._]s[a-w][a-z]
+*.un~
+Session.vim
+.netrwhist
+*~
+
+### IPythonNotebook template
+# Temporary data
+.ipynb_checkpoints/
+
+### Python template
+# Byte-compiled / optimized / DLL files
+__pycache__/
+*.py[cod]
+*$py.class
+
+# C extensions
+*.so
+
+# Distribution / packaging
+.Python
+env/
+build/
+develop-eggs/
+dist/
+downloads/
+eggs/
+.eggs/
+#lib/
+#lib64/
+parts/
+sdist/
+var/
+*.egg-info/
+.installed.cfg
+*.egg
+
+# PyInstaller
+# Usually these files are written by a python script from a template
+# before PyInstaller builds the exe, so as to inject date/other infos into it.
+*.manifest
+*.spec
+
+# Installer logs
+pip-log.txt
+pip-delete-this-directory.txt
+
+# Unit test / coverage reports
+htmlcov/
+.tox/
+.coverage
+.coverage.*
+.cache
+nosetests.xml
+coverage.xml
+*,cover
+
+# Translations
+*.mo
+*.pot
+
+# Django stuff:
+*.log
+
+# Sphinx documentation
+docs/_build/
+
+# PyBuilder
+target/
+
+*.ipynb
+*.params
+# *.json
+.vscode/
+*.code-workspace/
+
+lib/pycocotools/_mask.c
+lib/nms/cpu_nms.c
+
+OUTPUT
+OUTPUT/*
+models/*
+DATASET
+DATASET/*
+external/
+MODELS
+MODELS/*
+gradio_cached_examples/*
+
+kill.sh
+
+draws/
+plot/
+
+*venv/*
diff --git a/README.md b/README.md
index e48f94ef4c61b42655454cf32d2ad0e022cf1d14..139dc454d481b5ea557249742bb32a1a9bad13ad 100644
--- a/README.md
+++ b/README.md
@@ -1,12 +1,13 @@
---
-title: Demo
-emoji: 🐢
+title: X Decoder
+emoji: 📈
colorFrom: purple
-colorTo: red
+colorTo: gray
sdk: gradio
-sdk_version: 3.15.0
+sdk_version: 3.14.0
app_file: app.py
pinned: false
+license: afl-3.0
---
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
diff --git a/__init__.py b/__init__.py
new file mode 100755
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/app.py b/app.py
new file mode 100644
index 0000000000000000000000000000000000000000..aa5bf7e315b480e65286a4eb839d30989a494d21
--- /dev/null
+++ b/app.py
@@ -0,0 +1,120 @@
+# --------------------------------------------------------
+# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
+# Copyright (c) 2022 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Xueyan Zou (xueyan@cs.wisc.edu), Jianwei Yang (jianwyan@microsoft.com)
+# --------------------------------------------------------
+
+import os
+os.system("python -m pip install git+https://github.com/MaureenZOU/detectron2-xyz.git")
+
+import gradio as gr
+import torch
+import argparse
+
+from xdecoder.BaseModel import BaseModel
+from xdecoder import build_model
+from utils.distributed import init_distributed
+from utils.arguments import load_opt_from_config_files
+
+from tasks import *
+
+def parse_option():
+ parser = argparse.ArgumentParser('X-Decoder All-in-One Demo', add_help=False)
+ parser.add_argument('--conf_files', default="configs/xdecoder/svlp_focalt_lang.yaml", metavar="FILE", help='path to config file', )
+ args = parser.parse_args()
+
+ return args
+
+'''
+build args
+'''
+args = parse_option()
+opt = load_opt_from_config_files(args.conf_files)
+opt = init_distributed(opt)
+
+# META DATA
+pretrained_pth_last = os.path.join("xdecoder_focalt_last.pt")
+pretrained_pth_novg = os.path.join("xdecoder_focalt_last_novg.pt")
+
+if not os.path.exists(pretrained_pth_last):
+ os.system("wget {}".format("https://projects4jw.blob.core.windows.net/x-decoder/release/xdecoder_focalt_last.pt"))
+
+if not os.path.exists(pretrained_pth_novg):
+ os.system("wget {}".format("https://projects4jw.blob.core.windows.net/x-decoder/release/xdecoder_focalt_last_novg.pt"))
+
+
+'''
+build model
+'''
+model_last = BaseModel(opt, build_model(opt)).from_pretrained(pretrained_pth_last).eval().cuda()
+model_cap = BaseModel(opt, build_model(opt)).from_pretrained(pretrained_pth_novg).eval().cuda()
+
+with torch.no_grad():
+ model_last.model.sem_seg_head.predictor.lang_encoder.get_text_embeddings(["background", "background"], is_eval=True)
+ model_cap.model.sem_seg_head.predictor.lang_encoder.get_text_embeddings(["background", "background"], is_eval=True)
+
+'''
+inference model
+'''
+
+@torch.no_grad()
+def inference(image, task, *args, **kwargs):
+ image = image.convert("RGB")
+ with torch.autocast(device_type='cuda', dtype=torch.float16):
+ if task == 'Referring Inpainting':
+ return referring_inpainting(model_last, image, *args, **kwargs)
+ elif task == 'Referring Segmentation':
+ return referring_segmentation(model_last, image, *args, **kwargs)
+ elif task == 'Open Vocabulary Semantic Segmentation':
+ return open_semseg(model_last, image, *args, **kwargs)
+ elif task == 'Open Vocabulary Panoptic Segmentation':
+ return open_panoseg(model_last, image, *args, **kwargs)
+ elif task == 'Open Vocabulary Instance Segmentation':
+ return open_instseg(model_last, image, *args, **kwargs)
+ elif task == 'Image Captioning':
+ return image_captioning(model_cap, image, *args, **kwargs)
+ elif task == 'Referring Captioning (Beta)':
+ return referring_captioning([model_last, model_cap], image, *args, **kwargs)
+ elif task == 'Text Retrieval':
+ return text_retrieval(model_cap, image, *args, **kwargs)
+ elif task == 'Image/Region Retrieval (Only Support Exampled 80 images)':
+ return region_retrieval([model_cap, model_last], image, *args, **kwargs)
+
+'''
+launch app
+'''
+title = "X-Decoder All-in-One Demo"
+description = "
Project Page | Paper | Github Repo | Video
"
+article = "The Demo is Run on X-Decoder (Focal-T)."
+
+inputs = [gr.inputs.Image(type='pil'), gr.inputs.Radio(choices=["Referring Segmentation", 'Open Vocabulary Semantic Segmentation','Open Vocabulary Instance Segmentation', "Open Vocabulary Panoptic Segmentation", "Image Captioning", "Text Retrieval", "Referring Inpainting", "Referring Captioning (Beta)", "Image/Region Retrieval (Only Support Exampled 80 images)"], type="value", default="OpenVocab Semantic Segmentation", label="Task"), gr.Textbox(label="xdecoder_text"), gr.Textbox(label="inpainting_text"), gr.Textbox(label="task_description")]
+gr.Interface(
+ fn=inference,
+ inputs=inputs,
+ outputs=[
+ gr.outputs.Image(
+ type="pil",
+ label="segmentation results"),
+ gr.Textbox(label="text restuls"),
+ gr.outputs.Image(
+ type="pil",
+ label="inpainting results"),
+ ],
+ examples=[
+ ["./images/fruit.jpg", "Referring Segmentation", "The larger watermelon.,The front white flower.,White tea pot.,Flower bunch.,white vase.,The peach on the left.,The brown knife.", '', 'Format: s,s,s'],
+ ["./images/animals.png", "Open Vocabulary Semantic Segmentation", "zebra,antelope,giraffe,ostrich,sky,water,grass,sand,tree", '', 'Format: x,x,x'],
+ ["./images/street.jpg", "Open Vocabulary Panoptic Segmentation", "stuff:building,sky,street,tree,rock,sidewalk;thing:car,person,traffic light", '', 'Format: stuff:x,x,x;thing:y,y,y'],
+ ["./images/owls.jpeg", "Open Vocabulary Instance Segmentation", "owl", '', 'Format: y,y,y'],
+ ["./images/mountain.jpeg", "Image Captioning", "", '', ''],
+ ["./images/rose.webp", "Text Retrieval", "lily,rose,peoney,tulip", '', 'Format: s,s,s'],
+ ["./images/region_retrieval.png", "Image/Region Retrieval (Only Support Exampled 80 images)", "The tangerine on the plate.", '', 'Please describe the object in a detailed way.'],
+ ["./images/landscape.jpg", "Referring Captioning (Beta)", "cloud", '', 'Please fill in a noun/noun phrase. (may start with a/the)'],
+ ["./images/apples.jpg", "Referring Inpainting", "a yellow apple", 'a pear', 'x-decoder + ldm (inference takes ~40s.)'],
+ ],
+ title=title,
+ description=description,
+ article=article,
+ allow_flagging='never',
+ cache_examples=True,
+).launch(share=True)
\ No newline at end of file
diff --git a/configs/xdecoder/svlp_focalt_lang.yaml b/configs/xdecoder/svlp_focalt_lang.yaml
new file mode 100755
index 0000000000000000000000000000000000000000..8010124cad660e07e8de7fae1f91166ff1ac834d
--- /dev/null
+++ b/configs/xdecoder/svlp_focalt_lang.yaml
@@ -0,0 +1,110 @@
+# --------------------------------------------------------
+# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
+# Copyright (c) 2022 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Xueyan Zou (xueyan@cs.wisc.edu)
+# --------------------------------------------------------
+
+##################
+# Task settings
+##################
+VERBOSE: true
+MODEL:
+ NAME: xdecoder_model
+ HEAD: xdecoder_head
+ DIM_PROJ: 512
+ BACKBONE_DIM: 768
+ TEXT:
+ ARCH: vlpencoder
+ NAME: transformer
+ TOKENIZER: clip
+ CONTEXT_LENGTH: 77 # 77
+ WIDTH: 512
+ HEADS: 8
+ LAYERS: 12 # 6
+ AUTOGRESSIVE: True
+ BACKBONE:
+ NAME: focal_dw
+ PRETRAINED: ''
+ LOAD_PRETRAINED: false
+ FOCAL:
+ PRETRAIN_IMG_SIZE: 224
+ PATCH_SIZE: 4
+ EMBED_DIM: 96
+ DEPTHS: [2, 2, 6, 2]
+ FOCAL_LEVELS: [3, 3, 3, 3]
+ FOCAL_WINDOWS: [3, 3, 3, 3]
+ DROP_PATH_RATE: 0.3
+ MLP_RATIO: 4.0
+ DROP_RATE: 0.0
+ PATCH_NORM: True
+ USE_CONV_EMBED: True
+ SCALING_MODULATOR: True
+ USE_CHECKPOINT: False
+ USE_POSTLN: true
+ USE_POSTLN_IN_MODULATION: false
+ USE_LAYERSCALE: True
+ OUT_FEATURES: ["res2", "res3", "res4", "res5"]
+ OUT_INDICES: [0, 1, 2, 3]
+ ENCODER:
+ NAME: transformer_encoder_fpn
+ IGNORE_VALUE: 255
+ NUM_CLASSES: 133
+ LOSS_WEIGHT: 1.0
+ CONVS_DIM: 512
+ MASK_DIM: 512
+ NORM: "GN"
+ IN_FEATURES: ["res2", "res3", "res4", "res5"]
+ DEFORMABLE_TRANSFORMER_ENCODER_IN_FEATURES: ["res3", "res4", "res5"]
+ COMMON_STRIDE: 4
+ TRANSFORMER_ENC_LAYERS: 6
+ DECODER:
+ NAME: xdecoder
+ TRANSFORMER_IN_FEATURE: "multi_scale_pixel_decoder"
+ MASK: True
+ GROUNDING:
+ ENABLED: True
+ MAX_LEN: 5
+ TEXT_WEIGHT: 2.0
+ CLASS_WEIGHT: 0.5
+ DETECTION: False
+ CAPTION:
+ ENABLED: True
+ PHRASE_PROB: 0.0
+ SIM_THRES: 0.95
+ CAPTIONING:
+ ENABLED: True
+ STEP: 50
+ RETRIEVAL:
+ ENABLED: True
+ DIM_IMG: 768
+ ENSEMBLE: True
+ HIDDEN_DIM: 512
+ NUM_OBJECT_QUERIES: 101
+ NHEADS: 8
+ DROPOUT: 0.0
+ DIM_FEEDFORWARD: 2048
+ PRE_NORM: False
+ ENFORCE_INPUT_PROJ: False
+ SIZE_DIVISIBILITY: 32
+ TRAIN_NUM_POINTS: 12544
+ OVERSAMPLE_RATIO: 3.0
+ IMPORTANCE_SAMPLE_RATIO: 0.75
+ DEC_LAYERS: 10 # 9 decoder layers, add one for the loss on learnable query
+ TOP_GROUNDING_LAYERS: 3
+ TOP_CAPTION_LAYERS: 3
+ TOP_CAPTIONING_LAYERS: 3
+ TOP_RETRIEVAL_LAYERS: 3
+ TOP_OPENIMAGE_LAYERS: 10
+ TEST:
+ SEMANTIC_ON: True
+ INSTANCE_ON: True
+ PANOPTIC_ON: True
+ OVERLAP_THRESHOLD: 0.8
+ OBJECT_MASK_THRESHOLD: 0.4
+ SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE: false
+ DETECTIONS_PER_IMAGE: 100
+
+INPUT:
+ PIXEL_MEAN: [123.675, 116.280, 103.530]
+ PIXEL_STD: [58.395, 57.120, 57.375]
\ No newline at end of file
diff --git a/images/apples.jpg b/images/apples.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..52c854d1e31430e1100ef0231c70016b8ba835b8
Binary files /dev/null and b/images/apples.jpg differ
diff --git a/images/coco/000.jpg b/images/coco/000.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..41cf0815572cc5ad6254b795dc620afa8eb5322b
--- /dev/null
+++ b/images/coco/000.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:d0fc594a75f8407f6595501b86bd98bd8c3a245a124c3dcfb17fc77e6b2e5aef
+size 191846
diff --git a/images/coco/001.jpg b/images/coco/001.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..3734918b99e62ace35fd62d1e846df3034ded986
--- /dev/null
+++ b/images/coco/001.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:380992fb43f611e1e4c7abb763f6c3178dd16ba647f20d428da8e9334ecfe4ad
+size 177554
diff --git a/images/coco/002.jpg b/images/coco/002.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..769fa4b7211ca0d31ad0dacf8098524132e6c32e
--- /dev/null
+++ b/images/coco/002.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:9d79b9739c0ebb2089e3475b9a664ebd982a1b6ed2d93739590a5bbc1f5bbd5e
+size 174687
diff --git a/images/coco/003.jpg b/images/coco/003.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..5b19eface14e4e99f242ce7a365c7399a4065c3d
--- /dev/null
+++ b/images/coco/003.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:d0ed66b03146c8c001b308d9ba601731ef6a2684b33452fac162b5160ad424c5
+size 67088
diff --git a/images/coco/004.jpg b/images/coco/004.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..a1cebf102f593390cd857e105ce44849edd47a85
--- /dev/null
+++ b/images/coco/004.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f5e6d63081ba8fbb2a59770144d7c2350de6a1a8288e15565df7dd1bd87d85bf
+size 327350
diff --git a/images/coco/005.jpg b/images/coco/005.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..f66695aa49a3d5d05c361ad511ec184707be678a
--- /dev/null
+++ b/images/coco/005.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:74411e93658f68edd930e9e665a8cfabb542425dd63016303e7e23f4f895aaca
+size 139237
diff --git a/images/coco/006.jpg b/images/coco/006.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..182c15d45e201d7eb373f91c707eb3041c0758ae
--- /dev/null
+++ b/images/coco/006.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:8c1e01146df6e51a43b12bedd7913834d5ed8f91031924a964e915a74cc9f72d
+size 151734
diff --git a/images/coco/007.jpg b/images/coco/007.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..53300e05bfb06e6ad01ffec6b8a318c8ff0535d2
--- /dev/null
+++ b/images/coco/007.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e55b86a1cda874117ba1bd855e38dbc9b5427b840c362d72330019676ec47a44
+size 153377
diff --git a/images/coco/008.jpg b/images/coco/008.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..ca3c6400382370bc84a61943374e8aed81c4e235
--- /dev/null
+++ b/images/coco/008.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:3b3ed6a27e07126c2175d168405a9bffe60b0f03555d0ac4b33ec0788bd745f2
+size 154975
diff --git a/images/coco/009.jpg b/images/coco/009.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..49f1da507123449adeeb1ef51116a796e8fe6a03
--- /dev/null
+++ b/images/coco/009.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:d90d4573a2b3d32f7ce3d704cb81b816f42a6326c59e935c6fa471dccc636718
+size 246526
diff --git a/images/coco/010.jpg b/images/coco/010.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..07d2a5a0eacb0d890625062fed5e5004ea46baec
--- /dev/null
+++ b/images/coco/010.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:23acc13dba72469607a7e61b6c2fd6e0e2c73dfa33fff340424bd6c805ac8cfc
+size 132469
diff --git a/images/coco/011.jpg b/images/coco/011.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..bd794aac57afa3e4aad47e0edfa7b20248117aee
--- /dev/null
+++ b/images/coco/011.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:74e9d13ddccbc52d2fd9da5984279a6218b250668e1ae1c6450be9d1ca2bc41a
+size 239715
diff --git a/images/coco/012.jpg b/images/coco/012.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..ea3e760d0a5480ab17590dbb4e591c8f09c34c27
--- /dev/null
+++ b/images/coco/012.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:bf4c36daca41208fe9b7c3ae1cd37aade17f6aaf76b716a4b240171990458d74
+size 284223
diff --git a/images/coco/013.jpg b/images/coco/013.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..620815883a83e361045ccc2f7aa8db87ab011c82
--- /dev/null
+++ b/images/coco/013.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:1febd4177cfc04323204378f72499a03760127e3b524e09f30cf3c4b5f1b5f81
+size 150798
diff --git a/images/coco/014.jpg b/images/coco/014.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..eb08b04e00aaecda5f68421b297aae1a56f86e55
--- /dev/null
+++ b/images/coco/014.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:63129a14da61b57cbcd9b3403bc76a73d091e1940e1b416ae9f5c70b7a1dbb54
+size 130391
diff --git a/images/coco/015.jpg b/images/coco/015.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..f85470ecc5929a4fe69f9b878d0ff0773c2417f3
--- /dev/null
+++ b/images/coco/015.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:b896f9d8d31a98765a0e15dfec38f7f036ba71b2af8330b4f7a600fb5294aa98
+size 224779
diff --git a/images/coco/016.jpg b/images/coco/016.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..20cdce2aaaddc34d303acabb69f7a04d9fc0c1a4
--- /dev/null
+++ b/images/coco/016.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:cb4972816eb01ebee8f3bde47a4993972951671e990dca797ad0fa9e0f385c11
+size 231097
diff --git a/images/coco/017.jpg b/images/coco/017.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..e00dc46f5a02f1967d0c8f3bb867d01b12a8fb67
--- /dev/null
+++ b/images/coco/017.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:8c57b1f9042b59d09a82cfea238c0f11bca7ed54ad57a52c5a24b7b59c7b556e
+size 212995
diff --git a/images/coco/018.jpg b/images/coco/018.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..b87f199564ad74fb76158af435c7104f90107a50
--- /dev/null
+++ b/images/coco/018.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:40e469d78ea8f94bdb8d8ed4c04351b49e46593e2c7b6db0433a72e6b1b2bd2f
+size 115392
diff --git a/images/coco/019.jpg b/images/coco/019.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..52bf1965565945dada045b50a447dc8c1c64c464
--- /dev/null
+++ b/images/coco/019.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:93aab01b240687e18da883e5ec325e4bbcd166519a557369f0eb59c07e346610
+size 127351
diff --git a/images/coco/020.jpg b/images/coco/020.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..3282e0099b5206be434d66a53b5878d97412244e
--- /dev/null
+++ b/images/coco/020.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:068ee6be7441d2a84dbd61eceedd8baff651c4058704b504072f18c755203bdc
+size 172260
diff --git a/images/coco/021.jpg b/images/coco/021.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..6fea54d5522ba48fe933c33fe99dd6b3c5b2b22e
--- /dev/null
+++ b/images/coco/021.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:acd7784c7a33da47014e5c55118789be664617e8028a8d89ada6b59b9212db25
+size 240278
diff --git a/images/coco/022.jpg b/images/coco/022.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..8aa4cf9cba3c8869e0f4baa6f175ae58026f0f45
--- /dev/null
+++ b/images/coco/022.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:bf59212be5221a26ae41a0e3e05adc902986b029d00b89d0c68760991a322053
+size 190787
diff --git a/images/coco/023.jpg b/images/coco/023.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..b67b8ec6290f6cd2a07f52f3a08ab3f516cc46f9
--- /dev/null
+++ b/images/coco/023.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:741146235c81e978c8dae22c59159c0762a9d75fad9dbbe3511d3ec62196adca
+size 135870
diff --git a/images/coco/024.jpg b/images/coco/024.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..2ca43c9c3bef30cef2dbc448ce259e5cc39ea81e
--- /dev/null
+++ b/images/coco/024.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:5f68d0c7c06169c086a71966090c325af62cd9f13b8e60967b5559f0fc24268c
+size 164122
diff --git a/images/coco/025.jpg b/images/coco/025.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..8f75ef10fa31f03cf9169cda066e322060ef4d76
--- /dev/null
+++ b/images/coco/025.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:27781696bf9427875689f4a8f5e7a517a04824fe935d3698552e8f57099b75a4
+size 170018
diff --git a/images/coco/026.jpg b/images/coco/026.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..412167fcd1e74f66ec167513d743962db6367855
--- /dev/null
+++ b/images/coco/026.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c15957d6f41d5a02ecf30c6aa10c146ce6982abf540ef8493523336f0f26b659
+size 169946
diff --git a/images/coco/027.jpg b/images/coco/027.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..681e750da7016dc0ee5141d2659d3fba2942a676
--- /dev/null
+++ b/images/coco/027.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:0a80f5f2ab54c11477641ffa731a8afdcb5309d70bf2eb18c4c834b2bca90971
+size 100963
diff --git a/images/coco/028.jpg b/images/coco/028.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..d4f9e51641053fea0cf7e68f3ae71128333d62cd
--- /dev/null
+++ b/images/coco/028.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:24fdb66de0ab05eab30ceeceba3b4725084e075b8e40d91bb9d28201cd70b484
+size 164499
diff --git a/images/coco/029.jpg b/images/coco/029.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..286527d4624271e70d5bf670572e80c9d374ca0f
--- /dev/null
+++ b/images/coco/029.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:74b8025dfee410ebeb229b7bc355745eb0013b3c199d87ba70c369d3abed4b2c
+size 66286
diff --git a/images/coco/030.jpg b/images/coco/030.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..3f62c1ee5befb6a5d4537ebf9d66f3f422d90607
--- /dev/null
+++ b/images/coco/030.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:05f27bd1f910d75402f951863cd5a0743ae462c917dc7d0e1611db5a98b3fef5
+size 91993
diff --git a/images/coco/031.jpg b/images/coco/031.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..6aaf0f92fce8e224a7b6bfa199a597c3db19aebb
--- /dev/null
+++ b/images/coco/031.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4bb0d5850695a09964d7f111ba8bf70233fd4798332aae8add1648ef736a1de3
+size 133073
diff --git a/images/coco/032.jpg b/images/coco/032.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..fd8bf0a4c20939989973978018d7941f0124ac7c
--- /dev/null
+++ b/images/coco/032.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:3c00136461e4776e5464555c425ae9f2e6cabaf8de8df74b3b46df82b4eb56d6
+size 67942
diff --git a/images/coco/033.jpg b/images/coco/033.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..23842e8b6d2e24f982e142de0ccb45102f441317
--- /dev/null
+++ b/images/coco/033.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:ce4fc4045c9dbe6d5c321248c3d8af821036e2403c6d159d3745c75f6f6bc9e1
+size 106240
diff --git a/images/coco/034.jpg b/images/coco/034.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..7ef78f841df4e8ea774a54dc21d9c54df763e2f6
--- /dev/null
+++ b/images/coco/034.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:56fa45f1e2d627d0bf4f4f0e6c133659783d22b0a56979227f803bfd3056b153
+size 109191
diff --git a/images/coco/035.jpg b/images/coco/035.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..a1c586c35cec67c94b15ab51decd112d95ae98fe
--- /dev/null
+++ b/images/coco/035.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c03edd46968d1ffc56d0402853f072e3e02798a01b549d345e4875974348c05e
+size 169446
diff --git a/images/coco/036.jpg b/images/coco/036.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..44c942e7c5ca781a02603ed49fd1e67e23e14045
--- /dev/null
+++ b/images/coco/036.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:9a6d9379fd7feb77987a43d1ce0e304e2eb5dd7f28c2a818fd8baec5ed4cb700
+size 67185
diff --git a/images/coco/037.jpg b/images/coco/037.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..b61d7c8d330dbab7fb0fe969e723b7d562e60bb4
--- /dev/null
+++ b/images/coco/037.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e5c2df473a26427ae57950acec86d1e4d3a49cdf1a18d427cd1a354465408f00
+size 102909
diff --git a/images/coco/038.jpg b/images/coco/038.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..9676dd5d9b0769ed68433e69d9e1d76cb89fcf7c
--- /dev/null
+++ b/images/coco/038.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:261ba1b81c768f47b8452cd8fc7866a354a69c336a927032486d129b8684eb44
+size 98901
diff --git a/images/coco/039.jpg b/images/coco/039.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..26d96d2fc3533fe02ac99d226571899399e945e9
--- /dev/null
+++ b/images/coco/039.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:9b9b4956016c3e25d300d53681a25117bb093d031944f0bbdad6d2d98613a88e
+size 112678
diff --git a/images/coco/040.jpg b/images/coco/040.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..9617b253effc9422dc96f0de432b71885c73dc44
--- /dev/null
+++ b/images/coco/040.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:41dd62010a54964537df22befdf97aab83979ffc406c89909f8eac8075841497
+size 257260
diff --git a/images/coco/041.jpg b/images/coco/041.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..464ec8a1492df7d9ca1dedfef22bed32fa29abde
--- /dev/null
+++ b/images/coco/041.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f35471cf97958cfcdab03f925210a9fb37636d9508174e4077a767c628d45cfa
+size 144093
diff --git a/images/coco/042.jpg b/images/coco/042.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..b413961c901efbbb853c86d4905f0abf2e3b920c
--- /dev/null
+++ b/images/coco/042.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:871e678893ac7fcdaafe3870900985bbf75707579ab3966a2c7690543d2f68b0
+size 219258
diff --git a/images/coco/043.jpg b/images/coco/043.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..8c91c41510acfdb7e70d0f216cb766df61a46a37
--- /dev/null
+++ b/images/coco/043.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:319d58f0fa008d076b766671a5b607f94614f6005f773adced54a57567aa28fb
+size 227134
diff --git a/images/coco/044.jpg b/images/coco/044.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..b07d633fe7a72c1e7730ee8108d2e8642e2479fa
--- /dev/null
+++ b/images/coco/044.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:58332692b23cfa5ae5a42abe2b5b3086a46f8e037b501a4fdb5d17e5413206a8
+size 200812
diff --git a/images/coco/045.jpg b/images/coco/045.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..864f39635787426cc3f3f4a6664bbf3c0fbd1163
--- /dev/null
+++ b/images/coco/045.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:28d22190749fdef7e7a9802c68db456f852f49ccb7a2cad3862de85f6edbad8d
+size 119863
diff --git a/images/coco/046.jpg b/images/coco/046.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..eccd3c0f0f0b624416a3c919dd565354b2db540e
--- /dev/null
+++ b/images/coco/046.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:af56785c7c458a53bf642cd48f7d209073302115e5d6806db3c6fb039df7558e
+size 147498
diff --git a/images/coco/047.jpg b/images/coco/047.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..3cfdf0874372da93d1f461e5b9e1bdc9a53e7c2b
--- /dev/null
+++ b/images/coco/047.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:654b7bcb5c100947459fb30c3c0a021ebe9d7fcf6d72843e2cbfe22ad35976c7
+size 169162
diff --git a/images/coco/048.jpg b/images/coco/048.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..c3373c5780e24cd6ddf7e57d4dbeb23c23fac181
--- /dev/null
+++ b/images/coco/048.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:71b59de2bdaec62f5750502ea2c63a10c34df819fd48dcb8006135cf28bc90d9
+size 91087
diff --git a/images/coco/049.jpg b/images/coco/049.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..a62fec60e7574f9df23ae34ef35785eafa634c5b
--- /dev/null
+++ b/images/coco/049.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:31e0b9ff5ec4bffbe2948acaa40d3b048284d729d1179c60ed1fce41f87b7370
+size 290565
diff --git a/images/coco/050.jpg b/images/coco/050.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..a2fb23159a7dfc12762c8018ec7af7633c0fdd3f
--- /dev/null
+++ b/images/coco/050.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:417cc6070263d75276d13bf64f7422d0b7a99fe790fbb3b0fb629f13e674b0a6
+size 139204
diff --git a/images/coco/051.jpg b/images/coco/051.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..0bccb15a53dac634b30edf295ec6a3a8d677be38
--- /dev/null
+++ b/images/coco/051.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:08eeac031aec9f1822b2d10bc2b1e5626943b151d258611d8d169f4014f00b8a
+size 133049
diff --git a/images/coco/052.jpg b/images/coco/052.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..53e30bf5a2d913610e134a9164c5e008b36e9b1a
--- /dev/null
+++ b/images/coco/052.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:3a994cffa3c30e9066f3083a507fb80bf863ea55075c8707bb8ddbe2dc69d834
+size 104963
diff --git a/images/coco/053.jpg b/images/coco/053.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..3b3348ba5155917812535565e765e5af975d8b6b
--- /dev/null
+++ b/images/coco/053.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:fd477a26cf3682083ae6633c3778fcce9e53fdfbb0670232d608865ddb606884
+size 134840
diff --git a/images/coco/054.jpg b/images/coco/054.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..895bca31b27716e05170e89f9dcc79157ce6b8fe
--- /dev/null
+++ b/images/coco/054.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:45ab6d1c49e081bede2f1e84365bb756c1f165c022b3b24f0338e0eaf971ee66
+size 70496
diff --git a/images/coco/055.jpg b/images/coco/055.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..d24fb57109813eafcdb7be10ad3160b41ec33f61
--- /dev/null
+++ b/images/coco/055.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:0cca792ee55651c6cdda13c2f01a4047ee7423636ad1b6e8f4f124c4411f6b3f
+size 96303
diff --git a/images/coco/056.jpg b/images/coco/056.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..c7f2e542509194fb27b9ffb7301ae280a374a5ea
--- /dev/null
+++ b/images/coco/056.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:0b68327f15f52d645165d0c027566d92ac193d00b6e7b662a87b60415683a20b
+size 130295
diff --git a/images/coco/057.jpg b/images/coco/057.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..fa3c053c4f415453fd3d8a4a8fb22b883034efea
--- /dev/null
+++ b/images/coco/057.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:d5af6e66ee264eae5e041c5894be1ff7d78141b1aeccc13b7115cf4bd96ebfcb
+size 222243
diff --git a/images/coco/058.jpg b/images/coco/058.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..e160212d7f5176174027d7593c6eac39d111f5ec
--- /dev/null
+++ b/images/coco/058.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:cda92998686c298c4e80c88ad0331de9feec837137ea19e191d86b5c49d9ad18
+size 101426
diff --git a/images/coco/059.jpg b/images/coco/059.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..b03a6e7819dc1be09009bb9a915b9f34cf1f4883
--- /dev/null
+++ b/images/coco/059.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:75910e3bad10ece753c3872a043a2a91d6b0d8c3f0fb7cbf9ec5623ae14c3e6e
+size 73436
diff --git a/images/coco/060.jpg b/images/coco/060.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..6e4586992832ec39a448b826eb401ba7903dcc38
--- /dev/null
+++ b/images/coco/060.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:48562a050aaa24b7bca00622774170ad34528bb1c00091cc3487d3854fbb67b4
+size 141587
diff --git a/images/coco/061.jpg b/images/coco/061.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..9e0ca53a698ec974da76cecc5674514498460b22
--- /dev/null
+++ b/images/coco/061.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:ef9eb53ac602092f01ee69ab8f8d43a2f7c68fea857509a0f4f061b3dec29916
+size 204009
diff --git a/images/coco/062.jpg b/images/coco/062.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..7e751364525dd48dee51cf719e57d7b9dd7b6b36
--- /dev/null
+++ b/images/coco/062.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:863c183efd6435f09cd7a8e29e3ef6a54549b50bfa06eb1a51f6240bb6f32c68
+size 119855
diff --git a/images/coco/063.jpg b/images/coco/063.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..36e49eea84c6f0b64eefd75c6bdd989bcac09960
--- /dev/null
+++ b/images/coco/063.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:ed699c5a670e0d91a0d3775490e7cd60fc4a7ef324c4a121a7c69f1bf4e06df1
+size 150971
diff --git a/images/coco/064.jpg b/images/coco/064.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..13282bca31c13dc7d65e8ce293a999f4a9cf62b3
--- /dev/null
+++ b/images/coco/064.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:21d1b3b625727da60cb3c79a4688bb97fa6ca89bc163bd16e748dfc3ef90c20c
+size 158634
diff --git a/images/coco/065.jpg b/images/coco/065.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..4a4b6949353322b51aaaadc1d9f65213c2e375b9
--- /dev/null
+++ b/images/coco/065.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:b2fce7c24d850739541b77b845303e457b0e689354778b8303f54f94485fac99
+size 149603
diff --git a/images/coco/066.jpg b/images/coco/066.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..3705d9a929cf83264fc74b5f1b4445698a6c76e7
--- /dev/null
+++ b/images/coco/066.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:81d6bac01b9ef3cac3887cdba47e1eb9fce0bb29d4ef112ece0a70c3ebc1f771
+size 125897
diff --git a/images/coco/067.jpg b/images/coco/067.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..a70cd8e1ac4455bbd3613c85e3071e8bf94e9a35
--- /dev/null
+++ b/images/coco/067.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:d76ee385fe01bc44f233039103de747f32578129f451e486cf467e640fb7262b
+size 201354
diff --git a/images/coco/068.jpg b/images/coco/068.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..73e1d19968f5f19b590a71a97bc1bdaf2f34317d
--- /dev/null
+++ b/images/coco/068.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:36f56bd366552bab4f5d65d93f594de7c2dd3098e637dcf71262880d91b36ede
+size 162541
diff --git a/images/coco/069.jpg b/images/coco/069.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..da892916196ae8d261c4c7cca9fe0bfa8a2b6e21
--- /dev/null
+++ b/images/coco/069.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f5ed1c21f176378a77e5e3dcd071908850d193cc200232790071fea5a1234aaf
+size 122765
diff --git a/images/coco/070.jpg b/images/coco/070.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..32e978311dc271a650712ca2e96ba8c7870a574e
--- /dev/null
+++ b/images/coco/070.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:ea12cb45c11990ac1d14add03c7e7ef4eee26eb1c1951f9ad0200d9a1b8a6001
+size 100115
diff --git a/images/coco/071.jpg b/images/coco/071.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..51090248b854d8130dbfcb4ce3059b9c20830c19
--- /dev/null
+++ b/images/coco/071.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:14c77b33e28f12794669c699498bed38dbe6f34a43868152d806529e97288196
+size 262721
diff --git a/images/coco/072.jpg b/images/coco/072.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..c23a1a8422101d000110223bdd9ef717c3fe33af
--- /dev/null
+++ b/images/coco/072.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c561d4e58f9141d15a5c4231075a51dbbf257e2901acc482765e15dcee1375b0
+size 191329
diff --git a/images/coco/073.jpg b/images/coco/073.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..b42fc6460c69ae3becea457bb6cd1176e1ce573b
--- /dev/null
+++ b/images/coco/073.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f6aab4c789a4a04db8a31071efbee504f1764497a8a48aae43e82d89d0cc3db9
+size 121539
diff --git a/images/coco/074.jpg b/images/coco/074.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..e1e0f75d7bcc13c615320f51ab037dcc1047c3e2
--- /dev/null
+++ b/images/coco/074.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:6f51ea5ea5be7df989ac264225486516e39c1cf90fe8a9e01b83c62a26a44f6e
+size 75102
diff --git a/images/coco/075.jpg b/images/coco/075.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..69c4a207120ef39c22ebc9284525cd3dfaf37c72
--- /dev/null
+++ b/images/coco/075.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:7b93a53ec3c3b64f60e8fc54bdf918e43ef75abfc72083756184f9ae083d90a5
+size 323477
diff --git a/images/coco/076.jpg b/images/coco/076.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..6516ea71f9f594ec7628e994340377768e22d061
--- /dev/null
+++ b/images/coco/076.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e305d4b620e84ea3f9b37cbb07474aff5c4366a565cdfab35714422e014571c8
+size 56303
diff --git a/images/coco/077.jpg b/images/coco/077.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..96bc8659354466e5d9f5c7795108f52f7bd9f036
--- /dev/null
+++ b/images/coco/077.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:ec9bba125a948bc97bf1f68c4ee76efc43e97800039928bb52d894408dd4945f
+size 133615
diff --git a/images/coco/078.jpg b/images/coco/078.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..572b4172cce244f0dd988dab4fe51db383294b95
--- /dev/null
+++ b/images/coco/078.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:384b80e5d76bbe14906ea7b31f763db839b5691579e270161b18b78cb72e0599
+size 160083
diff --git a/images/coco/079.jpg b/images/coco/079.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..88c876c4f944fb41aca707029d4988798e88d0fe
--- /dev/null
+++ b/images/coco/079.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:533fd5d3b52305fee0f1e96b258b41de137ec1de465ee5c0c3afaa599c6c8567
+size 74751
diff --git a/images/fruit.jpg b/images/fruit.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..99d107a84272ceb572017df1a041c0c3b235bdaf
Binary files /dev/null and b/images/fruit.jpg differ
diff --git a/images/landscape.jpg b/images/landscape.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..91578f776de896f758b78698d71d61ad19894acc
Binary files /dev/null and b/images/landscape.jpg differ
diff --git a/images/mountain.jpeg b/images/mountain.jpeg
new file mode 100644
index 0000000000000000000000000000000000000000..17e8abfb022e4ded0c0ea6edfc6344b1dea2c758
Binary files /dev/null and b/images/mountain.jpeg differ
diff --git a/images/owls.jpeg b/images/owls.jpeg
new file mode 100644
index 0000000000000000000000000000000000000000..63bfd80a5e973f6b3eab718252779357174cd813
Binary files /dev/null and b/images/owls.jpeg differ
diff --git a/images/penguin.jpeg b/images/penguin.jpeg
new file mode 100644
index 0000000000000000000000000000000000000000..b76253073d946989177af3cc9928b2d8265d39b0
Binary files /dev/null and b/images/penguin.jpeg differ
diff --git a/images/rose.webp b/images/rose.webp
new file mode 100644
index 0000000000000000000000000000000000000000..33657ae71e37b955bedd3209ae2a79f58a8c62d3
Binary files /dev/null and b/images/rose.webp differ
diff --git a/images/street.jpg b/images/street.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..39294f30f004e7f5dafbfacdc75953812b1ca845
Binary files /dev/null and b/images/street.jpg differ
diff --git a/requirements.txt b/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..7ec77e9dbb8ec6d370309090b1d5e534e3925605
--- /dev/null
+++ b/requirements.txt
@@ -0,0 +1,36 @@
+torch
+torchvision
+opencv-python
+pyyaml
+json_tricks
+yacs
+scikit-learn
+pandas
+timm==0.4.12
+numpy==1.23.5
+einops
+fvcore
+transformers==4.19.2
+sentencepiece
+ftfy
+regex
+nltk
+vision-datasets==0.2.2
+pycocotools==2.0.4
+diffdist
+pyarrow
+cityscapesscripts
+shapely
+scikit-image
+mup
+gradio==3.13.0
+scann
+kornia==0.6.4
+torchmetrics==0.6.0
+torch==1.13
+torchvision
+invisible-watermark
+diffusers
+accelerate
+altair
+git+https://github.com/arogozhnikov/einops.git
\ No newline at end of file
diff --git a/tasks/__init__.py b/tasks/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..f50b3f444e9710d705025ad10636dfe1183e5bd9
--- /dev/null
+++ b/tasks/__init__.py
@@ -0,0 +1,11 @@
+from .img_cap import image_captioning
+from .open_inst import open_instseg
+from .open_pano import open_panoseg
+from .open_sem import open_semseg
+from .ref_cap import referring_captioning
+from .ref_in import referring_inpainting
+from .ref_seg import referring_segmentation
+from .text_ret import text_retrieval
+from .reg_ret import region_retrieval
+
+from . import img_cap, open_inst, open_pano, open_sem, ref_cap, ref_in, ref_seg, text_ret
\ No newline at end of file
diff --git a/tasks/img_cap.py b/tasks/img_cap.py
new file mode 100644
index 0000000000000000000000000000000000000000..2d0edf253896327a6ac5e244ed1b54696c7db9cd
--- /dev/null
+++ b/tasks/img_cap.py
@@ -0,0 +1,55 @@
+# --------------------------------------------------------
+# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
+# Copyright (c) 2022 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Xueyan Zou (xueyan@cs.wisc.edu)
+# --------------------------------------------------------
+
+import cv2
+import torch
+import numpy as np
+from PIL import Image
+from torchvision import transforms
+
+
+t = []
+t.append(transforms.Resize(224, interpolation=Image.BICUBIC))
+transform = transforms.Compose(t)
+
+t = []
+t.append(transforms.Resize(512, interpolation=Image.BICUBIC))
+transform_v = transforms.Compose(t)
+
+def image_captioning(model, image, texts, inpainting_text, *args, **kwargs):
+ with torch.no_grad():
+ image_ori = transform_v(image)
+ width = image_ori.size[0]
+ height = image_ori.size[1]
+ image_ori = np.asarray(image_ori)
+
+ image = transform(image)
+ image = np.asarray(image)
+ images = torch.from_numpy(image.copy()).permute(2,0,1).cuda()
+
+ batch_inputs = [{'image': images, 'height': height, 'width': width, 'image_id': 0}]
+ outputs = model.model.evaluate_captioning(batch_inputs)
+ text = outputs[-1]['captioning_text']
+
+ image_ori = image_ori.copy()
+ cv2.rectangle(image_ori, (0, height-60), (width, height), (0,0,0), -1)
+ font = cv2.FONT_HERSHEY_DUPLEX
+ fontScale = 1.2
+ thickness = 2
+ lineType = 2
+ bottomLeftCornerOfText = (10, height-20)
+ fontColor = [255,255,255]
+ cv2.putText(image_ori, text,
+ bottomLeftCornerOfText,
+ font,
+ fontScale,
+ fontColor,
+ thickness,
+ lineType)
+ torch.cuda.empty_cache()
+ return Image.fromarray(image_ori), text, None
+
diff --git a/tasks/open_inst.py b/tasks/open_inst.py
new file mode 100644
index 0000000000000000000000000000000000000000..1cf1686a0b20c8f54aca9a308afef7cf6dfed166
--- /dev/null
+++ b/tasks/open_inst.py
@@ -0,0 +1,60 @@
+# --------------------------------------------------------
+# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
+# Copyright (c) 2022 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Xueyan Zou (xueyan@cs.wisc.edu)
+# --------------------------------------------------------
+
+import torch
+import numpy as np
+from PIL import Image
+from torchvision import transforms
+from utils.visualizer import Visualizer
+from detectron2.utils.colormap import random_color
+from detectron2.data import MetadataCatalog
+from detectron2.structures import BitMasks
+
+
+t = []
+t.append(transforms.Resize(512, interpolation=Image.BICUBIC))
+transform = transforms.Compose(t)
+metadata = MetadataCatalog.get('ade20k_panoptic_train')
+
+def open_instseg(model, image, texts, inpainting_text, *args, **kwargs):
+ thing_classes = [x.strip() for x in texts.split(',')]
+ thing_colors = [random_color(rgb=True, maximum=255).astype(np.int32).tolist() for _ in range(len(thing_classes))]
+ thing_dataset_id_to_contiguous_id = {x:x for x in range(len(thing_classes))}
+
+ MetadataCatalog.get("demo").set(
+ thing_colors=thing_colors,
+ thing_classes=thing_classes,
+ thing_dataset_id_to_contiguous_id=thing_dataset_id_to_contiguous_id,
+ )
+
+ with torch.no_grad():
+ model.model.sem_seg_head.predictor.lang_encoder.get_text_embeddings(thing_classes + ["background"], is_eval=True)
+
+ metadata = MetadataCatalog.get('demo')
+ model.model.metadata = metadata
+ model.model.sem_seg_head.num_classes = len(thing_classes)
+
+ image_ori = transform(image)
+ width = image_ori.size[0]
+ height = image_ori.size[1]
+ image = np.asarray(image_ori)
+ images = torch.from_numpy(image.copy()).permute(2,0,1).cuda()
+
+ batch_inputs = [{'image': images, 'height': height, 'width': width}]
+ outputs = model.forward(batch_inputs)
+ visual = Visualizer(image_ori, metadata=metadata)
+
+ inst_seg = outputs[-1]['instances']
+ inst_seg.pred_masks = inst_seg.pred_masks.cpu()
+ inst_seg.pred_boxes = BitMasks(inst_seg.pred_masks > 0).get_bounding_boxes()
+ demo = visual.draw_instance_predictions(inst_seg) # rgb Image
+ res = demo.get_image()
+
+
+ MetadataCatalog.remove('demo')
+ torch.cuda.empty_cache()
+ return Image.fromarray(res), '', None
diff --git a/tasks/open_pano.py b/tasks/open_pano.py
new file mode 100644
index 0000000000000000000000000000000000000000..48a05f3ec5a0e78568cc4a47c6433b52a4330e8b
--- /dev/null
+++ b/tasks/open_pano.py
@@ -0,0 +1,70 @@
+# --------------------------------------------------------
+# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
+# Copyright (c) 2022 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Xueyan Zou (xueyan@cs.wisc.edu)
+# --------------------------------------------------------
+
+import torch
+import numpy as np
+from PIL import Image
+from torchvision import transforms
+from utils.visualizer import Visualizer
+from detectron2.utils.colormap import random_color
+from detectron2.data import MetadataCatalog
+
+
+t = []
+t.append(transforms.Resize(512, interpolation=Image.BICUBIC))
+transform = transforms.Compose(t)
+metadata = MetadataCatalog.get('ade20k_panoptic_train')
+
+def open_panoseg(model, image, texts, inpainting_text, *args, **kwargs):
+ stuff_classes = [x.strip() for x in texts.split(';')[0].replace('stuff:','').split(',')]
+ thing_classes = [x.strip() for x in texts.split(';')[1].replace('thing:','').split(',')]
+ thing_colors = [random_color(rgb=True, maximum=255).astype(np.int32).tolist() for _ in range(len(thing_classes))]
+ stuff_colors = [random_color(rgb=True, maximum=255).astype(np.int32).tolist() for _ in range(len(stuff_classes))]
+ thing_dataset_id_to_contiguous_id = {x:x for x in range(len(thing_classes))}
+ stuff_dataset_id_to_contiguous_id = {x+len(thing_classes):x for x in range(len(stuff_classes))}
+
+ MetadataCatalog.get("demo").set(
+ thing_colors=thing_colors,
+ thing_classes=thing_classes,
+ thing_dataset_id_to_contiguous_id=thing_dataset_id_to_contiguous_id,
+ stuff_colors=stuff_colors,
+ stuff_classes=stuff_classes,
+ stuff_dataset_id_to_contiguous_id=stuff_dataset_id_to_contiguous_id,
+ )
+ model.model.sem_seg_head.predictor.lang_encoder.get_text_embeddings(thing_classes + stuff_classes + ["background"], is_eval=True)
+ metadata = MetadataCatalog.get('demo')
+ model.model.metadata = metadata
+ model.model.sem_seg_head.num_classes = len(thing_classes + stuff_classes)
+
+ with torch.no_grad():
+ image_ori = transform(image)
+ width = image_ori.size[0]
+ height = image_ori.size[1]
+ image = transform(image_ori)
+ image = np.asarray(image)
+ images = torch.from_numpy(image.copy()).permute(2,0,1).cuda()
+
+ batch_inputs = [{'image': images, 'height': height, 'width': width}]
+ outputs = model.forward(batch_inputs)
+ visual = Visualizer(image_ori, metadata=metadata)
+
+ pano_seg = outputs[-1]['panoptic_seg'][0]
+ pano_seg_info = outputs[-1]['panoptic_seg'][1]
+
+ for i in range(len(pano_seg_info)):
+ if pano_seg_info[i]['category_id'] in metadata.thing_dataset_id_to_contiguous_id.keys():
+ pano_seg_info[i]['category_id'] = metadata.thing_dataset_id_to_contiguous_id[pano_seg_info[i]['category_id']]
+ else:
+ pano_seg_info[i]['isthing'] = False
+ pano_seg_info[i]['category_id'] = metadata.stuff_dataset_id_to_contiguous_id[pano_seg_info[i]['category_id']]
+
+ demo = visual.draw_panoptic_seg(pano_seg.cpu(), pano_seg_info) # rgb Image
+ res = demo.get_image()
+
+ MetadataCatalog.remove('demo')
+ torch.cuda.empty_cache()
+ return Image.fromarray(res), '', None
\ No newline at end of file
diff --git a/tasks/open_sem.py b/tasks/open_sem.py
new file mode 100644
index 0000000000000000000000000000000000000000..04b95fc9fff82951cf6683a5a2f0632bf30837e4
--- /dev/null
+++ b/tasks/open_sem.py
@@ -0,0 +1,57 @@
+# --------------------------------------------------------
+# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
+# Copyright (c) 2022 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Xueyan Zou (xueyan@cs.wisc.edu)
+# --------------------------------------------------------
+
+import os
+import cv2
+import torch
+import numpy as np
+from PIL import Image
+from torchvision import transforms
+from utils.visualizer import Visualizer
+from detectron2.utils.colormap import random_color
+from detectron2.data import MetadataCatalog
+
+
+t = []
+t.append(transforms.Resize(512, interpolation=Image.BICUBIC))
+transform = transforms.Compose(t)
+metadata = MetadataCatalog.get('ade20k_panoptic_train')
+
+def open_semseg(model, image, texts, inpainting_text, *args, **kwargs):
+ stuff_classes = [x.strip() for x in texts.split(',')]
+ stuff_colors = [random_color(rgb=True, maximum=255).astype(np.int32).tolist() for _ in range(len(stuff_classes))]
+ stuff_dataset_id_to_contiguous_id = {x:x for x in range(len(stuff_classes))}
+
+ MetadataCatalog.get("demo").set(
+ stuff_colors=stuff_colors,
+ stuff_classes=stuff_classes,
+ stuff_dataset_id_to_contiguous_id=stuff_dataset_id_to_contiguous_id,
+ )
+ model.model.sem_seg_head.predictor.lang_encoder.get_text_embeddings(stuff_classes + ["background"], is_eval=True)
+ metadata = MetadataCatalog.get('demo')
+ model.model.metadata = metadata
+ model.model.sem_seg_head.num_classes = len(stuff_classes)
+
+ with torch.no_grad():
+ image_ori = transform(image)
+ width = image_ori.size[0]
+ height = image_ori.size[1]
+ image = transform(image_ori)
+ image = np.asarray(image)
+ images = torch.from_numpy(image.copy()).permute(2,0,1).cuda()
+
+ batch_inputs = [{'image': images, 'height': height, 'width': width}]
+ outputs = model.forward(batch_inputs)
+ visual = Visualizer(image_ori, metadata=metadata)
+
+ sem_seg = outputs[-1]['sem_seg'].max(0)[1]
+ demo = visual.draw_sem_seg(sem_seg.cpu(), alpha=0.5) # rgb Image
+ res = demo.get_image()
+
+ MetadataCatalog.remove('demo')
+ torch.cuda.empty_cache()
+ return Image.fromarray(res), '', None
\ No newline at end of file
diff --git a/tasks/ref_cap.py b/tasks/ref_cap.py
new file mode 100644
index 0000000000000000000000000000000000000000..76cd1fd34a038db0fd7a8818ff7a7c764bfb040d
--- /dev/null
+++ b/tasks/ref_cap.py
@@ -0,0 +1,68 @@
+# --------------------------------------------------------
+# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
+# Copyright (c) 2022 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Xueyan Zou (xueyan@cs.wisc.edu)
+# --------------------------------------------------------
+
+import torch
+import torch.nn.functional as F
+import numpy as np
+from PIL import Image
+from torchvision import transforms
+from utils.visualizer import Visualizer
+from detectron2.data import MetadataCatalog
+
+t = []
+t.append(transforms.Resize(224, interpolation=Image.BICUBIC))
+transform_ret = transforms.Compose(t)
+t = []
+t.append(transforms.Resize(512, interpolation=Image.BICUBIC))
+transform_grd = transforms.Compose(t)
+
+metedata = MetadataCatalog.get('coco_2017_train_panoptic')
+
+def referring_captioning(model, image, texts, inpainting_text, *args, **kwargs):
+ model_last, model_cap = model
+ with torch.no_grad():
+ image_ori = image
+ image = transform_grd(image)
+ width = image.size[0]
+ height = image.size[1]
+ image = np.asarray(image)
+ image_ori_ = image
+ images = torch.from_numpy(image.copy()).permute(2,0,1).cuda()
+ texts_input = [[texts.strip() if texts.endswith('.') else (texts + '.')]]
+
+ batch_inputs = [{'image': images, 'groundings': {'texts':texts_input}, 'height': height, 'width': width}]
+ outputs = model_last.model.evaluate_grounding(batch_inputs, None)
+
+ grd_mask = (outputs[-1]['grounding_mask'] > 0).float()
+ grd_mask_ = (1 - F.interpolate(grd_mask[None,], (224, 224), mode='nearest')[0]).bool()
+
+ color = [252/255, 91/255, 129/255]
+ visual = Visualizer(image_ori_, metadata=metedata)
+ demo = visual.draw_binary_mask(grd_mask.cpu().numpy()[0], color=color, text=texts)
+ res = demo.get_image()
+
+ if (1 - grd_mask_.float()).sum() < 5:
+ torch.cuda.empty_cache()
+ return Image.fromarray(res), 'n/a', None
+
+ grd_mask_ = grd_mask_ * 0
+ image = transform_ret(image_ori)
+ image_ori = np.asarray(image_ori)
+ image = np.asarray(image)
+ images = torch.from_numpy(image.copy()).permute(2,0,1).cuda()
+ batch_inputs = [{'image': images, 'image_id': 0, 'captioning_mask': grd_mask_}]
+
+ token_text = texts.replace('.','') if texts.endswith('.') else texts
+ token = model_cap.model.sem_seg_head.predictor.lang_encoder.tokenizer.encode(token_text)
+ token = torch.tensor(token)[None,:-1]
+
+ outputs = model_cap.model.evaluate_captioning(batch_inputs, extra={'token': token})
+ # outputs = model_cap.model.evaluate_captioning(batch_inputs, extra={})
+ text = outputs[-1]['captioning_text']
+
+ torch.cuda.empty_cache()
+ return Image.fromarray(res), text, None
\ No newline at end of file
diff --git a/tasks/ref_in.py b/tasks/ref_in.py
new file mode 100644
index 0000000000000000000000000000000000000000..f5572a57b21835ae23b869e0dd99878112b1eb2d
--- /dev/null
+++ b/tasks/ref_in.py
@@ -0,0 +1,77 @@
+# --------------------------------------------------------
+# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
+# Copyright (c) 2022 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Jianwei Yang (jianwyan@microsoft.com), Xueyan Zou (xueyan@cs.wisc.edu)
+# --------------------------------------------------------
+
+import torch
+import numpy as np
+from PIL import Image
+from utils.inpainting import pad_image
+from torchvision import transforms
+from utils.visualizer import Visualizer
+from diffusers import StableDiffusionInpaintPipeline
+from detectron2.utils.colormap import random_color
+from detectron2.data import MetadataCatalog
+from scipy import ndimage
+
+
+t = []
+t.append(transforms.Resize(512, interpolation=Image.BICUBIC))
+transform = transforms.Compose(t)
+metadata = MetadataCatalog.get('ade20k_panoptic_train')
+
+pipe = StableDiffusionInpaintPipeline.from_pretrained(
+ # "stabilityai/stable-diffusion-2-inpainting",
+ "runwayml/stable-diffusion-inpainting",
+ revision="fp16",
+ torch_dtype=torch.float16,
+).to("cuda")
+
+def crop_image(input_image):
+ crop_w, crop_h = np.floor(np.array(input_image.size) / 64).astype(int) * 64
+ im_cropped = Image.fromarray(np.array(input_image)[:crop_h, :crop_w])
+ return im_cropped
+
+def referring_inpainting(model, image, texts, inpainting_text, *args, **kwargs):
+ model.model.metadata = metadata
+ texts = [[texts if texts.strip().endswith('.') else (texts.strip() + '.')]]
+ image_ori = transform(image)
+
+ with torch.no_grad():
+ width = image_ori.size[0]
+ height = image_ori.size[1]
+ image = np.asarray(image_ori)
+ image_ori_np = np.asarray(image_ori)
+ images = torch.from_numpy(image.copy()).permute(2,0,1).cuda()
+
+ batch_inputs = [{'image': images, 'height': height, 'width': width, 'groundings': {'texts': texts}}]
+ outputs = model.model.evaluate_grounding(batch_inputs, None)
+ visual = Visualizer(image_ori_np, metadata=metadata)
+
+ grd_mask = (outputs[0]['grounding_mask'] > 0).float().cpu().numpy()
+ for idx, mask in enumerate(grd_mask):
+ color = random_color(rgb=True, maximum=1).astype(np.int32).tolist()
+ demo = visual.draw_binary_mask(mask, color=color, text=texts[idx])
+ res = demo.get_image()
+
+ if inpainting_text not in ['no', '']:
+ # if we want to do inpainting
+ image_ori = crop_image(image_ori).convert('RGB')
+ struct2 = ndimage.generate_binary_structure(2, 2)
+ mask_dilated = ndimage.binary_dilation(grd_mask[0], structure=struct2, iterations=3).astype(grd_mask[0].dtype)
+ mask = crop_image(Image.fromarray(mask_dilated * 255).convert('RGB'))
+ # image_ori = pad_image(image_ori)
+ # mask = pad_image(Image.fromarray(grd_mask[0] * 255).convert('RGB'))
+ image_and_mask = {
+ "image": image_ori,
+ "mask": mask,
+ }
+ width = image_ori.size[0]; height = image_ori.size[1]
+ images_inpainting = pipe(prompt = inpainting_text.strip(), image=image_and_mask['image'], mask_image=image_and_mask['mask'], height=height, width=width).images
+ torch.cuda.empty_cache()
+ return Image.fromarray(res) ,'' , images_inpainting[0]
+ else:
+ torch.cuda.empty_cache()
+ return image_ori, 'text', Image.fromarray(res)
\ No newline at end of file
diff --git a/tasks/ref_seg.py b/tasks/ref_seg.py
new file mode 100644
index 0000000000000000000000000000000000000000..d1a832d8c36b8584ca0784af3c7346c9825e2b6b
--- /dev/null
+++ b/tasks/ref_seg.py
@@ -0,0 +1,46 @@
+# --------------------------------------------------------
+# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
+# Copyright (c) 2022 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Xueyan Zou (xueyan@cs.wisc.edu)
+# --------------------------------------------------------
+
+import torch
+import numpy as np
+from PIL import Image
+from torchvision import transforms
+from utils.visualizer import Visualizer
+from detectron2.utils.colormap import random_color
+from detectron2.data import MetadataCatalog
+
+
+t = []
+t.append(transforms.Resize(512, interpolation=Image.BICUBIC))
+transform = transforms.Compose(t)
+metadata = MetadataCatalog.get('ade20k_panoptic_train')
+
+def referring_segmentation(model, image, texts, inpainting_text, *args, **kwargs):
+ model.model.metadata = metadata
+ texts = texts.strip()
+ texts = [[text.strip() if text.endswith('.') else (text + '.')] for text in texts.split(',')]
+ image_ori = transform(image)
+
+ with torch.no_grad():
+ width = image_ori.size[0]
+ height = image_ori.size[1]
+ image = np.asarray(image_ori)
+ image_ori_np = np.asarray(image_ori)
+ images = torch.from_numpy(image.copy()).permute(2,0,1).cuda()
+
+ batch_inputs = [{'image': images, 'height': height, 'width': width, 'groundings': {'texts': texts}}]
+ outputs = model.model.evaluate_grounding(batch_inputs, None)
+ visual = Visualizer(image_ori_np, metadata=metadata)
+
+ grd_mask = (outputs[0]['grounding_mask'] > 0).float().cpu().numpy()
+ for idx, mask in enumerate(grd_mask):
+ color = random_color(rgb=True, maximum=1).astype(np.int32).tolist()
+ demo = visual.draw_binary_mask(mask, color=color, text=texts[idx])
+ res = demo.get_image()
+
+ torch.cuda.empty_cache()
+ return Image.fromarray(res), '', None
\ No newline at end of file
diff --git a/tasks/reg_ret.py b/tasks/reg_ret.py
new file mode 100644
index 0000000000000000000000000000000000000000..f475cca2c29cc380a7c27d7493fdb227464eb5f6
--- /dev/null
+++ b/tasks/reg_ret.py
@@ -0,0 +1,72 @@
+# --------------------------------------------------------
+# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
+# Copyright (c) 2022 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Xueyan Zou (xueyan@cs.wisc.edu)
+# --------------------------------------------------------
+
+import glob
+import os
+import torch
+import numpy as np
+from PIL import Image
+from torchvision import transforms
+from detectron2.data import MetadataCatalog
+from utils.visualizer import Visualizer
+from xdecoder.language.loss import vl_similarity
+from detectron2.utils.colormap import random_color
+
+
+t = []
+t.append(transforms.Resize((224,224), interpolation=Image.BICUBIC))
+transform_ret = transforms.Compose(t)
+t = []
+t.append(transforms.Resize(512, interpolation=Image.BICUBIC))
+transform_grd = transforms.Compose(t)
+metadata = MetadataCatalog.get('coco_2017_train_panoptic')
+
+imgs_root = 'images/coco'
+img_pths = sorted(glob.glob(os.path.join(imgs_root, '*.jpg')))
+imgs = [Image.open(x).convert('RGB') for x in img_pths]
+v_emb = torch.load("v_emb.da")
+
+def region_retrieval(model, image, texts, inpainting_text, *args, **kwargs):
+ model_novg, model_seg = model
+ with torch.no_grad():
+ # images = [transform_ret(x) for x in imgs]
+ # images = [np.asarray(x) for x in imgs]
+ # images = [torch.from_numpy(x.copy()).permute(2,0,1).cuda() for x in images]
+ # batch_inputs = [{'image': image, 'image_id': 0} for image in images]
+ # outputs = model_novg.model.evaluate(batch_inputs)
+ # v_emb = torch.cat([x['captions'][-1:] for x in outputs])
+ # v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7)
+ # torch.save(v_emb, "v_emb.da")
+ # exit()
+
+ texts_ = [[x.strip() if x.strip().endswith('.') else (x.strip() + '.')] for x in texts.split(',')]
+ model_novg.model.sem_seg_head.predictor.lang_encoder.get_text_embeddings(texts_, is_eval=False, name='caption', prompt=False)
+ t_emb = getattr(model_novg.model.sem_seg_head.predictor.lang_encoder, '{}_text_embeddings'.format('caption'))
+ temperature = model_novg.model.sem_seg_head.predictor.lang_encoder.logit_scale
+
+ logits = vl_similarity(v_emb, t_emb, temperature)
+ prob, idx = logits[:,0].softmax(-1).max(0)
+ image_ori = imgs[idx]
+ image = transform_grd(image_ori)
+ width, height = image.size
+ image = np.asarray(image)
+ image_ori = np.asarray(image)
+ images = torch.from_numpy(image.copy()).permute(2,0,1).cuda()
+ batch_inputs = [{'image': images, 'height': height, 'width': width, 'groundings': {'texts': texts_}}]
+ model_seg.model.sem_seg_head.predictor.lang_encoder.get_text_embeddings(texts_, is_eval=False, name='caption', prompt=False)
+ outputs = model_seg.model.evaluate_grounding(batch_inputs, None)
+
+ visual = Visualizer(image_ori, metadata=metadata)
+ grd_masks = (outputs[0]['grounding_mask'] > 0).float().cpu().numpy()
+
+ for text, mask in zip([x[0] for x in texts_], grd_masks):
+ color = random_color(rgb=True, maximum=1).astype(np.int32).tolist()
+ demo = visual.draw_binary_mask(mask, color=color, text=texts, alpha=0.5)
+ res = demo.get_image()
+
+ torch.cuda.empty_cache()
+ return Image.fromarray(res), "Selected Image Probability: {:.2f}".format(prob.item()), None
\ No newline at end of file
diff --git a/tasks/text_ret.py b/tasks/text_ret.py
new file mode 100644
index 0000000000000000000000000000000000000000..65d6831ec9b8d60806cc8237bdd5b4366791d1a8
--- /dev/null
+++ b/tasks/text_ret.py
@@ -0,0 +1,46 @@
+# --------------------------------------------------------
+# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
+# Copyright (c) 2022 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Xueyan Zou (xueyan@cs.wisc.edu)
+# --------------------------------------------------------
+
+import torch
+import numpy as np
+from PIL import Image
+from torchvision import transforms
+from detectron2.data import MetadataCatalog
+from xdecoder.language.loss import vl_similarity
+
+
+t = []
+t.append(transforms.Resize(224, interpolation=Image.BICUBIC))
+transform_ret = transforms.Compose(t)
+t = []
+t.append(transforms.Resize(512, interpolation=Image.BICUBIC))
+transform_grd = transforms.Compose(t)
+
+metedata = MetadataCatalog.get('coco_2017_train_panoptic')
+
+def text_retrieval(model, image, texts, inpainting_text, *args, **kwargs):
+ out_str = ''
+ with torch.no_grad():
+ image = transform_ret(image)
+ image = np.asarray(image)
+ images = torch.from_numpy(image.copy()).permute(2,0,1).cuda()
+ batch_inputs = [{'image': images, 'image_id': 0}]
+ outputs = model.model.evaluate(batch_inputs)
+ v_emb = torch.cat([x['captions'][-1:] for x in outputs])
+ v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7)
+
+ texts = [x.strip() for x in texts.split(',')]
+ model.model.sem_seg_head.predictor.lang_encoder.get_text_embeddings(texts, is_eval=False, name='caption', prompt=False)
+ t_emb = getattr(model.model.sem_seg_head.predictor.lang_encoder, '{}_text_embeddings'.format('caption'))
+ temperature = model.model.sem_seg_head.predictor.lang_encoder.logit_scale
+ logits = vl_similarity(v_emb, t_emb, temperature)
+ topk_prob, topk_idx = logits.softmax(-1)[0].topk(min(5, len(texts)))
+
+ for prob, idx in zip(topk_prob, topk_idx):
+ out_str += "{}:{:.2f}; ".format(texts[idx.item()], prob.item())
+ torch.cuda.empty_cache()
+ return None, out_str, None
\ No newline at end of file
diff --git a/utils/Config.py b/utils/Config.py
new file mode 100755
index 0000000000000000000000000000000000000000..bc9877e4910a2ccfc2ac0d851c5c87ce1e134450
--- /dev/null
+++ b/utils/Config.py
@@ -0,0 +1,26 @@
+from fvcore.common.config import CfgNode as _CfgNode
+
+class CfgNode(_CfgNode):
+ """
+ The same as `fvcore.common.config.CfgNode`, but different in:
+
+ 1. Use unsafe yaml loading by default.
+ Note that this may lead to arbitrary code execution: you must not
+ load a config file from untrusted sources before manually inspecting
+ the content of the file.
+ 2. Support config versioning.
+ When attempting to merge an old config, it will convert the old config automatically.
+
+ .. automethod:: clone
+ .. automethod:: freeze
+ .. automethod:: defrost
+ .. automethod:: is_frozen
+ .. automethod:: load_yaml_with_base
+ .. automethod:: merge_from_list
+ .. automethod:: merge_from_other_cfg
+ """
+
+ def merge_from_dict(self, dict):
+ pass
+
+node = CfgNode()
\ No newline at end of file
diff --git a/utils/__init__.py b/utils/__init__.py
new file mode 100755
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/utils/arguments.py b/utils/arguments.py
new file mode 100755
index 0000000000000000000000000000000000000000..c1a3fa8069e15a287aedd7d15828fa6e23c4fda4
--- /dev/null
+++ b/utils/arguments.py
@@ -0,0 +1,98 @@
+import yaml
+import json
+import argparse
+import logging
+
+logger = logging.getLogger(__name__)
+
+
+def load_config_dict_to_opt(opt, config_dict):
+ """
+ Load the key, value pairs from config_dict to opt, overriding existing values in opt
+ if there is any.
+ """
+ if not isinstance(config_dict, dict):
+ raise TypeError("Config must be a Python dictionary")
+ for k, v in config_dict.items():
+ k_parts = k.split('.')
+ pointer = opt
+ for k_part in k_parts[:-1]:
+ if k_part not in pointer:
+ pointer[k_part] = {}
+ pointer = pointer[k_part]
+ assert isinstance(pointer, dict), "Overriding key needs to be inside a Python dict."
+ ori_value = pointer.get(k_parts[-1])
+ pointer[k_parts[-1]] = v
+ if ori_value:
+ logger.warning(f"Overrided {k} from {ori_value} to {pointer[k_parts[-1]]}")
+
+
+def load_opt_from_config_files(conf_file):
+ """
+ Load opt from the config files, settings in later files can override those in previous files.
+
+ Args:
+ conf_files: config file path
+
+ Returns:
+ dict: a dictionary of opt settings
+ """
+ opt = {}
+ with open(conf_file, encoding='utf-8') as f:
+ config_dict = yaml.safe_load(f)
+
+ load_config_dict_to_opt(opt, config_dict)
+
+ return opt
+
+
+def load_opt_command(args):
+ parser = argparse.ArgumentParser(description='MainzTrain: Pretrain or fine-tune models for NLP tasks.')
+ parser.add_argument('command', help='Command: train/evaluate/train-and-evaluate')
+ parser.add_argument('--conf_files', required=True, help='Path(s) to the MainzTrain config file(s).')
+ parser.add_argument('--config_overrides', nargs='*', help='Override parameters on config with a json style string, e.g. {"": , "..": }. A key with "." updates the object in the corresponding nested dict. Remember to escape " in command line.')
+ parser.add_argument('--overrides', help='arguments that used to overide the config file in cmdline', nargs=argparse.REMAINDER)
+
+ cmdline_args = parser.parse_args() if not args else parser.parse_args(args)
+
+ opt = load_opt_from_config_files(cmdline_args.conf_files)
+
+ if cmdline_args.config_overrides:
+ config_overrides_string = ' '.join(cmdline_args.config_overrides)
+ logger.warning(f"Command line config overrides: {config_overrides_string}")
+ config_dict = json.loads(config_overrides_string)
+ load_config_dict_to_opt(opt, config_dict)
+
+ if cmdline_args.overrides:
+ assert len(cmdline_args.overrides) % 2 == 0, "overides arguments is not paired, required: key value"
+ keys = [cmdline_args.overrides[idx*2] for idx in range(len(cmdline_args.overrides)//2)]
+ vals = [cmdline_args.overrides[idx*2+1] for idx in range(len(cmdline_args.overrides)//2)]
+ vals = [val.replace('false', '').replace('False','') if len(val.replace(' ', '')) == 5 else val for val in vals]
+
+ types = []
+ for key in keys:
+ key = key.split('.')
+ ele = opt.copy()
+ while len(key) > 0:
+ ele = ele[key.pop(0)]
+ types.append(type(ele))
+
+ config_dict = {x:z(y) for x,y,z in zip(keys, vals, types)}
+ load_config_dict_to_opt(opt, config_dict)
+
+ # combine cmdline_args into opt dictionary
+ for key, val in cmdline_args.__dict__.items():
+ if val is not None:
+ opt[key] = val
+
+ return opt, cmdline_args
+
+
+def save_opt_to_json(opt, conf_file):
+ with open(conf_file, 'w', encoding='utf-8') as f:
+ json.dump(opt, f, indent=4)
+
+
+def save_opt_to_yaml(opt, conf_file):
+ with open(conf_file, 'w', encoding='utf-8') as f:
+ yaml.dump(opt, f)
diff --git a/utils/ddim.py b/utils/ddim.py
new file mode 100644
index 0000000000000000000000000000000000000000..d6366003eb4107c95cf0cf7bbb653000f716d06c
--- /dev/null
+++ b/utils/ddim.py
@@ -0,0 +1,203 @@
+"""SAMPLING ONLY."""
+
+import torch
+import numpy as np
+from tqdm import tqdm
+from functools import partial
+
+from .util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
+
+
+class DDIMSampler(object):
+ def __init__(self, model, schedule="linear", **kwargs):
+ super().__init__()
+ self.model = model
+ self.ddpm_num_timesteps = model.num_timesteps
+ self.schedule = schedule
+
+ def register_buffer(self, name, attr):
+ if type(attr) == torch.Tensor:
+ if attr.device != torch.device("cuda"):
+ attr = attr.to(torch.device("cuda"))
+ setattr(self, name, attr)
+
+ def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
+ self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
+ num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
+ alphas_cumprod = self.model.alphas_cumprod
+ assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
+ to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
+
+ self.register_buffer('betas', to_torch(self.model.betas))
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
+ self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
+
+ # calculations for diffusion q(x_t | x_{t-1}) and others
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
+
+ # ddim sampling parameters
+ ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
+ ddim_timesteps=self.ddim_timesteps,
+ eta=ddim_eta,verbose=verbose)
+ self.register_buffer('ddim_sigmas', ddim_sigmas)
+ self.register_buffer('ddim_alphas', ddim_alphas)
+ self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
+ self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
+ sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
+ (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
+ 1 - self.alphas_cumprod / self.alphas_cumprod_prev))
+ self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
+
+ @torch.no_grad()
+ def sample(self,
+ S,
+ batch_size,
+ shape,
+ conditioning=None,
+ callback=None,
+ normals_sequence=None,
+ img_callback=None,
+ quantize_x0=False,
+ eta=0.,
+ mask=None,
+ x0=None,
+ temperature=1.,
+ noise_dropout=0.,
+ score_corrector=None,
+ corrector_kwargs=None,
+ verbose=True,
+ x_T=None,
+ log_every_t=100,
+ unconditional_guidance_scale=1.,
+ unconditional_conditioning=None,
+ # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
+ **kwargs
+ ):
+ if conditioning is not None:
+ if isinstance(conditioning, dict):
+ cbs = conditioning[list(conditioning.keys())[0]].shape[0]
+ if cbs != batch_size:
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
+ else:
+ if conditioning.shape[0] != batch_size:
+ print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
+
+ self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
+ # sampling
+ C, H, W = shape
+ size = (batch_size, C, H, W)
+ print(f'Data shape for DDIM sampling is {size}, eta {eta}')
+
+ samples, intermediates = self.ddim_sampling(conditioning, size,
+ callback=callback,
+ img_callback=img_callback,
+ quantize_denoised=quantize_x0,
+ mask=mask, x0=x0,
+ ddim_use_original_steps=False,
+ noise_dropout=noise_dropout,
+ temperature=temperature,
+ score_corrector=score_corrector,
+ corrector_kwargs=corrector_kwargs,
+ x_T=x_T,
+ log_every_t=log_every_t,
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ unconditional_conditioning=unconditional_conditioning,
+ )
+ return samples, intermediates
+
+ @torch.no_grad()
+ def ddim_sampling(self, cond, shape,
+ x_T=None, ddim_use_original_steps=False,
+ callback=None, timesteps=None, quantize_denoised=False,
+ mask=None, x0=None, img_callback=None, log_every_t=100,
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
+ unconditional_guidance_scale=1., unconditional_conditioning=None,):
+ device = self.model.betas.device
+ b = shape[0]
+ if x_T is None:
+ img = torch.randn(shape, device=device)
+ else:
+ img = x_T
+
+ if timesteps is None:
+ timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
+ elif timesteps is not None and not ddim_use_original_steps:
+ subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
+ timesteps = self.ddim_timesteps[:subset_end]
+
+ intermediates = {'x_inter': [img], 'pred_x0': [img]}
+ time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
+ total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
+ print(f"Running DDIM Sampling with {total_steps} timesteps")
+
+ iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
+
+ for i, step in enumerate(iterator):
+ index = total_steps - i - 1
+ ts = torch.full((b,), step, device=device, dtype=torch.long)
+
+ if mask is not None:
+ assert x0 is not None
+ img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
+ img = img_orig * mask + (1. - mask) * img
+
+ outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
+ quantize_denoised=quantize_denoised, temperature=temperature,
+ noise_dropout=noise_dropout, score_corrector=score_corrector,
+ corrector_kwargs=corrector_kwargs,
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ unconditional_conditioning=unconditional_conditioning)
+ img, pred_x0 = outs
+ if callback: callback(i)
+ if img_callback: img_callback(pred_x0, i)
+
+ if index % log_every_t == 0 or index == total_steps - 1:
+ intermediates['x_inter'].append(img)
+ intermediates['pred_x0'].append(pred_x0)
+
+ return img, intermediates
+
+ @torch.no_grad()
+ def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
+ unconditional_guidance_scale=1., unconditional_conditioning=None):
+ b, *_, device = *x.shape, x.device
+
+ if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
+ e_t = self.model.apply_model(x, t, c)
+ else:
+ x_in = torch.cat([x] * 2)
+ t_in = torch.cat([t] * 2)
+ c_in = torch.cat([unconditional_conditioning, c])
+ e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
+ e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
+
+ if score_corrector is not None:
+ assert self.model.parameterization == "eps"
+ e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
+
+ alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
+ alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
+ sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
+ sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
+ # select parameters corresponding to the currently considered timestep
+ a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
+ a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
+ sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
+ sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
+
+ # current prediction for x_0
+ pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
+ if quantize_denoised:
+ pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
+ # direction pointing to x_t
+ dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
+ noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
+ if noise_dropout > 0.:
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
+ x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
+ return x_prev, pred_x0
diff --git a/utils/distributed.py b/utils/distributed.py
new file mode 100644
index 0000000000000000000000000000000000000000..521a934de05bca3159bb595cd0ab997ee08dd61a
--- /dev/null
+++ b/utils/distributed.py
@@ -0,0 +1,180 @@
+import os
+import time
+import torch
+import pickle
+import torch.distributed as dist
+
+
+def init_distributed(opt):
+ opt['CUDA'] = opt.get('CUDA', True) and torch.cuda.is_available()
+ if 'OMPI_COMM_WORLD_SIZE' not in os.environ:
+ # application was started without MPI
+ # default to single node with single process
+ opt['env_info'] = 'no MPI'
+ opt['world_size'] = 1
+ opt['local_size'] = 1
+ opt['rank'] = 0
+ opt['local_rank'] = 0
+ opt['master_address'] = '127.0.0.1'
+ opt['master_port'] = '8673'
+ else:
+ # application was started with MPI
+ # get MPI parameters
+ opt['world_size'] = int(os.environ['OMPI_COMM_WORLD_SIZE'])
+ opt['local_size'] = int(os.environ['OMPI_COMM_WORLD_LOCAL_SIZE'])
+ opt['rank'] = int(os.environ['OMPI_COMM_WORLD_RANK'])
+ opt['local_rank'] = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK'])
+
+ # set up device
+ if not opt['CUDA']:
+ assert opt['world_size'] == 1, 'multi-GPU training without CUDA is not supported since we use NCCL as communication backend'
+ opt['device'] = torch.device("cpu")
+ else:
+ torch.cuda.set_device(opt['local_rank'])
+ opt['device'] = torch.device("cuda", opt['local_rank'])
+ return opt
+
+def is_main_process():
+ rank = 0
+ if 'OMPI_COMM_WORLD_SIZE' in os.environ:
+ rank = int(os.environ['OMPI_COMM_WORLD_RANK'])
+
+ return rank == 0
+
+def get_world_size():
+ if not dist.is_available():
+ return 1
+ if not dist.is_initialized():
+ return 1
+ return dist.get_world_size()
+
+def get_rank():
+ if not dist.is_available():
+ return 0
+ if not dist.is_initialized():
+ return 0
+ return dist.get_rank()
+
+
+def synchronize():
+ """
+ Helper function to synchronize (barrier) among all processes when
+ using distributed training
+ """
+ if not dist.is_available():
+ return
+ if not dist.is_initialized():
+ return
+ world_size = dist.get_world_size()
+ rank = dist.get_rank()
+ if world_size == 1:
+ return
+
+ def _send_and_wait(r):
+ if rank == r:
+ tensor = torch.tensor(0, device="cuda")
+ else:
+ tensor = torch.tensor(1, device="cuda")
+ dist.broadcast(tensor, r)
+ while tensor.item() == 1:
+ time.sleep(1)
+
+ _send_and_wait(0)
+ # now sync on the main process
+ _send_and_wait(1)
+
+
+def all_gather(data):
+ """
+ Run all_gather on arbitrary picklable data (not necessarily tensors)
+ Args:
+ data: any picklable object
+ Returns:
+ list[data]: list of data gathered from each rank
+ """
+ world_size = get_world_size()
+ if world_size == 1:
+ return [data]
+
+ # serialized to a Tensor
+ buffer = pickle.dumps(data)
+ storage = torch.ByteStorage.from_buffer(buffer)
+ tensor = torch.ByteTensor(storage).to("cuda")
+
+ # obtain Tensor size of each rank
+ local_size = torch.IntTensor([tensor.numel()]).to("cuda")
+ size_list = [torch.IntTensor([0]).to("cuda") for _ in range(world_size)]
+ dist.all_gather(size_list, local_size)
+ size_list = [int(size.item()) for size in size_list]
+ max_size = max(size_list)
+
+ # receiving Tensor from all ranks
+ # we pad the tensor because torch all_gather does not support
+ # gathering tensors of different shapes
+ tensor_list = []
+ for _ in size_list:
+ tensor_list.append(torch.ByteTensor(size=(max_size,)).to("cuda"))
+ if local_size != max_size:
+ padding = torch.ByteTensor(size=(max_size - local_size,)).to("cuda")
+ tensor = torch.cat((tensor, padding), dim=0)
+ dist.all_gather(tensor_list, tensor)
+
+ data_list = []
+ for size, tensor in zip(size_list, tensor_list):
+ buffer = tensor.cpu().numpy().tobytes()[:size]
+ data_list.append(pickle.loads(buffer))
+
+ return data_list
+
+
+def reduce_dict(input_dict, average=True):
+ """
+ Args:
+ input_dict (dict): all the values will be reduced
+ average (bool): whether to do average or sum
+ Reduce the values in the dictionary from all processes so that process with rank
+ 0 has the averaged results. Returns a dict with the same fields as
+ input_dict, after reduction.
+ """
+ world_size = get_world_size()
+ if world_size < 2:
+ return input_dict
+ with torch.no_grad():
+ names = []
+ values = []
+ # sort the keys so that they are consistent across processes
+ for k in sorted(input_dict.keys()):
+ names.append(k)
+ values.append(input_dict[k])
+ values = torch.stack(values, dim=0)
+ dist.reduce(values, dst=0)
+ if dist.get_rank() == 0 and average:
+ # only main process gets accumulated, so only divide by
+ # world_size in this case
+ values /= world_size
+ reduced_dict = {k: v for k, v in zip(names, values)}
+ return reduced_dict
+
+
+def broadcast_data(data):
+ if not torch.distributed.is_initialized():
+ return data
+ rank = dist.get_rank()
+ if rank == 0:
+ data_tensor = torch.tensor(data + [0], device="cuda")
+ else:
+ data_tensor = torch.tensor(data + [1], device="cuda")
+ torch.distributed.broadcast(data_tensor, 0)
+ while data_tensor.cpu().numpy()[-1] == 1:
+ time.sleep(1)
+
+ return data_tensor.cpu().numpy().tolist()[:-1]
+
+
+def reduce_sum(tensor):
+ if get_world_size() <= 1:
+ return tensor
+
+ tensor = tensor.clone()
+ dist.all_reduce(tensor, op=dist.ReduceOp.SUM)
+ return tensor
\ No newline at end of file
diff --git a/utils/inpainting.py b/utils/inpainting.py
new file mode 100644
index 0000000000000000000000000000000000000000..177ada354b818fd9d488b0b2a1117f6c3fef452e
--- /dev/null
+++ b/utils/inpainting.py
@@ -0,0 +1,172 @@
+import sys
+import cv2
+import torch
+import numpy as np
+import gradio as gr
+from PIL import Image
+from omegaconf import OmegaConf
+from einops import repeat
+from imwatermark import WatermarkEncoder
+from pathlib import Path
+
+from .ddim import DDIMSampler
+from .util import instantiate_from_config
+
+
+torch.set_grad_enabled(False)
+
+
+def put_watermark(img, wm_encoder=None):
+ if wm_encoder is not None:
+ img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
+ img = wm_encoder.encode(img, 'dwtDct')
+ img = Image.fromarray(img[:, :, ::-1])
+ return img
+
+
+def initialize_model(config, ckpt):
+ config = OmegaConf.load(config)
+ model = instantiate_from_config(config.model)
+
+ model.load_state_dict(torch.load(ckpt)["state_dict"], strict=False)
+
+ device = torch.device(
+ "cuda") if torch.cuda.is_available() else torch.device("cpu")
+ model = model.to(device)
+ sampler = DDIMSampler(model)
+
+ return sampler
+
+
+def make_batch_sd(
+ image,
+ mask,
+ txt,
+ device,
+ num_samples=1):
+ image = np.array(image.convert("RGB"))
+ image = image[None].transpose(0, 3, 1, 2)
+ image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
+
+ mask = np.array(mask.convert("L"))
+ mask = mask.astype(np.float32) / 255.0
+ mask = mask[None, None]
+ mask[mask < 0.5] = 0
+ mask[mask >= 0.5] = 1
+ mask = torch.from_numpy(mask)
+
+ masked_image = image * (mask < 0.5)
+
+ batch = {
+ "image": repeat(image.to(device=device), "1 ... -> n ...", n=num_samples),
+ "txt": num_samples * [txt],
+ "mask": repeat(mask.to(device=device), "1 ... -> n ...", n=num_samples),
+ "masked_image": repeat(masked_image.to(device=device), "1 ... -> n ...", n=num_samples),
+ }
+ return batch
+
+@torch.no_grad()
+def inpaint(sampler, image, mask, prompt, seed, scale, ddim_steps, num_samples=1, w=512, h=512):
+ device = torch.device(
+ "cuda") if torch.cuda.is_available() else torch.device("cpu")
+ model = sampler.model
+
+ print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...")
+ wm = "SDV2"
+ wm_encoder = WatermarkEncoder()
+ wm_encoder.set_watermark('bytes', wm.encode('utf-8'))
+
+ prng = np.random.RandomState(seed)
+ start_code = prng.randn(num_samples, 4, h // 8, w // 8)
+ start_code = torch.from_numpy(start_code).to(
+ device=device, dtype=torch.float32)
+
+ with torch.no_grad(), \
+ torch.autocast("cuda"):
+ batch = make_batch_sd(image, mask, txt=prompt,
+ device=device, num_samples=num_samples)
+
+ c = model.cond_stage_model.encode(batch["txt"])
+
+ c_cat = list()
+ for ck in model.concat_keys:
+ cc = batch[ck].float()
+ if ck != model.masked_image_key:
+ bchw = [num_samples, 4, h // 8, w // 8]
+ cc = torch.nn.functional.interpolate(cc, size=bchw[-2:])
+ else:
+ cc = model.get_first_stage_encoding(
+ model.encode_first_stage(cc))
+ c_cat.append(cc)
+ c_cat = torch.cat(c_cat, dim=1)
+
+ # cond
+ cond = {"c_concat": [c_cat], "c_crossattn": [c]}
+
+ # uncond cond
+ uc_cross = model.get_unconditional_conditioning(num_samples, "")
+ uc_full = {"c_concat": [c_cat], "c_crossattn": [uc_cross]}
+
+ shape = [model.channels, h // 8, w // 8]
+ samples_cfg, intermediates = sampler.sample(
+ ddim_steps,
+ num_samples,
+ shape,
+ cond,
+ verbose=False,
+ eta=1.0,
+ unconditional_guidance_scale=scale,
+ unconditional_conditioning=uc_full,
+ x_T=start_code,
+ )
+ x_samples_ddim = model.decode_first_stage(samples_cfg)
+
+ result = torch.clamp((x_samples_ddim + 1.0) / 2.0,
+ min=0.0, max=1.0)
+
+ result = result.cpu().numpy().transpose(0, 2, 3, 1) * 255
+ return [put_watermark(Image.fromarray(img.astype(np.uint8)), wm_encoder) for img in result]
+
+def pad_image(input_image):
+ pad_w, pad_h = np.max(((2, 2), np.ceil(
+ np.array(input_image.size) / 64).astype(int)), axis=0) * 64 - input_image.size
+ im_padded = Image.fromarray(
+ np.pad(np.array(input_image), ((0, pad_h), (0, pad_w), (0, 0)), mode='edge'))
+ return im_padded
+
+# sampler = initialize_model(sys.argv[1], sys.argv[2])
+@torch.no_grad()
+def predict(model, input_image, prompt, ddim_steps, num_samples, scale, seed):
+ """_summary_
+
+ Args:
+ input_image (_type_): dict
+ - image: PIL.Image. Input image.
+ - mask: PIL.Image. Mask image.
+ prompt (_type_): string to be used as prompt.
+ ddim_steps (_type_): typical 45
+ num_samples (_type_): typical 4
+ scale (_type_): typical 10.0 Guidance Scale.
+ seed (_type_): typical 1529160519
+
+ """
+ init_image = input_image["image"].convert("RGB")
+ init_mask = input_image["mask"].convert("RGB")
+ image = pad_image(init_image) # resize to integer multiple of 32
+ mask = pad_image(init_mask) # resize to integer multiple of 32
+ width, height = image.size
+ print("Inpainting...", width, height)
+
+ result = inpaint(
+ sampler=model,
+ image=image,
+ mask=mask,
+ prompt=prompt,
+ seed=seed,
+ scale=scale,
+ ddim_steps=ddim_steps,
+ num_samples=num_samples,
+ h=height, w=width
+ )
+
+ return result
\ No newline at end of file
diff --git a/utils/misc.py b/utils/misc.py
new file mode 100755
index 0000000000000000000000000000000000000000..7b7f187785f8f45ce3d0b069b94ff31150c707ac
--- /dev/null
+++ b/utils/misc.py
@@ -0,0 +1,122 @@
+import math
+import numpy as np
+
+def get_prompt_templates():
+ prompt_templates = [
+ '{}.',
+ 'a photo of a {}.',
+ 'a bad photo of a {}.',
+ 'a photo of many {}.',
+ 'a sculpture of a {}.',
+ 'a photo of the hard to see {}.',
+ 'a low resolution photo of the {}.',
+ 'a rendering of a {}.',
+ 'graffiti of a {}.',
+ 'a bad photo of the {}.',
+ 'a cropped photo of the {}.',
+ 'a tattoo of a {}.',
+ 'the embroidered {}.',
+ 'a photo of a hard to see {}.',
+ 'a bright photo of a {}.',
+ 'a photo of a clean {}.',
+ 'a photo of a dirty {}.',
+ 'a dark photo of the {}.',
+ 'a drawing of a {}.',
+ 'a photo of my {}.',
+ 'the plastic {}.',
+ 'a photo of the cool {}.',
+ 'a close-up photo of a {}.',
+ 'a black and white photo of the {}.',
+ 'a painting of the {}.',
+ 'a painting of a {}.',
+ 'a pixelated photo of the {}.',
+ 'a sculpture of the {}.',
+ 'a bright photo of the {}.',
+ 'a cropped photo of a {}.',
+ 'a plastic {}.',
+ 'a photo of the dirty {}.',
+ 'a jpeg corrupted photo of a {}.',
+ 'a blurry photo of the {}.',
+ 'a photo of the {}.',
+ 'a good photo of the {}.',
+ 'a rendering of the {}.',
+ 'a {} in a video game.',
+ 'a photo of one {}.',
+ 'a doodle of a {}.',
+ 'a close-up photo of the {}.',
+ 'the origami {}.',
+ 'the {} in a video game.',
+ 'a sketch of a {}.',
+ 'a doodle of the {}.',
+ 'a origami {}.',
+ 'a low resolution photo of a {}.',
+ 'the toy {}.',
+ 'a rendition of the {}.',
+ 'a photo of the clean {}.',
+ 'a photo of a large {}.',
+ 'a rendition of a {}.',
+ 'a photo of a nice {}.',
+ 'a photo of a weird {}.',
+ 'a blurry photo of a {}.',
+ 'a cartoon {}.',
+ 'art of a {}.',
+ 'a sketch of the {}.',
+ 'a embroidered {}.',
+ 'a pixelated photo of a {}.',
+ 'itap of the {}.',
+ 'a jpeg corrupted photo of the {}.',
+ 'a good photo of a {}.',
+ 'a plushie {}.',
+ 'a photo of the nice {}.',
+ 'a photo of the small {}.',
+ 'a photo of the weird {}.',
+ 'the cartoon {}.',
+ 'art of the {}.',
+ 'a drawing of the {}.',
+ 'a photo of the large {}.',
+ 'a black and white photo of a {}.',
+ 'the plushie {}.',
+ 'a dark photo of a {}.',
+ 'itap of a {}.',
+ 'graffiti of the {}.',
+ 'a toy {}.',
+ 'itap of my {}.',
+ 'a photo of a cool {}.',
+ 'a photo of a small {}.',
+ 'a tattoo of the {}.',
+ ]
+ return prompt_templates
+
+
+def prompt_engineering(classnames, topk=1, suffix='.'):
+ prompt_templates = get_prompt_templates()
+ temp_idx = np.random.randint(min(len(prompt_templates), topk))
+
+ if isinstance(classnames, list):
+ classname = random.choice(classnames)
+ else:
+ classname = classnames
+
+ return prompt_templates[temp_idx].replace('.', suffix).format(classname.replace(',', '').replace('+', ' '))
+
+class AverageMeter(object):
+ """Computes and stores the average and current value."""
+ def __init__(self):
+ self.reset()
+
+ def reset(self):
+ self.val = 0
+ self.avg = 0
+ self.sum = 0
+ self.count = 0
+
+ def update(self, val, n=1, decay=0):
+ self.val = val
+ if decay:
+ alpha = math.exp(-n / decay) # exponential decay over 100 updates
+ self.sum = alpha * self.sum + (1 - alpha) * val * n
+ self.count = alpha * self.count + (1 - alpha) * n
+ else:
+ self.sum += val * n
+ self.count += n
+ self.avg = self.sum / self.count
diff --git a/utils/model.py b/utils/model.py
new file mode 100755
index 0000000000000000000000000000000000000000..c6002070f13c8ba45fa65da9ce907bcc88688a35
--- /dev/null
+++ b/utils/model.py
@@ -0,0 +1,32 @@
+import logging
+import os
+import time
+import pickle
+
+import torch
+import torch.distributed as dist
+
+from fvcore.nn import FlopCountAnalysis
+from fvcore.nn import flop_count_table
+from fvcore.nn import flop_count_str
+
+logger = logging.getLogger(__name__)
+
+
+NORM_MODULES = [
+ torch.nn.BatchNorm1d,
+ torch.nn.BatchNorm2d,
+ torch.nn.BatchNorm3d,
+ torch.nn.SyncBatchNorm,
+ # NaiveSyncBatchNorm inherits from BatchNorm2d
+ torch.nn.GroupNorm,
+ torch.nn.InstanceNorm1d,
+ torch.nn.InstanceNorm2d,
+ torch.nn.InstanceNorm3d,
+ torch.nn.LayerNorm,
+ torch.nn.LocalResponseNorm,
+]
+
+def register_norm_module(cls):
+ NORM_MODULES.append(cls)
+ return cls
\ No newline at end of file
diff --git a/utils/model_loading.py b/utils/model_loading.py
new file mode 100755
index 0000000000000000000000000000000000000000..e679cb7f59f19a3834110ace1f56a1bd077d0049
--- /dev/null
+++ b/utils/model_loading.py
@@ -0,0 +1,42 @@
+# --------------------------------------------------------
+# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
+# Copyright (c) 2022 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Xueyan Zou (xueyan@cs.wisc.edu)
+# --------------------------------------------------------
+
+import logging
+from utils.distributed import is_main_process
+logger = logging.getLogger(__name__)
+
+
+def align_and_update_state_dicts(model_state_dict, ckpt_state_dict):
+ model_keys = sorted(model_state_dict.keys())
+ ckpt_keys = sorted(ckpt_state_dict.keys())
+ result_dicts = {}
+ matched_log = []
+ unmatched_log = []
+ unloaded_log = []
+ for model_key in model_keys:
+ model_weight = model_state_dict[model_key]
+ if model_key in ckpt_keys:
+ ckpt_weight = ckpt_state_dict[model_key]
+ if model_weight.shape == ckpt_weight.shape:
+ result_dicts[model_key] = ckpt_weight
+ ckpt_keys.pop(ckpt_keys.index(model_key))
+ matched_log.append("Loaded {}, Model Shape: {} <-> Ckpt Shape: {}".format(model_key, model_weight.shape, ckpt_weight.shape))
+ else:
+ unmatched_log.append("*UNMATCHED* {}, Model Shape: {} <-> Ckpt Shape: {}".format(model_key, model_weight.shape, ckpt_weight.shape))
+ else:
+ unloaded_log.append("*UNLOADED* {}, Model Shape: {}".format(model_key, model_weight.shape))
+
+ if is_main_process():
+ for info in matched_log:
+ logger.info(info)
+ for info in unloaded_log:
+ logger.warning(info)
+ for key in ckpt_keys:
+ logger.warning("$UNUSED$ {}, Ckpt Shape: {}".format(key, ckpt_state_dict[key].shape))
+ for info in unmatched_log:
+ logger.warning(info)
+ return result_dicts
\ No newline at end of file
diff --git a/utils/util.py b/utils/util.py
new file mode 100644
index 0000000000000000000000000000000000000000..868c090d4fca05263ee59b7f7e32ef04802674e0
--- /dev/null
+++ b/utils/util.py
@@ -0,0 +1,283 @@
+# adopted from
+# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
+# and
+# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
+# and
+# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
+#
+# thanks!
+import importlib
+
+import os
+import math
+import torch
+import torch.nn as nn
+import numpy as np
+from einops import repeat
+
+
+def instantiate_from_config(config):
+ if not "target" in config:
+ if config == '__is_first_stage__':
+ return None
+ elif config == "__is_unconditional__":
+ return None
+ raise KeyError("Expected key `target` to instantiate.")
+ return get_obj_from_str(config["target"])(**config.get("params", dict()))
+
+
+def get_obj_from_str(string, reload=False):
+ module, cls = string.rsplit(".", 1)
+ if reload:
+ module_imp = importlib.import_module(module)
+ importlib.reload(module_imp)
+ return getattr(importlib.import_module(module, package=None), cls)
+
+
+def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
+ if schedule == "linear":
+ betas = (
+ torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
+ )
+
+ elif schedule == "cosine":
+ timesteps = (
+ torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
+ )
+ alphas = timesteps / (1 + cosine_s) * np.pi / 2
+ alphas = torch.cos(alphas).pow(2)
+ alphas = alphas / alphas[0]
+ betas = 1 - alphas[1:] / alphas[:-1]
+ betas = np.clip(betas, a_min=0, a_max=0.999)
+
+ elif schedule == "sqrt_linear":
+ betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
+ elif schedule == "sqrt":
+ betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
+ else:
+ raise ValueError(f"schedule '{schedule}' unknown.")
+ return betas.numpy()
+
+
+def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
+ if ddim_discr_method == 'uniform':
+ c = num_ddpm_timesteps // num_ddim_timesteps
+ ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
+ elif ddim_discr_method == 'quad':
+ ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
+ else:
+ raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
+
+ # assert ddim_timesteps.shape[0] == num_ddim_timesteps
+ # add one to get the final alpha values right (the ones from first scale to data during sampling)
+ steps_out = ddim_timesteps + 1
+ if verbose:
+ print(f'Selected timesteps for ddim sampler: {steps_out}')
+ return steps_out
+
+
+def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
+ # select alphas for computing the variance schedule
+ alphas = alphacums[ddim_timesteps]
+ alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
+
+ # according the the formula provided in https://arxiv.org/abs/2010.02502
+ sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
+ if verbose:
+ print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
+ print(f'For the chosen value of eta, which is {eta}, '
+ f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
+ return sigmas, alphas, alphas_prev
+
+
+def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
+ """
+ Create a beta schedule that discretizes the given alpha_t_bar function,
+ which defines the cumulative product of (1-beta) over time from t = [0,1].
+ :param num_diffusion_timesteps: the number of betas to produce.
+ :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
+ produces the cumulative product of (1-beta) up to that
+ part of the diffusion process.
+ :param max_beta: the maximum beta to use; use values lower than 1 to
+ prevent singularities.
+ """
+ betas = []
+ for i in range(num_diffusion_timesteps):
+ t1 = i / num_diffusion_timesteps
+ t2 = (i + 1) / num_diffusion_timesteps
+ betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
+ return np.array(betas)
+
+
+def extract_into_tensor(a, t, x_shape):
+ b, *_ = t.shape
+ out = a.gather(-1, t)
+ return out.reshape(b, *((1,) * (len(x_shape) - 1)))
+
+
+def checkpoint(func, inputs, params, flag):
+ """
+ Evaluate a function without caching intermediate activations, allowing for
+ reduced memory at the expense of extra compute in the backward pass.
+ :param func: the function to evaluate.
+ :param inputs: the argument sequence to pass to `func`.
+ :param params: a sequence of parameters `func` depends on but does not
+ explicitly take as arguments.
+ :param flag: if False, disable gradient checkpointing.
+ """
+ if flag:
+ args = tuple(inputs) + tuple(params)
+ return CheckpointFunction.apply(func, len(inputs), *args)
+ else:
+ return func(*inputs)
+
+
+class CheckpointFunction(torch.autograd.Function):
+ @staticmethod
+ def forward(ctx, run_function, length, *args):
+ ctx.run_function = run_function
+ ctx.input_tensors = list(args[:length])
+ ctx.input_params = list(args[length:])
+
+ with torch.no_grad():
+ output_tensors = ctx.run_function(*ctx.input_tensors)
+ return output_tensors
+
+ @staticmethod
+ def backward(ctx, *output_grads):
+ ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
+ with torch.enable_grad():
+ # Fixes a bug where the first op in run_function modifies the
+ # Tensor storage in place, which is not allowed for detach()'d
+ # Tensors.
+ shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
+ output_tensors = ctx.run_function(*shallow_copies)
+ input_grads = torch.autograd.grad(
+ output_tensors,
+ ctx.input_tensors + ctx.input_params,
+ output_grads,
+ allow_unused=True,
+ )
+ del ctx.input_tensors
+ del ctx.input_params
+ del output_tensors
+ return (None, None) + input_grads
+
+
+def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
+ """
+ Create sinusoidal timestep embeddings.
+ :param timesteps: a 1-D Tensor of N indices, one per batch element.
+ These may be fractional.
+ :param dim: the dimension of the output.
+ :param max_period: controls the minimum frequency of the embeddings.
+ :return: an [N x dim] Tensor of positional embeddings.
+ """
+ if not repeat_only:
+ half = dim // 2
+ freqs = torch.exp(
+ -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
+ ).to(device=timesteps.device)
+ args = timesteps[:, None].float() * freqs[None]
+ embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
+ if dim % 2:
+ embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
+ else:
+ embedding = repeat(timesteps, 'b -> b d', d=dim)
+ return embedding
+
+
+def zero_module(module):
+ """
+ Zero out the parameters of a module and return it.
+ """
+ for p in module.parameters():
+ p.detach().zero_()
+ return module
+
+
+def scale_module(module, scale):
+ """
+ Scale the parameters of a module and return it.
+ """
+ for p in module.parameters():
+ p.detach().mul_(scale)
+ return module
+
+
+def mean_flat(tensor):
+ """
+ Take the mean over all non-batch dimensions.
+ """
+ return tensor.mean(dim=list(range(1, len(tensor.shape))))
+
+
+def normalization(channels):
+ """
+ Make a standard normalization layer.
+ :param channels: number of input channels.
+ :return: an nn.Module for normalization.
+ """
+ return GroupNorm32(32, channels)
+
+
+# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
+class SiLU(nn.Module):
+ def forward(self, x):
+ return x * torch.sigmoid(x)
+
+
+class GroupNorm32(nn.GroupNorm):
+ def forward(self, x):
+ return super().forward(x.float()).type(x.dtype)
+
+def conv_nd(dims, *args, **kwargs):
+ """
+ Create a 1D, 2D, or 3D convolution module.
+ """
+ if dims == 1:
+ return nn.Conv1d(*args, **kwargs)
+ elif dims == 2:
+ return nn.Conv2d(*args, **kwargs)
+ elif dims == 3:
+ return nn.Conv3d(*args, **kwargs)
+ raise ValueError(f"unsupported dimensions: {dims}")
+
+
+def linear(*args, **kwargs):
+ """
+ Create a linear module.
+ """
+ return nn.Linear(*args, **kwargs)
+
+
+def avg_pool_nd(dims, *args, **kwargs):
+ """
+ Create a 1D, 2D, or 3D average pooling module.
+ """
+ if dims == 1:
+ return nn.AvgPool1d(*args, **kwargs)
+ elif dims == 2:
+ return nn.AvgPool2d(*args, **kwargs)
+ elif dims == 3:
+ return nn.AvgPool3d(*args, **kwargs)
+ raise ValueError(f"unsupported dimensions: {dims}")
+
+
+class HybridConditioner(nn.Module):
+
+ def __init__(self, c_concat_config, c_crossattn_config):
+ super().__init__()
+ self.concat_conditioner = instantiate_from_config(c_concat_config)
+ self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
+
+ def forward(self, c_concat, c_crossattn):
+ c_concat = self.concat_conditioner(c_concat)
+ c_crossattn = self.crossattn_conditioner(c_crossattn)
+ return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
+
+
+def noise_like(shape, device, repeat=False):
+ repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
+ noise = lambda: torch.randn(shape, device=device)
+ return repeat_noise() if repeat else noise()
\ No newline at end of file
diff --git a/utils/visualizer.py b/utils/visualizer.py
new file mode 100755
index 0000000000000000000000000000000000000000..afdc2e2ff69f0b36b51c75c41d1893e8d9fb582e
--- /dev/null
+++ b/utils/visualizer.py
@@ -0,0 +1,1278 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+import colorsys
+import logging
+import math
+import numpy as np
+from enum import Enum, unique
+import cv2
+import matplotlib as mpl
+import matplotlib.colors as mplc
+import matplotlib.figure as mplfigure
+import pycocotools.mask as mask_util
+import torch
+from matplotlib.backends.backend_agg import FigureCanvasAgg
+from PIL import Image
+
+from detectron2.data import MetadataCatalog
+from detectron2.structures import BitMasks, Boxes, BoxMode, Keypoints, PolygonMasks, RotatedBoxes
+from detectron2.utils.file_io import PathManager
+
+from detectron2.utils.colormap import random_color
+
+logger = logging.getLogger(__name__)
+__all__ = ["ColorMode", "VisImage", "Visualizer"]
+
+
+_SMALL_OBJECT_AREA_THRESH = 1000
+_LARGE_MASK_AREA_THRESH = 120000
+_OFF_WHITE = (1.0, 1.0, 240.0 / 255)
+_BLACK = (0, 0, 0)
+_RED = (1.0, 0, 0)
+
+_KEYPOINT_THRESHOLD = 0.05
+
+
+@unique
+class ColorMode(Enum):
+ """
+ Enum of different color modes to use for instance visualizations.
+ """
+
+ IMAGE = 0
+ """
+ Picks a random color for every instance and overlay segmentations with low opacity.
+ """
+ SEGMENTATION = 1
+ """
+ Let instances of the same category have similar colors
+ (from metadata.thing_colors), and overlay them with
+ high opacity. This provides more attention on the quality of segmentation.
+ """
+ IMAGE_BW = 2
+ """
+ Same as IMAGE, but convert all areas without masks to gray-scale.
+ Only available for drawing per-instance mask predictions.
+ """
+
+
+class GenericMask:
+ """
+ Attribute:
+ polygons (list[ndarray]): list[ndarray]: polygons for this mask.
+ Each ndarray has format [x, y, x, y, ...]
+ mask (ndarray): a binary mask
+ """
+
+ def __init__(self, mask_or_polygons, height, width):
+ self._mask = self._polygons = self._has_holes = None
+ self.height = height
+ self.width = width
+
+ m = mask_or_polygons
+ if isinstance(m, dict):
+ # RLEs
+ assert "counts" in m and "size" in m
+ if isinstance(m["counts"], list): # uncompressed RLEs
+ h, w = m["size"]
+ assert h == height and w == width
+ m = mask_util.frPyObjects(m, h, w)
+ self._mask = mask_util.decode(m)[:, :]
+ return
+
+ if isinstance(m, list): # list[ndarray]
+ self._polygons = [np.asarray(x).reshape(-1) for x in m]
+ return
+
+ if isinstance(m, np.ndarray): # assumed to be a binary mask
+ assert m.shape[1] != 2, m.shape
+ assert m.shape == (
+ height,
+ width,
+ ), f"mask shape: {m.shape}, target dims: {height}, {width}"
+ self._mask = m.astype("uint8")
+ return
+
+ raise ValueError("GenericMask cannot handle object {} of type '{}'".format(m, type(m)))
+
+ @property
+ def mask(self):
+ if self._mask is None:
+ self._mask = self.polygons_to_mask(self._polygons)
+ return self._mask
+
+ @property
+ def polygons(self):
+ if self._polygons is None:
+ self._polygons, self._has_holes = self.mask_to_polygons(self._mask)
+ return self._polygons
+
+ @property
+ def has_holes(self):
+ if self._has_holes is None:
+ if self._mask is not None:
+ self._polygons, self._has_holes = self.mask_to_polygons(self._mask)
+ else:
+ self._has_holes = False # if original format is polygon, does not have holes
+ return self._has_holes
+
+ def mask_to_polygons(self, mask):
+ # cv2.RETR_CCOMP flag retrieves all the contours and arranges them to a 2-level
+ # hierarchy. External contours (boundary) of the object are placed in hierarchy-1.
+ # Internal contours (holes) are placed in hierarchy-2.
+ # cv2.CHAIN_APPROX_NONE flag gets vertices of polygons from contours.
+ mask = np.ascontiguousarray(mask) # some versions of cv2 does not support incontiguous arr
+ res = cv2.findContours(mask.astype("uint8"), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE)
+ hierarchy = res[-1]
+ if hierarchy is None: # empty mask
+ return [], False
+ has_holes = (hierarchy.reshape(-1, 4)[:, 3] >= 0).sum() > 0
+ res = res[-2]
+ res = [x.flatten() for x in res]
+ # These coordinates from OpenCV are integers in range [0, W-1 or H-1].
+ # We add 0.5 to turn them into real-value coordinate space. A better solution
+ # would be to first +0.5 and then dilate the returned polygon by 0.5.
+ res = [x + 0.5 for x in res if len(x) >= 6]
+ return res, has_holes
+
+ def polygons_to_mask(self, polygons):
+ rle = mask_util.frPyObjects(polygons, self.height, self.width)
+ rle = mask_util.merge(rle)
+ return mask_util.decode(rle)[:, :]
+
+ def area(self):
+ return self.mask.sum()
+
+ def bbox(self):
+ p = mask_util.frPyObjects(self.polygons, self.height, self.width)
+ p = mask_util.merge(p)
+ bbox = mask_util.toBbox(p)
+ bbox[2] += bbox[0]
+ bbox[3] += bbox[1]
+ return bbox
+
+
+class _PanopticPrediction:
+ """
+ Unify different panoptic annotation/prediction formats
+ """
+
+ def __init__(self, panoptic_seg, segments_info, metadata=None):
+ if segments_info is None:
+ assert metadata is not None
+ # If "segments_info" is None, we assume "panoptic_img" is a
+ # H*W int32 image storing the panoptic_id in the format of
+ # category_id * label_divisor + instance_id. We reserve -1 for
+ # VOID label.
+ label_divisor = metadata.label_divisor
+ segments_info = []
+ for panoptic_label in np.unique(panoptic_seg.numpy()):
+ if panoptic_label == -1:
+ # VOID region.
+ continue
+ pred_class = panoptic_label // label_divisor
+ isthing = pred_class in metadata.thing_dataset_id_to_contiguous_id.values()
+ segments_info.append(
+ {
+ "id": int(panoptic_label),
+ "category_id": int(pred_class),
+ "isthing": bool(isthing),
+ }
+ )
+ del metadata
+
+ self._seg = panoptic_seg
+
+ self._sinfo = {s["id"]: s for s in segments_info} # seg id -> seg info
+ segment_ids, areas = torch.unique(panoptic_seg, sorted=True, return_counts=True)
+ areas = areas.numpy()
+ sorted_idxs = np.argsort(-areas)
+ self._seg_ids, self._seg_areas = segment_ids[sorted_idxs], areas[sorted_idxs]
+ self._seg_ids = self._seg_ids.tolist()
+ for sid, area in zip(self._seg_ids, self._seg_areas):
+ if sid in self._sinfo:
+ self._sinfo[sid]["area"] = float(area)
+
+ def non_empty_mask(self):
+ """
+ Returns:
+ (H, W) array, a mask for all pixels that have a prediction
+ """
+ empty_ids = []
+ for id in self._seg_ids:
+ if id not in self._sinfo:
+ empty_ids.append(id)
+ if len(empty_ids) == 0:
+ return np.zeros(self._seg.shape, dtype=np.uint8)
+ assert (
+ len(empty_ids) == 1
+ ), ">1 ids corresponds to no labels. This is currently not supported"
+ return (self._seg != empty_ids[0]).numpy().astype(np.bool)
+
+ def semantic_masks(self):
+ for sid in self._seg_ids:
+ sinfo = self._sinfo.get(sid)
+ if sinfo is None or sinfo["isthing"]:
+ # Some pixels (e.g. id 0 in PanopticFPN) have no instance or semantic predictions.
+ continue
+ yield (self._seg == sid).numpy().astype(np.bool), sinfo
+
+ def instance_masks(self):
+ for sid in self._seg_ids:
+ sinfo = self._sinfo.get(sid)
+ if sinfo is None or not sinfo["isthing"]:
+ continue
+ mask = (self._seg == sid).numpy().astype(np.bool)
+ if mask.sum() > 0:
+ yield mask, sinfo
+
+
+def _create_text_labels(classes, scores, class_names, is_crowd=None):
+ """
+ Args:
+ classes (list[int] or None):
+ scores (list[float] or None):
+ class_names (list[str] or None):
+ is_crowd (list[bool] or None):
+
+ Returns:
+ list[str] or None
+ """
+ labels = None
+ if classes is not None:
+ if class_names is not None and len(class_names) > 0:
+ labels = [class_names[i] for i in classes]
+ else:
+ labels = [str(i) for i in classes]
+ if scores is not None:
+ if labels is None:
+ labels = ["{:.0f}%".format(s * 100) for s in scores]
+ else:
+ labels = ["{} {:.0f}%".format(l, s * 100) for l, s in zip(labels, scores)]
+ if labels is not None and is_crowd is not None:
+ labels = [l + ("|crowd" if crowd else "") for l, crowd in zip(labels, is_crowd)]
+ return labels
+
+
+class VisImage:
+ def __init__(self, img, scale=1.0):
+ """
+ Args:
+ img (ndarray): an RGB image of shape (H, W, 3) in range [0, 255].
+ scale (float): scale the input image
+ """
+ self.img = img
+ self.scale = scale
+ self.width, self.height = img.shape[1], img.shape[0]
+ self._setup_figure(img)
+
+ def _setup_figure(self, img):
+ """
+ Args:
+ Same as in :meth:`__init__()`.
+
+ Returns:
+ fig (matplotlib.pyplot.figure): top level container for all the image plot elements.
+ ax (matplotlib.pyplot.Axes): contains figure elements and sets the coordinate system.
+ """
+ fig = mplfigure.Figure(frameon=False)
+ self.dpi = fig.get_dpi()
+ # add a small 1e-2 to avoid precision lost due to matplotlib's truncation
+ # (https://github.com/matplotlib/matplotlib/issues/15363)
+ fig.set_size_inches(
+ (self.width * self.scale + 1e-2) / self.dpi,
+ (self.height * self.scale + 1e-2) / self.dpi,
+ )
+ self.canvas = FigureCanvasAgg(fig)
+ # self.canvas = mpl.backends.backend_cairo.FigureCanvasCairo(fig)
+ ax = fig.add_axes([0.0, 0.0, 1.0, 1.0])
+ ax.axis("off")
+ self.fig = fig
+ self.ax = ax
+ self.reset_image(img)
+
+ def reset_image(self, img):
+ """
+ Args:
+ img: same as in __init__
+ """
+ img = img.astype("uint8")
+ self.ax.imshow(img, extent=(0, self.width, self.height, 0), interpolation="nearest")
+
+ def save(self, filepath):
+ """
+ Args:
+ filepath (str): a string that contains the absolute path, including the file name, where
+ the visualized image will be saved.
+ """
+ self.fig.savefig(filepath)
+
+ def get_image(self):
+ """
+ Returns:
+ ndarray:
+ the visualized image of shape (H, W, 3) (RGB) in uint8 type.
+ The shape is scaled w.r.t the input image using the given `scale` argument.
+ """
+ canvas = self.canvas
+ s, (width, height) = canvas.print_to_buffer()
+ # buf = io.BytesIO() # works for cairo backend
+ # canvas.print_rgba(buf)
+ # width, height = self.width, self.height
+ # s = buf.getvalue()
+
+ buffer = np.frombuffer(s, dtype="uint8")
+
+ img_rgba = buffer.reshape(height, width, 4)
+ rgb, alpha = np.split(img_rgba, [3], axis=2)
+ return rgb.astype("uint8")
+
+
+class Visualizer:
+ """
+ Visualizer that draws data about detection/segmentation on images.
+
+ It contains methods like `draw_{text,box,circle,line,binary_mask,polygon}`
+ that draw primitive objects to images, as well as high-level wrappers like
+ `draw_{instance_predictions,sem_seg,panoptic_seg_predictions,dataset_dict}`
+ that draw composite data in some pre-defined style.
+
+ Note that the exact visualization style for the high-level wrappers are subject to change.
+ Style such as color, opacity, label contents, visibility of labels, or even the visibility
+ of objects themselves (e.g. when the object is too small) may change according
+ to different heuristics, as long as the results still look visually reasonable.
+
+ To obtain a consistent style, you can implement custom drawing functions with the
+ abovementioned primitive methods instead. If you need more customized visualization
+ styles, you can process the data yourself following their format documented in
+ tutorials (:doc:`/tutorials/models`, :doc:`/tutorials/datasets`). This class does not
+ intend to satisfy everyone's preference on drawing styles.
+
+ This visualizer focuses on high rendering quality rather than performance. It is not
+ designed to be used for real-time applications.
+ """
+
+ # TODO implement a fast, rasterized version using OpenCV
+
+ def __init__(self, img_rgb, metadata=None, scale=1.0, instance_mode=ColorMode.IMAGE):
+ """
+ Args:
+ img_rgb: a numpy array of shape (H, W, C), where H and W correspond to
+ the height and width of the image respectively. C is the number of
+ color channels. The image is required to be in RGB format since that
+ is a requirement of the Matplotlib library. The image is also expected
+ to be in the range [0, 255].
+ metadata (Metadata): dataset metadata (e.g. class names and colors)
+ instance_mode (ColorMode): defines one of the pre-defined style for drawing
+ instances on an image.
+ """
+ self.img = np.asarray(img_rgb).clip(0, 255).astype(np.uint8)
+ if metadata is None:
+ metadata = MetadataCatalog.get("__nonexist__")
+ self.metadata = metadata
+ self.output = VisImage(self.img, scale=scale)
+ self.cpu_device = torch.device("cpu")
+
+ # too small texts are useless, therefore clamp to 9
+ self._default_font_size = max(
+ np.sqrt(self.output.height * self.output.width) // 90, 10 // scale
+ )
+ self._default_font_size = 18
+ self._instance_mode = instance_mode
+ self.keypoint_threshold = _KEYPOINT_THRESHOLD
+
+ def draw_instance_predictions(self, predictions):
+ """
+ Draw instance-level prediction results on an image.
+
+ Args:
+ predictions (Instances): the output of an instance detection/segmentation
+ model. Following fields will be used to draw:
+ "pred_boxes", "pred_classes", "scores", "pred_masks" (or "pred_masks_rle").
+
+ Returns:
+ output (VisImage): image object with visualizations.
+ """
+ boxes = predictions.pred_boxes if predictions.has("pred_boxes") else None
+ scores = predictions.scores if predictions.has("scores") else None
+ classes = predictions.pred_classes.tolist() if predictions.has("pred_classes") else None
+ labels = _create_text_labels(classes, scores, self.metadata.get("thing_classes", None))
+ keypoints = predictions.pred_keypoints if predictions.has("pred_keypoints") else None
+
+ keep = (scores > 0.8).cpu()
+ boxes = boxes[keep]
+ scores = scores[keep]
+ classes = np.array(classes)
+ classes = classes[np.array(keep)]
+ labels = np.array(labels)
+ labels = labels[np.array(keep)]
+
+ if predictions.has("pred_masks"):
+ masks = np.asarray(predictions.pred_masks)
+ masks = masks[np.array(keep)]
+ masks = [GenericMask(x, self.output.height, self.output.width) for x in masks]
+ else:
+ masks = None
+
+ if self._instance_mode == ColorMode.SEGMENTATION and self.metadata.get("thing_colors"):
+ # if self.metadata.get("thing_colors"):
+ colors = [
+ self._jitter([x / 255 for x in self.metadata.thing_colors[c]]) for c in classes
+ ]
+ alpha = 0.4
+ else:
+ colors = None
+ alpha = 0.4
+
+ if self._instance_mode == ColorMode.IMAGE_BW:
+ self.output.reset_image(
+ self._create_grayscale_image(
+ (predictions.pred_masks.any(dim=0) > 0).numpy()
+ if predictions.has("pred_masks")
+ else None
+ )
+ )
+ alpha = 0.3
+
+ self.overlay_instances(
+ masks=masks,
+ boxes=boxes,
+ labels=labels,
+ keypoints=keypoints,
+ assigned_colors=colors,
+ alpha=alpha,
+ )
+ return self.output
+
+ def draw_sem_seg(self, sem_seg, area_threshold=None, alpha=0.7):
+ """
+ Draw semantic segmentation predictions/labels.
+
+ Args:
+ sem_seg (Tensor or ndarray): the segmentation of shape (H, W).
+ Each value is the integer label of the pixel.
+ area_threshold (int): segments with less than `area_threshold` are not drawn.
+ alpha (float): the larger it is, the more opaque the segmentations are.
+
+ Returns:
+ output (VisImage): image object with visualizations.
+ """
+ if isinstance(sem_seg, torch.Tensor):
+ sem_seg = sem_seg.numpy()
+ labels, areas = np.unique(sem_seg, return_counts=True)
+ sorted_idxs = np.argsort(-areas).tolist()
+ labels = labels[sorted_idxs]
+ for label in filter(lambda l: l < len(self.metadata.stuff_classes), labels):
+ try:
+ mask_color = [x / 255 for x in self.metadata.stuff_colors[label]]
+ except (AttributeError, IndexError):
+ mask_color = None
+
+ binary_mask = (sem_seg == label).astype(np.uint8)
+ text = self.metadata.stuff_classes[label]
+ self.draw_binary_mask(
+ binary_mask,
+ color=mask_color,
+ edge_color=_OFF_WHITE,
+ text=text,
+ alpha=alpha,
+ area_threshold=area_threshold,
+ )
+ return self.output
+
+ def draw_panoptic_seg(self, panoptic_seg, segments_info, area_threshold=None, alpha=0.7):
+ """
+ Draw panoptic prediction annotations or results.
+
+ Args:
+ panoptic_seg (Tensor): of shape (height, width) where the values are ids for each
+ segment.
+ segments_info (list[dict] or None): Describe each segment in `panoptic_seg`.
+ If it is a ``list[dict]``, each dict contains keys "id", "category_id".
+ If None, category id of each pixel is computed by
+ ``pixel // metadata.label_divisor``.
+ area_threshold (int): stuff segments with less than `area_threshold` are not drawn.
+
+ Returns:
+ output (VisImage): image object with visualizations.
+ """
+ pred = _PanopticPrediction(panoptic_seg, segments_info, self.metadata)
+
+ if self._instance_mode == ColorMode.IMAGE_BW:
+ self.output.reset_image(self._create_grayscale_image(pred.non_empty_mask()))
+
+ # draw mask for all semantic segments first i.e. "stuff"
+ for mask, sinfo in pred.semantic_masks():
+ category_idx = sinfo["category_id"]
+ try:
+ mask_color = [x / 255 for x in self.metadata.stuff_colors[category_idx]]
+ except AttributeError:
+ mask_color = None
+
+ text = self.metadata.stuff_classes[category_idx]
+ self.draw_binary_mask(
+ mask,
+ color=mask_color,
+ edge_color=_OFF_WHITE,
+ text=text,
+ alpha=alpha,
+ area_threshold=area_threshold,
+ )
+
+ # draw mask for all instances second
+ all_instances = list(pred.instance_masks())
+ if len(all_instances) == 0:
+ return self.output
+ masks, sinfo = list(zip(*all_instances))
+ category_ids = [x["category_id"] for x in sinfo]
+
+ try:
+ scores = [x["score"] for x in sinfo]
+ except KeyError:
+ scores = None
+ labels = _create_text_labels(
+ category_ids, scores, self.metadata.thing_classes, [x.get("iscrowd", 0) for x in sinfo]
+ )
+
+ try:
+ colors = [
+ self._jitter([x / 255 for x in self.metadata.thing_colors[c]]) for c in category_ids
+ ]
+ except AttributeError:
+ colors = None
+ self.overlay_instances(masks=masks, labels=labels, assigned_colors=colors, alpha=alpha)
+
+ return self.output
+
+ draw_panoptic_seg_predictions = draw_panoptic_seg # backward compatibility
+
+ def draw_dataset_dict(self, dic):
+ """
+ Draw annotations/segmentaions in Detectron2 Dataset format.
+
+ Args:
+ dic (dict): annotation/segmentation data of one image, in Detectron2 Dataset format.
+
+ Returns:
+ output (VisImage): image object with visualizations.
+ """
+ annos = dic.get("annotations", None)
+ if annos:
+ if "segmentation" in annos[0]:
+ masks = [x["segmentation"] for x in annos]
+ else:
+ masks = None
+ if "keypoints" in annos[0]:
+ keypts = [x["keypoints"] for x in annos]
+ keypts = np.array(keypts).reshape(len(annos), -1, 3)
+ else:
+ keypts = None
+
+ boxes = [
+ BoxMode.convert(x["bbox"], x["bbox_mode"], BoxMode.XYXY_ABS)
+ if len(x["bbox"]) == 4
+ else x["bbox"]
+ for x in annos
+ ]
+
+ colors = None
+ category_ids = [x["category_id"] for x in annos]
+ if self._instance_mode == ColorMode.SEGMENTATION and self.metadata.get("thing_colors"):
+ colors = [
+ self._jitter([x / 255 for x in self.metadata.thing_colors[c]])
+ for c in category_ids
+ ]
+ names = self.metadata.get("thing_classes", None)
+ labels = _create_text_labels(
+ category_ids,
+ scores=None,
+ class_names=names,
+ is_crowd=[x.get("iscrowd", 0) for x in annos],
+ )
+ self.overlay_instances(
+ labels=labels, boxes=boxes, masks=masks, keypoints=keypts, assigned_colors=colors
+ )
+
+ sem_seg = dic.get("sem_seg", None)
+ if sem_seg is None and "sem_seg_file_name" in dic:
+ with PathManager.open(dic["sem_seg_file_name"], "rb") as f:
+ sem_seg = Image.open(f)
+ sem_seg = np.asarray(sem_seg, dtype="uint8")
+ if sem_seg is not None:
+ self.draw_sem_seg(sem_seg, area_threshold=0, alpha=0.4)
+
+ pan_seg = dic.get("pan_seg", None)
+ if pan_seg is None and "pan_seg_file_name" in dic:
+ with PathManager.open(dic["pan_seg_file_name"], "rb") as f:
+ pan_seg = Image.open(f)
+ pan_seg = np.asarray(pan_seg)
+ from panopticapi.utils import rgb2id
+
+ pan_seg = rgb2id(pan_seg)
+ if pan_seg is not None:
+ segments_info = dic["segments_info"]
+ pan_seg = torch.tensor(pan_seg)
+ self.draw_panoptic_seg(pan_seg, segments_info, area_threshold=0, alpha=0.7)
+ return self.output
+
+ def overlay_instances(
+ self,
+ *,
+ boxes=None,
+ labels=None,
+ masks=None,
+ keypoints=None,
+ assigned_colors=None,
+ alpha=0.5,
+ ):
+ """
+ Args:
+ boxes (Boxes, RotatedBoxes or ndarray): either a :class:`Boxes`,
+ or an Nx4 numpy array of XYXY_ABS format for the N objects in a single image,
+ or a :class:`RotatedBoxes`,
+ or an Nx5 numpy array of (x_center, y_center, width, height, angle_degrees) format
+ for the N objects in a single image,
+ labels (list[str]): the text to be displayed for each instance.
+ masks (masks-like object): Supported types are:
+
+ * :class:`detectron2.structures.PolygonMasks`,
+ :class:`detectron2.structures.BitMasks`.
+ * list[list[ndarray]]: contains the segmentation masks for all objects in one image.
+ The first level of the list corresponds to individual instances. The second
+ level to all the polygon that compose the instance, and the third level
+ to the polygon coordinates. The third level should have the format of
+ [x0, y0, x1, y1, ..., xn, yn] (n >= 3).
+ * list[ndarray]: each ndarray is a binary mask of shape (H, W).
+ * list[dict]: each dict is a COCO-style RLE.
+ keypoints (Keypoint or array like): an array-like object of shape (N, K, 3),
+ where the N is the number of instances and K is the number of keypoints.
+ The last dimension corresponds to (x, y, visibility or score).
+ assigned_colors (list[matplotlib.colors]): a list of colors, where each color
+ corresponds to each mask or box in the image. Refer to 'matplotlib.colors'
+ for full list of formats that the colors are accepted in.
+ Returns:
+ output (VisImage): image object with visualizations.
+ """
+ num_instances = 0
+ if boxes is not None:
+ boxes = self._convert_boxes(boxes)
+ num_instances = len(boxes)
+ if masks is not None:
+ masks = self._convert_masks(masks)
+ if num_instances:
+ assert len(masks) == num_instances
+ else:
+ num_instances = len(masks)
+ if keypoints is not None:
+ if num_instances:
+ assert len(keypoints) == num_instances
+ else:
+ num_instances = len(keypoints)
+ keypoints = self._convert_keypoints(keypoints)
+ if labels is not None:
+ assert len(labels) == num_instances
+ if assigned_colors is None:
+ assigned_colors = [random_color(rgb=True, maximum=1) for _ in range(num_instances)]
+ if num_instances == 0:
+ return self.output
+ if boxes is not None and boxes.shape[1] == 5:
+ return self.overlay_rotated_instances(
+ boxes=boxes, labels=labels, assigned_colors=assigned_colors
+ )
+
+ # Display in largest to smallest order to reduce occlusion.
+ areas = None
+ if boxes is not None:
+ areas = np.prod(boxes[:, 2:] - boxes[:, :2], axis=1)
+ elif masks is not None:
+ areas = np.asarray([x.area() for x in masks])
+
+ if areas is not None:
+ sorted_idxs = np.argsort(-areas).tolist()
+ # Re-order overlapped instances in descending order.
+ boxes = boxes[sorted_idxs] if boxes is not None else None
+ labels = [labels[k] for k in sorted_idxs] if labels is not None else None
+ masks = [masks[idx] for idx in sorted_idxs] if masks is not None else None
+ assigned_colors = [assigned_colors[idx] for idx in sorted_idxs]
+ keypoints = keypoints[sorted_idxs] if keypoints is not None else None
+
+ for i in range(num_instances):
+ color = assigned_colors[i]
+ if boxes is not None:
+ self.draw_box(boxes[i], edge_color=color)
+
+ if masks is not None:
+ for segment in masks[i].polygons:
+ self.draw_polygon(segment.reshape(-1, 2), color, alpha=alpha)
+
+ if labels is not None:
+ # first get a box
+ if boxes is not None:
+ x0, y0, x1, y1 = boxes[i]
+ text_pos = (x0, y0) # if drawing boxes, put text on the box corner.
+ horiz_align = "left"
+ elif masks is not None:
+ # skip small mask without polygon
+ if len(masks[i].polygons) == 0:
+ continue
+
+ x0, y0, x1, y1 = masks[i].bbox()
+
+ # draw text in the center (defined by median) when box is not drawn
+ # median is less sensitive to outliers.
+ text_pos = np.median(masks[i].mask.nonzero(), axis=1)[::-1]
+ horiz_align = "center"
+ else:
+ continue # drawing the box confidence for keypoints isn't very useful.
+ # for small objects, draw text at the side to avoid occlusion
+ instance_area = (y1 - y0) * (x1 - x0)
+ if (
+ instance_area < _SMALL_OBJECT_AREA_THRESH * self.output.scale
+ or y1 - y0 < 40 * self.output.scale
+ ):
+ if y1 >= self.output.height - 5:
+ text_pos = (x1, y0)
+ else:
+ text_pos = (x0, y1)
+
+ height_ratio = (y1 - y0) / np.sqrt(self.output.height * self.output.width)
+ lighter_color = self._change_color_brightness(color, brightness_factor=0.7)
+ font_size = (
+ np.clip((height_ratio - 0.02) / 0.08 + 1, 1.2, 2)
+ * 0.5
+ * self._default_font_size
+ )
+ self.draw_text(
+ labels[i],
+ text_pos,
+ color=lighter_color,
+ horizontal_alignment=horiz_align,
+ font_size=font_size,
+ )
+
+ # draw keypoints
+ if keypoints is not None:
+ for keypoints_per_instance in keypoints:
+ self.draw_and_connect_keypoints(keypoints_per_instance)
+
+ return self.output
+
+ def overlay_rotated_instances(self, boxes=None, labels=None, assigned_colors=None):
+ """
+ Args:
+ boxes (ndarray): an Nx5 numpy array of
+ (x_center, y_center, width, height, angle_degrees) format
+ for the N objects in a single image.
+ labels (list[str]): the text to be displayed for each instance.
+ assigned_colors (list[matplotlib.colors]): a list of colors, where each color
+ corresponds to each mask or box in the image. Refer to 'matplotlib.colors'
+ for full list of formats that the colors are accepted in.
+
+ Returns:
+ output (VisImage): image object with visualizations.
+ """
+ num_instances = len(boxes)
+
+ if assigned_colors is None:
+ assigned_colors = [random_color(rgb=True, maximum=1) for _ in range(num_instances)]
+ if num_instances == 0:
+ return self.output
+
+ # Display in largest to smallest order to reduce occlusion.
+ if boxes is not None:
+ areas = boxes[:, 2] * boxes[:, 3]
+
+ sorted_idxs = np.argsort(-areas).tolist()
+ # Re-order overlapped instances in descending order.
+ boxes = boxes[sorted_idxs]
+ labels = [labels[k] for k in sorted_idxs] if labels is not None else None
+ colors = [assigned_colors[idx] for idx in sorted_idxs]
+
+ for i in range(num_instances):
+ self.draw_rotated_box_with_label(
+ boxes[i], edge_color=colors[i], label=labels[i] if labels is not None else None
+ )
+
+ return self.output
+
+ def draw_and_connect_keypoints(self, keypoints):
+ """
+ Draws keypoints of an instance and follows the rules for keypoint connections
+ to draw lines between appropriate keypoints. This follows color heuristics for
+ line color.
+
+ Args:
+ keypoints (Tensor): a tensor of shape (K, 3), where K is the number of keypoints
+ and the last dimension corresponds to (x, y, probability).
+
+ Returns:
+ output (VisImage): image object with visualizations.
+ """
+ visible = {}
+ keypoint_names = self.metadata.get("keypoint_names")
+ for idx, keypoint in enumerate(keypoints):
+
+ # draw keypoint
+ x, y, prob = keypoint
+ if prob > self.keypoint_threshold:
+ self.draw_circle((x, y), color=_RED)
+ if keypoint_names:
+ keypoint_name = keypoint_names[idx]
+ visible[keypoint_name] = (x, y)
+
+ if self.metadata.get("keypoint_connection_rules"):
+ for kp0, kp1, color in self.metadata.keypoint_connection_rules:
+ if kp0 in visible and kp1 in visible:
+ x0, y0 = visible[kp0]
+ x1, y1 = visible[kp1]
+ color = tuple(x / 255.0 for x in color)
+ self.draw_line([x0, x1], [y0, y1], color=color)
+
+ # draw lines from nose to mid-shoulder and mid-shoulder to mid-hip
+ # Note that this strategy is specific to person keypoints.
+ # For other keypoints, it should just do nothing
+ try:
+ ls_x, ls_y = visible["left_shoulder"]
+ rs_x, rs_y = visible["right_shoulder"]
+ mid_shoulder_x, mid_shoulder_y = (ls_x + rs_x) / 2, (ls_y + rs_y) / 2
+ except KeyError:
+ pass
+ else:
+ # draw line from nose to mid-shoulder
+ nose_x, nose_y = visible.get("nose", (None, None))
+ if nose_x is not None:
+ self.draw_line([nose_x, mid_shoulder_x], [nose_y, mid_shoulder_y], color=_RED)
+
+ try:
+ # draw line from mid-shoulder to mid-hip
+ lh_x, lh_y = visible["left_hip"]
+ rh_x, rh_y = visible["right_hip"]
+ except KeyError:
+ pass
+ else:
+ mid_hip_x, mid_hip_y = (lh_x + rh_x) / 2, (lh_y + rh_y) / 2
+ self.draw_line([mid_hip_x, mid_shoulder_x], [mid_hip_y, mid_shoulder_y], color=_RED)
+ return self.output
+
+ """
+ Primitive drawing functions:
+ """
+
+ def draw_text(
+ self,
+ text,
+ position,
+ *,
+ font_size=None,
+ color="g",
+ horizontal_alignment="center",
+ rotation=0,
+ ):
+ """
+ Args:
+ text (str): class label
+ position (tuple): a tuple of the x and y coordinates to place text on image.
+ font_size (int, optional): font of the text. If not provided, a font size
+ proportional to the image width is calculated and used.
+ color: color of the text. Refer to `matplotlib.colors` for full list
+ of formats that are accepted.
+ horizontal_alignment (str): see `matplotlib.text.Text`
+ rotation: rotation angle in degrees CCW
+
+ Returns:
+ output (VisImage): image object with text drawn.
+ """
+ if not font_size:
+ font_size = self._default_font_size
+
+ # since the text background is dark, we don't want the text to be dark
+ color = np.maximum(list(mplc.to_rgb(color)), 0.2)
+ color[np.argmax(color)] = max(0.8, np.max(color))
+
+ x, y = position
+ self.output.ax.text(
+ x,
+ y,
+ text,
+ size=font_size * self.output.scale,
+ family="sans-serif",
+ bbox={"facecolor": "black", "alpha": 0.8, "pad": 0.7, "edgecolor": "none"},
+ verticalalignment="top",
+ horizontalalignment=horizontal_alignment,
+ color=color,
+ zorder=10,
+ rotation=rotation,
+ )
+ return self.output
+
+ def draw_box(self, box_coord, alpha=0.5, edge_color="g", line_style="-"):
+ """
+ Args:
+ box_coord (tuple): a tuple containing x0, y0, x1, y1 coordinates, where x0 and y0
+ are the coordinates of the image's top left corner. x1 and y1 are the
+ coordinates of the image's bottom right corner.
+ alpha (float): blending efficient. Smaller values lead to more transparent masks.
+ edge_color: color of the outline of the box. Refer to `matplotlib.colors`
+ for full list of formats that are accepted.
+ line_style (string): the string to use to create the outline of the boxes.
+
+ Returns:
+ output (VisImage): image object with box drawn.
+ """
+ x0, y0, x1, y1 = box_coord
+ width = x1 - x0
+ height = y1 - y0
+
+ linewidth = max(self._default_font_size / 4, 1)
+
+ self.output.ax.add_patch(
+ mpl.patches.Rectangle(
+ (x0, y0),
+ width,
+ height,
+ fill=False,
+ edgecolor=edge_color,
+ linewidth=linewidth * self.output.scale,
+ alpha=alpha,
+ linestyle=line_style,
+ )
+ )
+ return self.output
+
+ def draw_rotated_box_with_label(
+ self, rotated_box, alpha=0.5, edge_color="g", line_style="-", label=None
+ ):
+ """
+ Draw a rotated box with label on its top-left corner.
+
+ Args:
+ rotated_box (tuple): a tuple containing (cnt_x, cnt_y, w, h, angle),
+ where cnt_x and cnt_y are the center coordinates of the box.
+ w and h are the width and height of the box. angle represents how
+ many degrees the box is rotated CCW with regard to the 0-degree box.
+ alpha (float): blending efficient. Smaller values lead to more transparent masks.
+ edge_color: color of the outline of the box. Refer to `matplotlib.colors`
+ for full list of formats that are accepted.
+ line_style (string): the string to use to create the outline of the boxes.
+ label (string): label for rotated box. It will not be rendered when set to None.
+
+ Returns:
+ output (VisImage): image object with box drawn.
+ """
+ cnt_x, cnt_y, w, h, angle = rotated_box
+ area = w * h
+ # use thinner lines when the box is small
+ linewidth = self._default_font_size / (
+ 6 if area < _SMALL_OBJECT_AREA_THRESH * self.output.scale else 3
+ )
+
+ theta = angle * math.pi / 180.0
+ c = math.cos(theta)
+ s = math.sin(theta)
+ rect = [(-w / 2, h / 2), (-w / 2, -h / 2), (w / 2, -h / 2), (w / 2, h / 2)]
+ # x: left->right ; y: top->down
+ rotated_rect = [(s * yy + c * xx + cnt_x, c * yy - s * xx + cnt_y) for (xx, yy) in rect]
+ for k in range(4):
+ j = (k + 1) % 4
+ self.draw_line(
+ [rotated_rect[k][0], rotated_rect[j][0]],
+ [rotated_rect[k][1], rotated_rect[j][1]],
+ color=edge_color,
+ linestyle="--" if k == 1 else line_style,
+ linewidth=linewidth,
+ )
+
+ if label is not None:
+ text_pos = rotated_rect[1] # topleft corner
+
+ height_ratio = h / np.sqrt(self.output.height * self.output.width)
+ label_color = self._change_color_brightness(edge_color, brightness_factor=0.7)
+ font_size = (
+ np.clip((height_ratio - 0.02) / 0.08 + 1, 1.2, 2) * 0.5 * self._default_font_size
+ )
+ self.draw_text(label, text_pos, color=label_color, font_size=font_size, rotation=angle)
+
+ return self.output
+
+ def draw_circle(self, circle_coord, color, radius=3):
+ """
+ Args:
+ circle_coord (list(int) or tuple(int)): contains the x and y coordinates
+ of the center of the circle.
+ color: color of the polygon. Refer to `matplotlib.colors` for a full list of
+ formats that are accepted.
+ radius (int): radius of the circle.
+
+ Returns:
+ output (VisImage): image object with box drawn.
+ """
+ x, y = circle_coord
+ self.output.ax.add_patch(
+ mpl.patches.Circle(circle_coord, radius=radius, fill=True, color=color)
+ )
+ return self.output
+
+ def draw_line(self, x_data, y_data, color, linestyle="-", linewidth=None):
+ """
+ Args:
+ x_data (list[int]): a list containing x values of all the points being drawn.
+ Length of list should match the length of y_data.
+ y_data (list[int]): a list containing y values of all the points being drawn.
+ Length of list should match the length of x_data.
+ color: color of the line. Refer to `matplotlib.colors` for a full list of
+ formats that are accepted.
+ linestyle: style of the line. Refer to `matplotlib.lines.Line2D`
+ for a full list of formats that are accepted.
+ linewidth (float or None): width of the line. When it's None,
+ a default value will be computed and used.
+
+ Returns:
+ output (VisImage): image object with line drawn.
+ """
+ if linewidth is None:
+ linewidth = self._default_font_size / 3
+ linewidth = max(linewidth, 1)
+ self.output.ax.add_line(
+ mpl.lines.Line2D(
+ x_data,
+ y_data,
+ linewidth=linewidth * self.output.scale,
+ color=color,
+ linestyle=linestyle,
+ )
+ )
+ return self.output
+
+ def draw_binary_mask(
+ self, binary_mask, color=None, *, edge_color=None, text=None, alpha=0.7, area_threshold=10
+ ):
+ """
+ Args:
+ binary_mask (ndarray): numpy array of shape (H, W), where H is the image height and
+ W is the image width. Each value in the array is either a 0 or 1 value of uint8
+ type.
+ color: color of the mask. Refer to `matplotlib.colors` for a full list of
+ formats that are accepted. If None, will pick a random color.
+ edge_color: color of the polygon edges. Refer to `matplotlib.colors` for a
+ full list of formats that are accepted.
+ text (str): if None, will be drawn on the object
+ alpha (float): blending efficient. Smaller values lead to more transparent masks.
+ area_threshold (float): a connected component smaller than this area will not be shown.
+
+ Returns:
+ output (VisImage): image object with mask drawn.
+ """
+ if color is None:
+ color = random_color(rgb=True, maximum=1)
+ color = mplc.to_rgb(color)
+
+ has_valid_segment = False
+ binary_mask = binary_mask.astype("uint8") # opencv needs uint8
+ mask = GenericMask(binary_mask, self.output.height, self.output.width)
+ shape2d = (binary_mask.shape[0], binary_mask.shape[1])
+
+ if not mask.has_holes:
+ # draw polygons for regular masks
+ for segment in mask.polygons:
+ area = mask_util.area(mask_util.frPyObjects([segment], shape2d[0], shape2d[1]))
+ if area < (area_threshold or 0):
+ continue
+ has_valid_segment = True
+ segment = segment.reshape(-1, 2)
+ self.draw_polygon(segment, color=color, edge_color=edge_color, alpha=alpha)
+ else:
+ # TODO: Use Path/PathPatch to draw vector graphics:
+ # https://stackoverflow.com/questions/8919719/how-to-plot-a-complex-polygon
+ rgba = np.zeros(shape2d + (4,), dtype="float32")
+ rgba[:, :, :3] = color
+ rgba[:, :, 3] = (mask.mask == 1).astype("float32") * alpha
+ has_valid_segment = True
+ self.output.ax.imshow(rgba, extent=(0, self.output.width, self.output.height, 0))
+
+ if text is not None and has_valid_segment:
+ lighter_color = self._change_color_brightness(color, brightness_factor=0.7)
+ self._draw_text_in_mask(binary_mask, text, lighter_color)
+ return self.output
+
+ def draw_soft_mask(self, soft_mask, color=None, *, text=None, alpha=0.5):
+ """
+ Args:
+ soft_mask (ndarray): float array of shape (H, W), each value in [0, 1].
+ color: color of the mask. Refer to `matplotlib.colors` for a full list of
+ formats that are accepted. If None, will pick a random color.
+ text (str): if None, will be drawn on the object
+ alpha (float): blending efficient. Smaller values lead to more transparent masks.
+
+ Returns:
+ output (VisImage): image object with mask drawn.
+ """
+ if color is None:
+ color = random_color(rgb=True, maximum=1)
+ color = mplc.to_rgb(color)
+
+ shape2d = (soft_mask.shape[0], soft_mask.shape[1])
+ rgba = np.zeros(shape2d + (4,), dtype="float32")
+ rgba[:, :, :3] = color
+ rgba[:, :, 3] = soft_mask * alpha
+ self.output.ax.imshow(rgba, extent=(0, self.output.width, self.output.height, 0))
+
+ if text is not None:
+ lighter_color = self._change_color_brightness(color, brightness_factor=0.7)
+ binary_mask = (soft_mask > 0.5).astype("uint8")
+ self._draw_text_in_mask(binary_mask, text, lighter_color)
+ return self.output
+
+ def draw_polygon(self, segment, color, edge_color=None, alpha=0.5):
+ """
+ Args:
+ segment: numpy array of shape Nx2, containing all the points in the polygon.
+ color: color of the polygon. Refer to `matplotlib.colors` for a full list of
+ formats that are accepted.
+ edge_color: color of the polygon edges. Refer to `matplotlib.colors` for a
+ full list of formats that are accepted. If not provided, a darker shade
+ of the polygon color will be used instead.
+ alpha (float): blending efficient. Smaller values lead to more transparent masks.
+
+ Returns:
+ output (VisImage): image object with polygon drawn.
+ """
+ if edge_color is None:
+ # make edge color darker than the polygon color
+ if alpha > 0.8:
+ edge_color = self._change_color_brightness(color, brightness_factor=-0.7)
+ else:
+ edge_color = color
+ edge_color = mplc.to_rgb(edge_color) + (1,)
+
+ polygon = mpl.patches.Polygon(
+ segment,
+ fill=True,
+ facecolor=mplc.to_rgb(color) + (alpha,),
+ edgecolor=edge_color,
+ linewidth=max(self._default_font_size // 15 * self.output.scale, 1),
+ )
+ self.output.ax.add_patch(polygon)
+ return self.output
+
+ """
+ Internal methods:
+ """
+
+ def _jitter(self, color):
+ """
+ Randomly modifies given color to produce a slightly different color than the color given.
+
+ Args:
+ color (tuple[double]): a tuple of 3 elements, containing the RGB values of the color
+ picked. The values in the list are in the [0.0, 1.0] range.
+
+ Returns:
+ jittered_color (tuple[double]): a tuple of 3 elements, containing the RGB values of the
+ color after being jittered. The values in the list are in the [0.0, 1.0] range.
+ """
+ color = mplc.to_rgb(color)
+ # np.random.seed(0)
+ vec = np.random.rand(3)
+ # better to do it in another color space
+ vec = vec / np.linalg.norm(vec) * 0.5
+ res = np.clip(vec + color, 0, 1)
+ return tuple(res)
+
+ def _create_grayscale_image(self, mask=None):
+ """
+ Create a grayscale version of the original image.
+ The colors in masked area, if given, will be kept.
+ """
+ img_bw = self.img.astype("f4").mean(axis=2)
+ img_bw = np.stack([img_bw] * 3, axis=2)
+ if mask is not None:
+ img_bw[mask] = self.img[mask]
+ return img_bw
+
+ def _change_color_brightness(self, color, brightness_factor):
+ """
+ Depending on the brightness_factor, gives a lighter or darker color i.e. a color with
+ less or more saturation than the original color.
+
+ Args:
+ color: color of the polygon. Refer to `matplotlib.colors` for a full list of
+ formats that are accepted.
+ brightness_factor (float): a value in [-1.0, 1.0] range. A lightness factor of
+ 0 will correspond to no change, a factor in [-1.0, 0) range will result in
+ a darker color and a factor in (0, 1.0] range will result in a lighter color.
+
+ Returns:
+ modified_color (tuple[double]): a tuple containing the RGB values of the
+ modified color. Each value in the tuple is in the [0.0, 1.0] range.
+ """
+ assert brightness_factor >= -1.0 and brightness_factor <= 1.0
+ color = mplc.to_rgb(color)
+ polygon_color = colorsys.rgb_to_hls(*mplc.to_rgb(color))
+ modified_lightness = polygon_color[1] + (brightness_factor * polygon_color[1])
+ modified_lightness = 0.0 if modified_lightness < 0.0 else modified_lightness
+ modified_lightness = 1.0 if modified_lightness > 1.0 else modified_lightness
+ modified_color = colorsys.hls_to_rgb(polygon_color[0], modified_lightness, polygon_color[2])
+ return modified_color
+
+ def _convert_boxes(self, boxes):
+ """
+ Convert different format of boxes to an NxB array, where B = 4 or 5 is the box dimension.
+ """
+ if isinstance(boxes, Boxes) or isinstance(boxes, RotatedBoxes):
+ return boxes.tensor.detach().numpy()
+ else:
+ return np.asarray(boxes)
+
+ def _convert_masks(self, masks_or_polygons):
+ """
+ Convert different format of masks or polygons to a tuple of masks and polygons.
+
+ Returns:
+ list[GenericMask]:
+ """
+
+ m = masks_or_polygons
+ if isinstance(m, PolygonMasks):
+ m = m.polygons
+ if isinstance(m, BitMasks):
+ m = m.tensor.numpy()
+ if isinstance(m, torch.Tensor):
+ m = m.numpy()
+ ret = []
+ for x in m:
+ if isinstance(x, GenericMask):
+ ret.append(x)
+ else:
+ ret.append(GenericMask(x, self.output.height, self.output.width))
+ return ret
+
+ def _draw_text_in_mask(self, binary_mask, text, color):
+ """
+ Find proper places to draw text given a binary mask.
+ """
+ # TODO sometimes drawn on wrong objects. the heuristics here can improve.
+ _num_cc, cc_labels, stats, centroids = cv2.connectedComponentsWithStats(binary_mask, 8)
+ if stats[1:, -1].size == 0:
+ return
+ largest_component_id = np.argmax(stats[1:, -1]) + 1
+
+ # draw text on the largest component, as well as other very large components.
+ for cid in range(1, _num_cc):
+ if cid == largest_component_id or stats[cid, -1] > _LARGE_MASK_AREA_THRESH:
+ # median is more stable than centroid
+ # center = centroids[largest_component_id]
+ center = np.median((cc_labels == cid).nonzero(), axis=1)[::-1]
+ self.draw_text(text, center, color=color)
+
+ def _convert_keypoints(self, keypoints):
+ if isinstance(keypoints, Keypoints):
+ keypoints = keypoints.tensor
+ keypoints = np.asarray(keypoints)
+ return keypoints
+
+ def get_output(self):
+ """
+ Returns:
+ output (VisImage): the image output containing the visualizations added
+ to the image.
+ """
+ return self.output
\ No newline at end of file
diff --git a/v_emb.da b/v_emb.da
new file mode 100644
index 0000000000000000000000000000000000000000..bac09b6da4e6d395d56fc21af2d3e0a5c21dcdf0
--- /dev/null
+++ b/v_emb.da
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:5e13ae968ef2a961a9da96280a6355477b89a38b95b047ecc347dffc48253364
+size 164517
diff --git a/xdecoder/BaseModel.py b/xdecoder/BaseModel.py
new file mode 100755
index 0000000000000000000000000000000000000000..cd0803f43d53554db6e718302ef28aa573bc05a5
--- /dev/null
+++ b/xdecoder/BaseModel.py
@@ -0,0 +1,37 @@
+# --------------------------------------------------------
+# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
+# Copyright (c) 2022 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Xueyan Zou (xueyan@cs.wisc.edu)
+# --------------------------------------------------------
+
+import os
+import logging
+
+import torch
+import torch.nn as nn
+
+from utils.model_loading import align_and_update_state_dicts
+
+logger = logging.getLogger(__name__)
+
+
+class BaseModel(nn.Module):
+ def __init__(self, opt, module: nn.Module):
+ super(BaseModel, self).__init__()
+ self.opt = opt
+ self.model = module
+
+ def forward(self, *inputs, **kwargs):
+ outputs = self.model(*inputs, **kwargs)
+ return outputs
+
+ def save_pretrained(self, save_dir):
+ save_path = os.path.join(save_dir, 'model_state_dict.pt')
+ torch.save(self.model.state_dict(), save_path)
+
+ def from_pretrained(self, load_path):
+ state_dict = torch.load(load_path, map_location=self.opt['device'])
+ state_dict = align_and_update_state_dicts(self.model.state_dict(), state_dict)
+ self.model.load_state_dict(state_dict, strict=False)
+ return self
\ No newline at end of file
diff --git a/xdecoder/__init__.py b/xdecoder/__init__.py
new file mode 100755
index 0000000000000000000000000000000000000000..47a369b587a83ac2691a90e583a4bbb5c0cb23e0
--- /dev/null
+++ b/xdecoder/__init__.py
@@ -0,0 +1,5 @@
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+from .architectures import build_model
\ No newline at end of file
diff --git a/xdecoder/architectures/__init__.py b/xdecoder/architectures/__init__.py
new file mode 100755
index 0000000000000000000000000000000000000000..7831efa29c9427175212c79734aa06b88651c53f
--- /dev/null
+++ b/xdecoder/architectures/__init__.py
@@ -0,0 +1,2 @@
+from .xdecoder_model import *
+from .build import build_model
\ No newline at end of file
diff --git a/xdecoder/architectures/build.py b/xdecoder/architectures/build.py
new file mode 100755
index 0000000000000000000000000000000000000000..c94201fe7ec172040ac092b7efe7d0a7b0adbd47
--- /dev/null
+++ b/xdecoder/architectures/build.py
@@ -0,0 +1,10 @@
+from .registry import model_entrypoints
+from .registry import is_model
+
+def build_model(config, **kwargs):
+ model_name = config['MODEL']['NAME']
+
+ if not is_model(model_name):
+ raise ValueError(f'Unkown model: {model_name}')
+
+ return model_entrypoints(model_name)(config, **kwargs)
\ No newline at end of file
diff --git a/xdecoder/architectures/registry.py b/xdecoder/architectures/registry.py
new file mode 100755
index 0000000000000000000000000000000000000000..940e4560f7d052aed4915187410266ab5a4cb4d0
--- /dev/null
+++ b/xdecoder/architectures/registry.py
@@ -0,0 +1,13 @@
+_model_entrypoints = {}
+
+def register_model(fn):
+ module_name_split = fn.__module__.split('.')
+ model_name = module_name_split[-1]
+ _model_entrypoints[model_name] = fn
+ return fn
+
+def model_entrypoints(model_name):
+ return _model_entrypoints[model_name]
+
+def is_model(model_name):
+ return model_name in _model_entrypoints
\ No newline at end of file
diff --git a/xdecoder/architectures/xdecoder_model.py b/xdecoder/architectures/xdecoder_model.py
new file mode 100755
index 0000000000000000000000000000000000000000..65ee51e84247861a4cd6690248e893d1d9c15ad3
--- /dev/null
+++ b/xdecoder/architectures/xdecoder_model.py
@@ -0,0 +1,622 @@
+# --------------------------------------------------------
+# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
+# Copyright (c) 2022 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Xueyan Zou (xueyan@cs.wisc.edu)
+# --------------------------------------------------------
+
+import random
+from typing import Tuple
+from unicodedata import name
+
+import torch
+from torch import nn
+from torch.nn import functional as F
+import numpy as np
+
+from .registry import register_model
+from ..utils import configurable
+from ..backbone import build_backbone, Backbone
+from ..body import build_xdecoder_head
+from ..modules import sem_seg_postprocess, bbox_postprocess
+from ..language import build_language_encoder
+from ..language.loss import vl_similarity
+
+from timm.models.layers import trunc_normal_
+from nltk.stem.lancaster import LancasterStemmer
+from detectron2.structures import Boxes, ImageList, Instances, BitMasks, BoxMode
+from detectron2.utils.memory import retry_if_cuda_oom
+from detectron2.data import MetadataCatalog
+from utils.misc import prompt_engineering
+
+st = LancasterStemmer()
+
+
+class X_Decoder_Model(nn.Module):
+ @configurable
+ def __init__(
+ self,
+ *,
+ backbone: Backbone,
+ sem_seg_head: nn.Module,
+ criterion: nn.Module,
+ losses: dict,
+ num_queries: int,
+ object_mask_threshold: float,
+ overlap_threshold: float,
+ metadata,
+ task_switch: dict,
+ phrase_prob: float,
+ size_divisibility: int,
+ sem_seg_postprocess_before_inference: bool,
+ pixel_mean: Tuple[float],
+ pixel_std: Tuple[float],
+ # inference
+ semantic_on: bool,
+ panoptic_on: bool,
+ instance_on: bool,
+ test_topk_per_image: int,
+ train_dataset_name: str,
+ retrieval_emsemble: bool,
+ backbone_dim: int,
+ dim_proj: int,
+ ):
+ super().__init__()
+ self.backbone = backbone
+ self.sem_seg_head = sem_seg_head
+ self.criterion = criterion
+ self.losses = losses
+ self.num_queries = num_queries
+ self.overlap_threshold = overlap_threshold
+ self.object_mask_threshold = object_mask_threshold
+ self.metadata = metadata
+ if size_divisibility < 0:
+ # use backbone size_divisibility if not set
+ size_divisibility = self.backbone.size_divisibility
+ self.size_divisibility = size_divisibility
+ self.sem_seg_postprocess_before_inference = sem_seg_postprocess_before_inference
+ self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
+ self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)
+
+ # additional args
+ self.semantic_on = semantic_on
+ self.instance_on = instance_on
+ self.panoptic_on = panoptic_on
+
+ # caption argument
+ self.task_switch = task_switch
+ self.phrase_prob = phrase_prob
+
+ self.test_topk_per_image = test_topk_per_image
+ self.train_class_names = None
+
+ self.retrieval_emsemble = retrieval_emsemble
+ # backbone itc loss
+ if task_switch['retrieval'] and retrieval_emsemble:
+ self.backbone_proj = nn.Parameter(torch.empty(backbone_dim, dim_proj))
+ trunc_normal_(self.backbone_proj, std=.02)
+
+ if not self.semantic_on:
+ assert self.sem_seg_postprocess_before_inference
+
+ @classmethod
+ def from_config(cls, cfg):
+ enc_cfg = cfg['MODEL']['ENCODER']
+ dec_cfg = cfg['MODEL']['DECODER']
+
+ task_switch = {'bbox': dec_cfg.get('DETECTION', False),
+ 'mask': dec_cfg.get('MASK', True),
+ 'caption': dec_cfg['CAPTION'].get('ENABLED', False),
+ 'captioning': dec_cfg['CAPTIONING'].get('ENABLED', False),
+ 'retrieval': dec_cfg['RETRIEVAL'].get('ENABLED', False),
+ 'grounding': dec_cfg['GROUNDING'].get('ENABLED', False)}
+
+ # build model
+ extra = {'task_switch': task_switch}
+ backbone = build_backbone(cfg)
+ lang_encoder = build_language_encoder(cfg)
+ sem_seg_head = build_xdecoder_head(cfg, backbone.output_shape(), lang_encoder, extra)
+
+ # Training Settings.
+ loss_weights = {}
+ matcher = None
+ losses = {}
+ weight_dict = {}
+ grd_weight = {}
+ top_x_layers = {}
+ criterion = None
+ train_dataset_name = None
+ phrase_prob = None
+ # Loss parameters:
+ deep_supervision = None
+ no_object_weight = None
+
+ return {
+ "backbone": backbone,
+ "sem_seg_head": sem_seg_head,
+ "criterion": criterion,
+ "losses": losses,
+ "num_queries": dec_cfg['NUM_OBJECT_QUERIES'],
+ "object_mask_threshold": dec_cfg['TEST']['OBJECT_MASK_THRESHOLD'],
+ "overlap_threshold": dec_cfg['TEST']['OVERLAP_THRESHOLD'],
+ "metadata": None,
+ "size_divisibility": dec_cfg['SIZE_DIVISIBILITY'],
+ "sem_seg_postprocess_before_inference": (
+ dec_cfg['TEST']['SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE']
+ or dec_cfg['TEST']['PANOPTIC_ON']
+ or dec_cfg['TEST']['INSTANCE_ON']
+ ),
+ "pixel_mean": cfg['INPUT']['PIXEL_MEAN'],
+ "pixel_std": cfg['INPUT']['PIXEL_STD'],
+ "task_switch": task_switch,
+ "phrase_prob": phrase_prob,
+ # inference
+ "semantic_on": dec_cfg['TEST']['SEMANTIC_ON'],
+ "instance_on": dec_cfg['TEST']['INSTANCE_ON'],
+ "panoptic_on": dec_cfg['TEST']['PANOPTIC_ON'],
+ "test_topk_per_image": cfg['MODEL']['DECODER']['TEST']['DETECTIONS_PER_IMAGE'],
+ "train_dataset_name": train_dataset_name,
+ "retrieval_emsemble": dec_cfg['RETRIEVAL']['ENSEMBLE'],
+ "backbone_dim": cfg['MODEL']['BACKBONE_DIM'],
+ "dim_proj": cfg['MODEL']['DIM_PROJ'],
+ }
+
+ @property
+ def device(self):
+ return self.pixel_mean.device
+
+ def forward(self, batched_inputs, mode=None):
+ if self.training:
+ assert False, "Not support trianing mode."
+ else:
+ if mode == 'retrieval':
+ return self.evaluate_retrieval(batched_inputs)
+ elif mode == 'captioning':
+ return self.evaluate_captioning(batched_inputs)
+ elif mode == 'classification':
+ return self.evaluate_classification(batched_inputs)
+ elif mode in ['grounding_phrasecut', 'grounding_refcoco']:
+ return self.evaluate_grounding(batched_inputs, mode)
+ else:
+ return self.evaluate(batched_inputs)
+
+ def evaluate(self, batched_inputs):
+ images = [x["image"].to(self.device) for x in batched_inputs]
+ images = [(x - self.pixel_mean) / self.pixel_std for x in images]
+
+ images = ImageList.from_tensors(images, self.size_divisibility)
+ img_bs = images.tensor.shape[0]
+
+ targets = targets_grounding = queries_grounding = None
+ features = self.backbone(images.tensor)
+ outputs = self.sem_seg_head(features, target_queries=queries_grounding)
+
+ mask_cls_results = outputs["pred_logits"]
+ mask_pred_results = outputs["pred_masks"]
+ box_pred_results = outputs["pred_boxes"] if self.task_switch['bbox'] else [None for i in range(len(mask_pred_results))]
+ caption_pred_results = outputs["pred_captions"] if self.task_switch['caption'] else [None for i in range(len(mask_pred_results))]
+
+ # upsample masks
+ mask_pred_results = F.interpolate(
+ mask_pred_results,
+ size=(images.tensor.shape[-2], images.tensor.shape[-1]),
+ mode="bilinear",
+ align_corners=False,
+ )
+
+ input_size = mask_pred_results.shape[-2:]
+ keep_sem_bgd = self.metadata.keep_sem_bgd if hasattr(self.metadata, 'keep_sem_bgd') else False
+ del outputs
+
+ processed_results = []
+ for mask_cls_result, mask_pred_result, box_pred_result, caption_pred_result, input_per_image, image_size in zip(
+ mask_cls_results, mask_pred_results, box_pred_results, caption_pred_results, batched_inputs, images.image_sizes
+ ):
+ height = input_per_image.get("height", image_size[0])
+ width = input_per_image.get("width", image_size[1])
+ processed_results.append({})
+
+ if self.sem_seg_postprocess_before_inference:
+ mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)(
+ mask_pred_result, image_size, height, width
+ )
+ mask_cls_result = mask_cls_result.to(mask_pred_result)
+
+ # semantic segmentation inference
+ if self.semantic_on:
+ r = retry_if_cuda_oom(self.semantic_inference)(mask_cls_result, mask_pred_result, keep_sem_bgd)
+ if not self.sem_seg_postprocess_before_inference:
+ r = retry_if_cuda_oom(sem_seg_postprocess)(r, image_size, height, width)
+ processed_results[-1]["sem_seg"] = r
+
+ # panoptic segmentation inference
+ if self.panoptic_on:
+ panoptic_r = retry_if_cuda_oom(self.panoptic_inference)(mask_cls_result, mask_pred_result)
+ processed_results[-1]["panoptic_seg"] = panoptic_r
+
+ # instance segmentation inference
+ if self.instance_on:
+ if self.task_switch['bbox']:
+ box_pred_result = bbox_postprocess(box_pred_result, input_size, image_size, height, width)
+ instance_r = retry_if_cuda_oom(self.instance_inference)(mask_cls_result, mask_pred_result, box_pred_result)
+ processed_results[-1]["instances"] = instance_r
+ if self.task_switch['caption']:
+ processed_results[-1]["captions"] = caption_pred_result
+ processed_results[-1]["masks"] = mask_pred_result
+
+ return processed_results
+
+
+ def evaluate_retrieval(self, batched_inputs):
+ images = [x["image"].to(self.device) for x in batched_inputs]
+ images = [(x - self.pixel_mean) / self.pixel_std for x in images]
+ images = ImageList.from_tensors(images, self.size_divisibility)
+ img_bs = images.tensor.shape[0]
+
+ targets = targets_grounding = queries_grounding = None
+ features = self.backbone(images.tensor)
+ outputs = self.sem_seg_head(features, target_queries=queries_grounding)
+ v_emb_it = outputs['pred_captions'][:,-1]
+
+ # compute backbone score
+ if self.task_switch['retrieval'] and self.retrieval_emsemble:
+ _v_emb_it = features['res5']
+ bs,nc,_,_ = _v_emb_it.shape
+ _v_emb_it = _v_emb_it.reshape(bs,nc,-1)
+ _v_emb_it = F.adaptive_avg_pool1d(_v_emb_it, 1).reshape(bs,nc) @ self.backbone_proj
+
+ processed_results = []
+ for idx, batch_data in enumerate(batched_inputs):
+ caption_ids = []
+ t_emb_its = []
+ processed_results.append({})
+ for caption in batch_data['captions']:
+ lang_results = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings(caption)
+ t_emb_it = lang_results['class_emb']
+ caption_ids.append(batch_data['image_id'])
+ t_emb_its.append(t_emb_it)
+
+ t_emb_it = torch.cat(t_emb_its, dim=0)
+
+ image_embeds = [v_emb_it[idx].unsqueeze(0)]
+ if self.task_switch['retrieval'] and self.retrieval_emsemble:
+ image_embeds += [_v_emb_it[idx].unsqueeze(0)]
+ caption_results = {
+ 'image_embeds': image_embeds,
+ 'text_embeds': t_emb_it,
+ 'caption_ids': caption_ids,
+ 'image_ids': batch_data['image_id'],
+ }
+ processed_results[-1]["caption"] = caption_results
+ return processed_results
+
+ def evaluate_captioning(self, batched_inputs, extra={}):
+ images = [x["image"].to(self.device) for x in batched_inputs]
+ images = [(x - self.pixel_mean) / self.pixel_std for x in images]
+ images = ImageList.from_tensors(images, self.size_divisibility)
+ img_bs = images.tensor.shape[0]
+
+ if not hasattr(self, 'start_token'):
+ self.start_token = torch.tensor([[49406]*77], device=self.device)
+
+ targets = targets_grounding = queries_grounding = None
+ features = self.backbone(images.tensor)
+
+ captioning_mask = None
+ if 'captioning_mask' in batched_inputs[-1]:
+ captioning_mask = torch.cat([x['captioning_mask'] for x in batched_inputs])
+
+ extra.update({'start_token': self.start_token, 'captioning_mask': captioning_mask})
+ outputs = self.sem_seg_head(features, target_queries=queries_grounding, task='captioning_infer', extra=extra)
+
+ processed_results = []
+ for idx, batch_data in enumerate(batched_inputs):
+ processed_results.append({})
+ processed_results[-1]["captioning_token"] = outputs['pred_captionings'][idx]
+ processed_results[-1]["captioning_text"] = outputs['pred_texts'][idx].split('.')[0]
+ processed_results[-1]["image_id"] = batched_inputs[idx]['image_id']
+
+ return processed_results
+
+ def evaluate_classification(self, batched_inputs):
+ images = [x["image"].to(self.device) for x in batched_inputs]
+ images = [(x - self.pixel_mean) / self.pixel_std for x in images]
+ images = ImageList.from_tensors(images, self.size_divisibility)
+ img_bs = images.tensor.shape[0]
+
+ targets = targets_grounding = queries_grounding = None
+ features = self.backbone(images.tensor)
+ outputs = self.sem_seg_head(features, target_queries=queries_grounding)
+
+ processed_results = []
+ for idx, batch_data in enumerate(batched_inputs):
+ processed_results.append({})
+ processed_results[-1]["pred_class"] = outputs['pred_logits'][idx,-1]
+ return processed_results
+
+ def evaluate_grounding_baseline(self, batched_inputs, mode):
+ images = [x["image"].to(self.device) for x in batched_inputs]
+ images = [(x - self.pixel_mean) / self.pixel_std for x in images]
+ images = ImageList.from_tensors(images, self.size_divisibility)
+ img_bs = images.tensor.shape[0]
+
+ targets = targets_grounding = queries_grounding = None
+ features = self.backbone(images.tensor)
+ outputs = self.sem_seg_head(features, target_queries=queries_grounding)
+
+ mask_pred_results = outputs["pred_masks"]
+ caption_pred_results = outputs["pred_captions"] if self.task_switch['caption'] else [None for i in range(len(mask_pred_results))]
+
+ # upsample masks
+ mask_pred_results = F.interpolate(
+ mask_pred_results,
+ size=(images.tensor.shape[-2], images.tensor.shape[-1]),
+ mode="bilinear",
+ align_corners=False,
+ )
+
+ processed_results = []
+ for mask_pred_result, caption_pred_result, input_per_image, image_size in zip(
+ mask_pred_results, caption_pred_results, batched_inputs, images.image_sizes
+ ):
+ height = input_per_image.get("height", image_size[0])
+ width = input_per_image.get("width", image_size[1])
+ processed_results.append({})
+
+ mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)(
+ mask_pred_result, image_size, height, width
+ )[:-1]
+
+ texts_all = input_per_image['groundings']['texts']
+ grd_masks = []
+ for texts in texts_all:
+ if mode == 'grounding_refcoco':
+ self.sem_seg_head.predictor.lang_encoder.get_text_embeddings(texts, name='grounding', prompt=False, is_eval=True)
+ elif mode == 'grounding_phrasecut':
+ self.sem_seg_head.predictor.lang_encoder.get_text_embeddings(texts, name='grounding', prompt=True, is_eval=False)
+ t_emb = getattr(self.sem_seg_head.predictor.lang_encoder, "{}_text_embeddings".format('grounding')).t()
+ v_emb = caption_pred_result[:-1]
+ v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7)
+ vt_sim = v_emb @ t_emb
+ max_id = vt_sim.max(0)[1][0]
+ grd_masks += [mask_pred_result[max_id]]
+ processed_results[-1]['grounding_mask'] = torch.stack(grd_masks)
+
+ return processed_results
+
+ def evaluate_grounding(self, batched_inputs, mode):
+ images = [x["image"].to(self.device) for x in batched_inputs]
+ images = [(x - self.pixel_mean) / self.pixel_std for x in images]
+ images = ImageList.from_tensors(images, self.size_divisibility)
+
+ extra = {}
+ # mask_pred_results = []
+ # for idx, batch_per_image in enumerate(batched_inputs):
+ # grd_texts = batch_per_image['groundings']['texts']
+ # grd_masks = []
+ # for anno_text in grd_texts:
+ # gtext = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings([anno_text[0]], name='grounding', token=False, norm=False)
+ # token_emb = gtext['token_emb']
+ # tokens = gtext['tokens']
+
+ # grd_emb = token_emb[0][tokens['attention_mask'].bool()[0]]
+ # extra['grounding_tokens'] = grd_emb[:,None]
+
+ # assert len(images.tensor) == 1, "grounding evaluation only support single batch size now"
+ # features = self.backbone(images.tensor)
+ # outputs = self.sem_seg_head(features, extra=extra, task='grounding_eval')
+
+ # pred_gmasks = outputs['pred_masks'][idx,self.num_queries:2*self.num_queries-1]
+ # v_emb = outputs['pred_captions'][idx,self.num_queries:2*self.num_queries-1]
+ # t_emb = grd_emb[-1:]
+
+ # t_emb = t_emb / (t_emb.norm(dim=-1, keepdim=True) + 1e-7)
+ # v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7)
+
+ # temperature = self.sem_seg_head.predictor.lang_encoder.logit_scale
+ # out_prob = vl_similarity(v_emb, t_emb, temperature=temperature)
+
+ # matched_id = out_prob.max(0)[1]
+ # grd_masks += [pred_gmasks[matched_id,:,:]]
+ # mask_pred_results += [torch.cat(grd_masks)]
+
+ # comment for multi object inference.
+ mask_pred_results = []
+ for idx, batch_per_image in enumerate(batched_inputs):
+ grd_texts = batch_per_image['groundings']['texts']
+ grd_texts = [x[0] for x in grd_texts]
+
+ gtext = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings(grd_texts, name='grounding', token=False, norm=False)
+ token_emb = gtext['token_emb']
+ tokens = gtext['tokens']
+ query_emb = token_emb[tokens['attention_mask'].bool()]
+ extra['grounding_tokens'] = query_emb[:,None]
+
+ features = self.backbone(images.tensor)
+ outputs = self.sem_seg_head(features, extra=extra, task='grounding_eval')
+
+ pred_gmasks = outputs['pred_masks'][idx,self.num_queries:2*self.num_queries-1]
+ v_emb = outputs['pred_captions'][idx,self.num_queries:2*self.num_queries-1]
+ t_emb = gtext['class_emb']
+
+ t_emb = t_emb / (t_emb.norm(dim=-1, keepdim=True) + 1e-7)
+ v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7)
+
+ temperature = self.sem_seg_head.predictor.lang_encoder.logit_scale
+ out_prob = vl_similarity(v_emb, t_emb, temperature=temperature)
+
+ matched_id = out_prob.max(0)[1]
+ mask_pred_results += [pred_gmasks[matched_id,:,:]]
+
+ for i in range(len(mask_pred_results)):
+ # upsample masks
+ mask_pred_results[i] = F.interpolate(
+ mask_pred_results[i][None,],
+ size=(images.tensor.shape[-2], images.tensor.shape[-1]),
+ mode="bilinear",
+ align_corners=False,
+ )[0]
+
+ processed_results = []
+ for mask_pred_result, input_per_image, image_size in zip(
+ mask_pred_results, batched_inputs, images.image_sizes
+ ):
+ height = input_per_image.get("height", image_size[0])
+ width = input_per_image.get("width", image_size[1])
+ processed_results.append({})
+
+ mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)(
+ mask_pred_result, image_size, height, width
+ )
+ processed_results[-1]['grounding_mask'] = mask_pred_result
+
+ # compute bbox
+ # bbox = BitMasks(mask_pred_result > 0).get_bounding_boxes()
+ # bbox = BoxMode.convert(bbox.tensor, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
+ # processed_results[-1]['grounding_box'] = bbox
+
+ return processed_results
+
+ def prepare_vlp_targets(self, batched_inputs, device):
+ input_ids = []
+ attention_mask = []
+ for cnt, x in enumerate(batched_inputs):
+ captions = x['captions']
+ randid = random.randint(0, len(captions)-1)
+ input_ids += x['tokens']['input_ids'][randid:randid+1]
+ attention_mask += x['tokens']['attention_mask'][randid:randid+1]
+
+ input_ids = torch.stack(input_ids)
+ attention_mask = torch.stack(attention_mask)
+ tokens = {"input_ids": input_ids, "attention_mask": attention_mask}
+ lang_results = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings(tokens, token=True)
+
+ target_vlp = []
+ for cnt, x in enumerate(batched_inputs):
+ target_dict = {}
+ target_dict["caption_tokens"] = lang_results['token_emb'][cnt:cnt+1]
+ target_dict["caption_proj"] = lang_results['class_emb'][cnt:cnt+1]
+ target_dict["caption_tokenids"] = lang_results['tokens']['input_ids'][cnt:cnt+1]
+ target_dict["caption_mask"] = lang_results['tokens']['attention_mask'][cnt:cnt+1]
+ target_vlp.append(target_dict)
+ return target_vlp
+
+ def semantic_inference(self, mask_cls, mask_pred, keep_sem_bgd=False):
+ if keep_sem_bgd:
+ mask_cls = F.softmax(mask_cls, dim=-1)
+ else:
+ mask_cls = F.softmax(mask_cls, dim=-1)[..., :-1]
+ mask_pred = mask_pred.sigmoid()
+ semseg = torch.einsum("qc,qhw->chw", mask_cls, mask_pred)
+ return semseg
+
+ def panoptic_inference(self, mask_cls, mask_pred):
+ scores, labels = F.softmax(mask_cls, dim=-1).max(-1)
+ mask_pred = mask_pred.sigmoid()
+
+ keep = labels.ne(self.sem_seg_head.num_classes) & (scores > self.object_mask_threshold)
+ cur_scores = scores[keep]
+ cur_classes = labels[keep]
+ cur_masks = mask_pred[keep]
+ cur_mask_cls = mask_cls[keep]
+ cur_mask_cls = cur_mask_cls[:, :-1]
+ cur_prob_masks = cur_scores.view(-1, 1, 1) * cur_masks
+
+ h, w = cur_masks.shape[-2:]
+ panoptic_seg = torch.zeros((h, w), dtype=torch.int32, device=cur_masks.device)
+ segments_info = []
+
+ current_segment_id = 0
+
+ if cur_masks.shape[0] == 0:
+ # We didn't detect any mask :(
+ return panoptic_seg, segments_info
+ else:
+ # take argmax
+ cur_mask_ids = cur_prob_masks.argmax(0)
+ stuff_memory_list = {}
+ thing_dataset_id_to_contiguous_id = self.metadata.thing_dataset_id_to_contiguous_id if hasattr(self.metadata, 'thing_dataset_id_to_contiguous_id') else {}
+ for k in range(cur_classes.shape[0]):
+ pred_class = cur_classes[k].item()
+ isthing = pred_class in thing_dataset_id_to_contiguous_id.values()
+ mask_area = (cur_mask_ids == k).sum().item()
+ original_area = (cur_masks[k] >= 0.5).sum().item()
+ mask = (cur_mask_ids == k) & (cur_masks[k] >= 0.5)
+
+ if mask_area > 0 and original_area > 0 and mask.sum().item() > 0:
+ if mask_area / original_area < self.overlap_threshold:
+ continue
+
+ # merge stuff regions
+ if not isthing:
+ if int(pred_class) in stuff_memory_list.keys():
+ panoptic_seg[mask] = stuff_memory_list[int(pred_class)]
+ continue
+ else:
+ stuff_memory_list[int(pred_class)] = current_segment_id + 1
+
+ current_segment_id += 1
+ panoptic_seg[mask] = current_segment_id
+
+ segments_info.append(
+ {
+ "id": current_segment_id,
+ "isthing": bool(isthing),
+ "category_id": int(pred_class),
+ }
+ )
+ return panoptic_seg, segments_info
+
+ def instance_inference(self, mask_cls, mask_pred, box_pred):
+ # mask_pred is already processed to have the same shape as original input
+ image_size = mask_pred.shape[-2:]
+
+ # [Q, K]
+ scores = F.softmax(mask_cls, dim=-1)[:, :-1]
+ labels = torch.arange(self.sem_seg_head.num_classes, device=self.device).unsqueeze(0).repeat(self.num_queries, 1).flatten(0, 1)
+ # scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.num_queries, sorted=False)
+ scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.test_topk_per_image, sorted=False)
+
+ labels_per_image = labels[topk_indices]
+ topk_indices = (topk_indices // self.sem_seg_head.num_classes)
+ # mask_pred = mask_pred.unsqueeze(1).repeat(1, self.sem_seg_head.num_classes, 1).flatten(0, 1)
+ mask_pred = mask_pred[topk_indices]
+ if box_pred is not None:
+ box_pred = box_pred[topk_indices]
+
+ # if this is panoptic segmentation, we only keep the "thing" classes
+ if self.panoptic_on:
+ thing_dataset_id_to_contiguous_id = self.metadata.thing_dataset_id_to_contiguous_id if hasattr(self.metadata, 'thing_dataset_id_to_contiguous_id') else {}
+ keep = torch.zeros_like(scores_per_image).bool()
+ for i, lab in enumerate(labels_per_image):
+ keep[i] = lab in thing_dataset_id_to_contiguous_id.values()
+
+ scores_per_image = scores_per_image[keep]
+ labels_per_image = labels_per_image[keep]
+ mask_pred = mask_pred[keep]
+
+ if box_pred is not None:
+ box_pred = box_pred[keep]
+
+ result = Instances(image_size)
+ # mask (before sigmoid)
+ result.pred_masks = (mask_pred > 0).float()
+ # result.pred_boxes = Boxes(torch.zeros(mask_pred.size(0), 4))
+ # Uncomment the following to get boxes from masks (this is slow)
+
+ if box_pred is not None:
+ result.pred_boxes = BitMasks(mask_pred > 0).get_bounding_boxes()
+ else:
+ result.pred_boxes = Boxes(torch.zeros(mask_pred.size(0), 4))
+
+ # calculate average mask prob
+ mask_scores_per_image = (mask_pred.sigmoid().flatten(1) * result.pred_masks.flatten(1)).sum(1) / (result.pred_masks.flatten(1).sum(1) + 1e-6)
+ result.scores = scores_per_image * mask_scores_per_image
+ result.pred_classes = labels_per_image
+
+ return result
+
+
+@register_model
+def get_segmentation_model(cfg, **kwargs):
+ return X_Decoder_Model(cfg)
\ No newline at end of file
diff --git a/xdecoder/backbone/__init__.py b/xdecoder/backbone/__init__.py
new file mode 100755
index 0000000000000000000000000000000000000000..aac67442cdce051f7f9de6068990eb388b8dd3bb
--- /dev/null
+++ b/xdecoder/backbone/__init__.py
@@ -0,0 +1,7 @@
+from .build import build_backbone
+
+from .resnet import *
+from .swin import *
+from .focal import *
+from .focal_dw import *
+from .backbone import *
\ No newline at end of file
diff --git a/xdecoder/backbone/backbone.py b/xdecoder/backbone/backbone.py
new file mode 100755
index 0000000000000000000000000000000000000000..503f74a69288b3696bebf12992f21ad5781e47aa
--- /dev/null
+++ b/xdecoder/backbone/backbone.py
@@ -0,0 +1,51 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+import torch.nn as nn
+
+from detectron2.modeling import ShapeSpec
+
+__all__ = ["Backbone"]
+
+
+class Backbone(nn.Module):
+ """
+ Abstract base class for network backbones.
+ """
+
+ def __init__(self):
+ """
+ The `__init__` method of any subclass can specify its own set of arguments.
+ """
+ super().__init__()
+
+ def forward(self):
+ """
+ Subclasses must override this method, but adhere to the same return type.
+
+ Returns:
+ dict[str->Tensor]: mapping from feature name (e.g., "res2") to tensor
+ """
+ pass
+
+ @property
+ def size_divisibility(self) -> int:
+ """
+ Some backbones require the input height and width to be divisible by a
+ specific integer. This is typically true for encoder / decoder type networks
+ with lateral connection (e.g., FPN) for which feature maps need to match
+ dimension in the "bottom up" and "top down" paths. Set to 0 if no specific
+ input size divisibility is required.
+ """
+ return 0
+
+ def output_shape(self):
+ """
+ Returns:
+ dict[str->ShapeSpec]
+ """
+ # this is a backward-compatible default
+ return {
+ name: ShapeSpec(
+ channels=self._out_feature_channels[name], stride=self._out_feature_strides[name]
+ )
+ for name in self._out_features
+ }
diff --git a/xdecoder/backbone/build.py b/xdecoder/backbone/build.py
new file mode 100755
index 0000000000000000000000000000000000000000..a559fa6a010d3379ff5fcbeb43c510122988735f
--- /dev/null
+++ b/xdecoder/backbone/build.py
@@ -0,0 +1,11 @@
+from .registry import model_entrypoints
+from .registry import is_model
+
+from .backbone import *
+
+def build_backbone(config, **kwargs):
+ model_name = config['MODEL']['BACKBONE']['NAME']
+ if not is_model(model_name):
+ raise ValueError(f'Unkown model: {model_name}')
+
+ return model_entrypoints(model_name)(config, **kwargs)
\ No newline at end of file
diff --git a/xdecoder/backbone/focal.py b/xdecoder/backbone/focal.py
new file mode 100755
index 0000000000000000000000000000000000000000..eb08555d2f5a036d175ee94033d8cae30d0ff959
--- /dev/null
+++ b/xdecoder/backbone/focal.py
@@ -0,0 +1,692 @@
+# --------------------------------------------------------
+# FocalNet for Semantic Segmentation
+# Copyright (c) 2022 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Jianwei Yang
+# --------------------------------------------------------
+import math
+import time
+import numpy as np
+import logging
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+import torch.utils.checkpoint as checkpoint
+from timm.models.layers import DropPath, to_2tuple, trunc_normal_
+
+from detectron2.utils.file_io import PathManager
+from detectron2.modeling import BACKBONE_REGISTRY, Backbone, ShapeSpec
+
+from .registry import register_backbone
+
+logger = logging.getLogger(__name__)
+
+class Mlp(nn.Module):
+ """ Multilayer perceptron."""
+
+ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
+ super().__init__()
+ out_features = out_features or in_features
+ hidden_features = hidden_features or in_features
+ self.fc1 = nn.Linear(in_features, hidden_features)
+ self.act = act_layer()
+ self.fc2 = nn.Linear(hidden_features, out_features)
+ self.drop = nn.Dropout(drop)
+
+ def forward(self, x):
+ x = self.fc1(x)
+ x = self.act(x)
+ x = self.drop(x)
+ x = self.fc2(x)
+ x = self.drop(x)
+ return x
+
+class FocalModulation(nn.Module):
+ """ Focal Modulation
+
+ Args:
+ dim (int): Number of input channels.
+ proj_drop (float, optional): Dropout ratio of output. Default: 0.0
+ focal_level (int): Number of focal levels
+ focal_window (int): Focal window size at focal level 1
+ focal_factor (int, default=2): Step to increase the focal window
+ use_postln (bool, default=False): Whether use post-modulation layernorm
+ """
+
+ def __init__(self, dim, proj_drop=0., focal_level=2, focal_window=7, focal_factor=2, use_postln=False, use_postln_in_modulation=False, scaling_modulator=False):
+
+ super().__init__()
+ self.dim = dim
+
+ # specific args for focalv3
+ self.focal_level = focal_level
+ self.focal_window = focal_window
+ self.focal_factor = focal_factor
+ self.use_postln_in_modulation = use_postln_in_modulation
+ self.scaling_modulator = scaling_modulator
+
+ self.f = nn.Linear(dim, 2*dim+(self.focal_level+1), bias=True)
+ self.h = nn.Conv2d(dim, dim, kernel_size=1, stride=1, padding=0, groups=1, bias=True)
+
+ self.act = nn.GELU()
+ self.proj = nn.Linear(dim, dim)
+ self.proj_drop = nn.Dropout(proj_drop)
+ self.focal_layers = nn.ModuleList()
+
+ if self.use_postln_in_modulation:
+ self.ln = nn.LayerNorm(dim)
+
+ for k in range(self.focal_level):
+ kernel_size = self.focal_factor*k + self.focal_window
+ self.focal_layers.append(
+ nn.Sequential(
+ nn.Conv2d(dim, dim, kernel_size=kernel_size, stride=1, groups=dim,
+ padding=kernel_size//2, bias=False),
+ nn.GELU(),
+ )
+ )
+
+ def forward(self, x):
+ """ Forward function.
+
+ Args:
+ x: input features with shape of (B, H, W, C)
+ """
+ B, nH, nW, C = x.shape
+ x = self.f(x)
+ x = x.permute(0, 3, 1, 2).contiguous()
+ q, ctx, gates = torch.split(x, (C, C, self.focal_level+1), 1)
+
+ ctx_all = 0
+ for l in range(self.focal_level):
+ ctx = self.focal_layers[l](ctx)
+ ctx_all = ctx_all + ctx*gates[:, l:l+1]
+ ctx_global = self.act(ctx.mean(2, keepdim=True).mean(3, keepdim=True))
+ ctx_all = ctx_all + ctx_global*gates[:,self.focal_level:]
+
+ if self.scaling_modulator:
+ ctx_all = ctx_all / (self.focal_level + 1)
+
+ x_out = q * self.h(ctx_all)
+ x_out = x_out.permute(0, 2, 3, 1).contiguous()
+ if self.use_postln_in_modulation:
+ x_out = self.ln(x_out)
+ x_out = self.proj(x_out)
+ x_out = self.proj_drop(x_out)
+ return x_out
+
+class FocalModulationBlock(nn.Module):
+ """ Focal Modulation Block.
+
+ Args:
+ dim (int): Number of input channels.
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
+ drop (float, optional): Dropout rate. Default: 0.0
+ drop_path (float, optional): Stochastic depth rate. Default: 0.0
+ act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
+ focal_level (int): number of focal levels
+ focal_window (int): focal kernel size at level 1
+ """
+
+ def __init__(self, dim, mlp_ratio=4., drop=0., drop_path=0.,
+ act_layer=nn.GELU, norm_layer=nn.LayerNorm,
+ focal_level=2, focal_window=9,
+ use_postln=False, use_postln_in_modulation=False,
+ scaling_modulator=False,
+ use_layerscale=False,
+ layerscale_value=1e-4):
+ super().__init__()
+ self.dim = dim
+ self.mlp_ratio = mlp_ratio
+ self.focal_window = focal_window
+ self.focal_level = focal_level
+ self.use_postln = use_postln
+ self.use_layerscale = use_layerscale
+
+ self.norm1 = norm_layer(dim)
+ self.modulation = FocalModulation(
+ dim, focal_window=self.focal_window, focal_level=self.focal_level, proj_drop=drop, use_postln_in_modulation=use_postln_in_modulation, scaling_modulator=scaling_modulator
+ )
+
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
+ self.norm2 = norm_layer(dim)
+ mlp_hidden_dim = int(dim * mlp_ratio)
+ self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
+
+ self.H = None
+ self.W = None
+
+ self.gamma_1 = 1.0
+ self.gamma_2 = 1.0
+ if self.use_layerscale:
+ self.gamma_1 = nn.Parameter(layerscale_value * torch.ones((dim)), requires_grad=True)
+ self.gamma_2 = nn.Parameter(layerscale_value * torch.ones((dim)), requires_grad=True)
+
+ def forward(self, x):
+ """ Forward function.
+
+ Args:
+ x: Input feature, tensor size (B, H*W, C).
+ H, W: Spatial resolution of the input feature.
+ """
+ B, L, C = x.shape
+ H, W = self.H, self.W
+ assert L == H * W, "input feature has wrong size"
+
+ shortcut = x
+ if not self.use_postln:
+ x = self.norm1(x)
+ x = x.view(B, H, W, C)
+
+ # FM
+ x = self.modulation(x).view(B, H * W, C)
+ if self.use_postln:
+ x = self.norm1(x)
+
+ # FFN
+ x = shortcut + self.drop_path(self.gamma_1 * x)
+
+ if self.use_postln:
+ x = x + self.drop_path(self.gamma_2 * self.norm2(self.mlp(x)))
+ else:
+ x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
+
+ return x
+
+class BasicLayer(nn.Module):
+ """ A basic focal modulation layer for one stage.
+
+ Args:
+ dim (int): Number of feature channels
+ depth (int): Depths of this stage.
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
+ drop (float, optional): Dropout rate. Default: 0.0
+ drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
+ downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
+ focal_level (int): Number of focal levels
+ focal_window (int): Focal window size at focal level 1
+ use_conv_embed (bool): Use overlapped convolution for patch embedding or now. Default: False
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
+ """
+
+ def __init__(self,
+ dim,
+ depth,
+ mlp_ratio=4.,
+ drop=0.,
+ drop_path=0.,
+ norm_layer=nn.LayerNorm,
+ downsample=None,
+ focal_window=9,
+ focal_level=2,
+ use_conv_embed=False,
+ use_postln=False,
+ use_postln_in_modulation=False,
+ scaling_modulator=False,
+ use_layerscale=False,
+ use_checkpoint=False
+ ):
+ super().__init__()
+ self.depth = depth
+ self.use_checkpoint = use_checkpoint
+
+ # build blocks
+ self.blocks = nn.ModuleList([
+ FocalModulationBlock(
+ dim=dim,
+ mlp_ratio=mlp_ratio,
+ drop=drop,
+ drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
+ focal_window=focal_window,
+ focal_level=focal_level,
+ use_postln=use_postln,
+ use_postln_in_modulation=use_postln_in_modulation,
+ scaling_modulator=scaling_modulator,
+ use_layerscale=use_layerscale,
+ norm_layer=norm_layer)
+ for i in range(depth)])
+
+ # patch merging layer
+ if downsample is not None:
+ self.downsample = downsample(
+ patch_size=2,
+ in_chans=dim, embed_dim=2*dim,
+ use_conv_embed=use_conv_embed,
+ norm_layer=norm_layer,
+ is_stem=False
+ )
+
+ else:
+ self.downsample = None
+
+ def forward(self, x, H, W):
+ """ Forward function.
+
+ Args:
+ x: Input feature, tensor size (B, H*W, C).
+ H, W: Spatial resolution of the input feature.
+ """
+ for blk in self.blocks:
+ blk.H, blk.W = H, W
+ if self.use_checkpoint:
+ x = checkpoint.checkpoint(blk, x)
+ else:
+ x = blk(x)
+ if self.downsample is not None:
+ x_reshaped = x.transpose(1, 2).view(x.shape[0], x.shape[-1], H, W)
+ x_down = self.downsample(x_reshaped)
+ x_down = x_down.flatten(2).transpose(1, 2)
+ Wh, Ww = (H + 1) // 2, (W + 1) // 2
+ return x, H, W, x_down, Wh, Ww
+ else:
+ return x, H, W, x, H, W
+
+
+class PatchEmbed(nn.Module):
+ """ Image to Patch Embedding
+
+ Args:
+ patch_size (int): Patch token size. Default: 4.
+ in_chans (int): Number of input image channels. Default: 3.
+ embed_dim (int): Number of linear projection output channels. Default: 96.
+ norm_layer (nn.Module, optional): Normalization layer. Default: None
+ use_conv_embed (bool): Whether use overlapped convolution for patch embedding. Default: False
+ is_stem (bool): Is the stem block or not.
+ """
+
+ def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None, use_conv_embed=False, is_stem=False):
+ super().__init__()
+ patch_size = to_2tuple(patch_size)
+ self.patch_size = patch_size
+
+ self.in_chans = in_chans
+ self.embed_dim = embed_dim
+
+ if use_conv_embed:
+ # if we choose to use conv embedding, then we treat the stem and non-stem differently
+ if is_stem:
+ kernel_size = 7; padding = 2; stride = 4
+ else:
+ kernel_size = 3; padding = 1; stride = 2
+ self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding)
+ else:
+ self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
+
+ if norm_layer is not None:
+ self.norm = norm_layer(embed_dim)
+ else:
+ self.norm = None
+
+ def forward(self, x):
+ """Forward function."""
+ _, _, H, W = x.size()
+ if W % self.patch_size[1] != 0:
+ x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
+ if H % self.patch_size[0] != 0:
+ x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
+
+ x = self.proj(x) # B C Wh Ww
+ if self.norm is not None:
+ Wh, Ww = x.size(2), x.size(3)
+ x = x.flatten(2).transpose(1, 2)
+ x = self.norm(x)
+ x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
+
+ return x
+
+
+class FocalNet(nn.Module):
+ """ FocalNet backbone.
+
+ Args:
+ pretrain_img_size (int): Input image size for training the pretrained model,
+ used in absolute postion embedding. Default 224.
+ patch_size (int | tuple(int)): Patch size. Default: 4.
+ in_chans (int): Number of input image channels. Default: 3.
+ embed_dim (int): Number of linear projection output channels. Default: 96.
+ depths (tuple[int]): Depths of each Swin Transformer stage.
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
+ drop_rate (float): Dropout rate.
+ drop_path_rate (float): Stochastic depth rate. Default: 0.2.
+ norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
+ patch_norm (bool): If True, add normalization after patch embedding. Default: True.
+ out_indices (Sequence[int]): Output from which stages.
+ frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
+ -1 means not freezing any parameters.
+ focal_levels (Sequence[int]): Number of focal levels at four stages
+ focal_windows (Sequence[int]): Focal window sizes at first focal level at four stages
+ use_conv_embed (bool): Whether use overlapped convolution for patch embedding
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
+ """
+
+ def __init__(self,
+ pretrain_img_size=1600,
+ patch_size=4,
+ in_chans=3,
+ embed_dim=96,
+ depths=[2, 2, 6, 2],
+ mlp_ratio=4.,
+ drop_rate=0.,
+ drop_path_rate=0.2,
+ norm_layer=nn.LayerNorm,
+ patch_norm=True,
+ out_indices=[0, 1, 2, 3],
+ frozen_stages=-1,
+ focal_levels=[2,2,2,2],
+ focal_windows=[9,9,9,9],
+ use_conv_embed=False,
+ use_postln=False,
+ use_postln_in_modulation=False,
+ scaling_modulator=False,
+ use_layerscale=False,
+ use_checkpoint=False,
+ ):
+ super().__init__()
+
+ self.pretrain_img_size = pretrain_img_size
+ self.num_layers = len(depths)
+ self.embed_dim = embed_dim
+ self.patch_norm = patch_norm
+ self.out_indices = out_indices
+ self.frozen_stages = frozen_stages
+
+ # split image into non-overlapping patches
+ self.patch_embed = PatchEmbed(
+ patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
+ norm_layer=norm_layer if self.patch_norm else None,
+ use_conv_embed=use_conv_embed, is_stem=True)
+
+ self.pos_drop = nn.Dropout(p=drop_rate)
+
+ # stochastic depth
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
+
+ # build layers
+ self.layers = nn.ModuleList()
+ for i_layer in range(self.num_layers):
+ layer = BasicLayer(
+ dim=int(embed_dim * 2 ** i_layer),
+ depth=depths[i_layer],
+ mlp_ratio=mlp_ratio,
+ drop=drop_rate,
+ drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
+ norm_layer=norm_layer,
+ downsample=PatchEmbed if (i_layer < self.num_layers - 1) else None,
+ focal_window=focal_windows[i_layer],
+ focal_level=focal_levels[i_layer],
+ use_conv_embed=use_conv_embed,
+ use_postln=use_postln,
+ use_postln_in_modulation=use_postln_in_modulation,
+ scaling_modulator=scaling_modulator,
+ use_layerscale=use_layerscale,
+ use_checkpoint=use_checkpoint)
+ self.layers.append(layer)
+
+ num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)]
+ self.num_features = num_features
+
+ # add a norm layer for each output
+ for i_layer in out_indices:
+ layer = norm_layer(num_features[i_layer])
+ layer_name = f'norm{i_layer}'
+ self.add_module(layer_name, layer)
+
+ self._freeze_stages()
+
+ def _freeze_stages(self):
+ if self.frozen_stages >= 0:
+ self.patch_embed.eval()
+ for param in self.patch_embed.parameters():
+ param.requires_grad = False
+
+ if self.frozen_stages >= 2:
+ self.pos_drop.eval()
+ for i in range(0, self.frozen_stages - 1):
+ m = self.layers[i]
+ m.eval()
+ for param in m.parameters():
+ param.requires_grad = False
+
+ def init_weights(self, pretrained=None):
+ """Initialize the weights in backbone.
+
+ Args:
+ pretrained (str, optional): Path to pre-trained weights.
+ Defaults to None.
+ """
+
+ def _init_weights(m):
+ if isinstance(m, nn.Linear):
+ trunc_normal_(m.weight, std=.02)
+ if isinstance(m, nn.Linear) and m.bias is not None:
+ nn.init.constant_(m.bias, 0)
+ elif isinstance(m, nn.LayerNorm):
+ nn.init.constant_(m.bias, 0)
+ nn.init.constant_(m.weight, 1.0)
+
+ if isinstance(pretrained, str):
+ self.apply(_init_weights)
+ logger = get_root_logger()
+ load_checkpoint(self, pretrained, strict=False, logger=logger)
+ elif pretrained is None:
+ self.apply(_init_weights)
+ else:
+ raise TypeError('pretrained must be a str or None')
+
+ def load_weights(self, pretrained_dict=None, pretrained_layers=[], verbose=True):
+ model_dict = self.state_dict()
+
+ missed_dict = [k for k in model_dict.keys() if k not in pretrained_dict]
+ logger.info(f'=> Missed keys {missed_dict}')
+ unexpected_dict = [k for k in pretrained_dict.keys() if k not in model_dict]
+ logger.info(f'=> Unexpected keys {unexpected_dict}')
+
+ pretrained_dict = {
+ k: v for k, v in pretrained_dict.items()
+ if k in model_dict.keys()
+ }
+
+ need_init_state_dict = {}
+ for k, v in pretrained_dict.items():
+ need_init = (
+ (
+ k.split('.')[0] in pretrained_layers
+ or pretrained_layers[0] == '*'
+ )
+ and 'relative_position_index' not in k
+ and 'attn_mask' not in k
+ )
+
+ if need_init:
+ # if verbose:
+ # logger.info(f'=> init {k} from {pretrained}')
+
+ if ('pool_layers' in k) or ('focal_layers' in k) and v.size() != model_dict[k].size():
+ table_pretrained = v
+ table_current = model_dict[k]
+ fsize1 = table_pretrained.shape[2]
+ fsize2 = table_current.shape[2]
+
+ # NOTE: different from interpolation used in self-attention, we use padding or clipping for focal conv
+ if fsize1 < fsize2:
+ table_pretrained_resized = torch.zeros(table_current.shape)
+ table_pretrained_resized[:, :, (fsize2-fsize1)//2:-(fsize2-fsize1)//2, (fsize2-fsize1)//2:-(fsize2-fsize1)//2] = table_pretrained
+ v = table_pretrained_resized
+ elif fsize1 > fsize2:
+ table_pretrained_resized = table_pretrained[:, :, (fsize1-fsize2)//2:-(fsize1-fsize2)//2, (fsize1-fsize2)//2:-(fsize1-fsize2)//2]
+ v = table_pretrained_resized
+
+
+ if ("modulation.f" in k or "pre_conv" in k):
+ table_pretrained = v
+ table_current = model_dict[k]
+ if table_pretrained.shape != table_current.shape:
+ if len(table_pretrained.shape) == 2:
+ dim = table_pretrained.shape[1]
+ assert table_current.shape[1] == dim
+ L1 = table_pretrained.shape[0]
+ L2 = table_current.shape[0]
+
+ if L1 < L2:
+ table_pretrained_resized = torch.zeros(table_current.shape)
+ # copy for linear project
+ table_pretrained_resized[:2*dim] = table_pretrained[:2*dim]
+ # copy for global token gating
+ table_pretrained_resized[-1] = table_pretrained[-1]
+ # copy for first multiple focal levels
+ table_pretrained_resized[2*dim:2*dim+(L1-2*dim-1)] = table_pretrained[2*dim:-1]
+ # reassign pretrained weights
+ v = table_pretrained_resized
+ elif L1 > L2:
+ raise NotImplementedError
+ elif len(table_pretrained.shape) == 1:
+ dim = table_pretrained.shape[0]
+ L1 = table_pretrained.shape[0]
+ L2 = table_current.shape[0]
+ if L1 < L2:
+ table_pretrained_resized = torch.zeros(table_current.shape)
+ # copy for linear project
+ table_pretrained_resized[:dim] = table_pretrained[:dim]
+ # copy for global token gating
+ table_pretrained_resized[-1] = table_pretrained[-1]
+ # copy for first multiple focal levels
+ # table_pretrained_resized[dim:2*dim+(L1-2*dim-1)] = table_pretrained[2*dim:-1]
+ # reassign pretrained weights
+ v = table_pretrained_resized
+ elif L1 > L2:
+ raise NotImplementedError
+
+ need_init_state_dict[k] = v
+
+ self.load_state_dict(need_init_state_dict, strict=False)
+
+
+ def forward(self, x):
+ """Forward function."""
+ tic = time.time()
+ x = self.patch_embed(x)
+ Wh, Ww = x.size(2), x.size(3)
+
+ x = x.flatten(2).transpose(1, 2)
+ x = self.pos_drop(x)
+
+ outs = {}
+ for i in range(self.num_layers):
+ layer = self.layers[i]
+ x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
+ if i in self.out_indices:
+ norm_layer = getattr(self, f'norm{i}')
+ x_out = norm_layer(x_out)
+
+ out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
+ outs["res{}".format(i + 2)] = out
+
+ if len(self.out_indices) == 0:
+ outs["res5"] = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
+
+ toc = time.time()
+ return outs
+
+ def train(self, mode=True):
+ """Convert the model into training mode while keep layers freezed."""
+ super(FocalNet, self).train(mode)
+ self._freeze_stages()
+
+
+class D2FocalNet(FocalNet, Backbone):
+ def __init__(self, cfg, input_shape):
+
+ pretrain_img_size = cfg['BACKBONE']['FOCAL']['PRETRAIN_IMG_SIZE']
+ patch_size = cfg['BACKBONE']['FOCAL']['PATCH_SIZE']
+ in_chans = 3
+ embed_dim = cfg['BACKBONE']['FOCAL']['EMBED_DIM']
+ depths = cfg['BACKBONE']['FOCAL']['DEPTHS']
+ mlp_ratio = cfg['BACKBONE']['FOCAL']['MLP_RATIO']
+ drop_rate = cfg['BACKBONE']['FOCAL']['DROP_RATE']
+ drop_path_rate = cfg['BACKBONE']['FOCAL']['DROP_PATH_RATE']
+ norm_layer = nn.LayerNorm
+ patch_norm = cfg['BACKBONE']['FOCAL']['PATCH_NORM']
+ use_checkpoint = cfg['BACKBONE']['FOCAL']['USE_CHECKPOINT']
+ out_indices = cfg['BACKBONE']['FOCAL']['OUT_INDICES']
+ scaling_modulator = cfg['BACKBONE']['FOCAL'].get('SCALING_MODULATOR', False)
+
+ super().__init__(
+ pretrain_img_size,
+ patch_size,
+ in_chans,
+ embed_dim,
+ depths,
+ mlp_ratio,
+ drop_rate,
+ drop_path_rate,
+ norm_layer,
+ patch_norm,
+ out_indices,
+ focal_levels=cfg['BACKBONE']['FOCAL']['FOCAL_LEVELS'],
+ focal_windows=cfg['BACKBONE']['FOCAL']['FOCAL_WINDOWS'],
+ use_conv_embed=cfg['BACKBONE']['FOCAL']['USE_CONV_EMBED'],
+ use_postln=cfg['BACKBONE']['FOCAL']['USE_POSTLN'],
+ use_postln_in_modulation=cfg['BACKBONE']['FOCAL']['USE_POSTLN_IN_MODULATION'],
+ scaling_modulator=scaling_modulator,
+ use_layerscale=cfg['BACKBONE']['FOCAL']['USE_LAYERSCALE'],
+ use_checkpoint=use_checkpoint,
+ )
+
+ self._out_features = cfg['BACKBONE']['FOCAL']['OUT_FEATURES']
+
+ self._out_feature_strides = {
+ "res2": 4,
+ "res3": 8,
+ "res4": 16,
+ "res5": 32,
+ }
+ self._out_feature_channels = {
+ "res2": self.num_features[0],
+ "res3": self.num_features[1],
+ "res4": self.num_features[2],
+ "res5": self.num_features[3],
+ }
+
+ def forward(self, x):
+ """
+ Args:
+ x: Tensor of shape (N,C,H,W). H, W must be a multiple of ``self.size_divisibility``.
+ Returns:
+ dict[str->Tensor]: names and the corresponding features
+ """
+ assert (
+ x.dim() == 4
+ ), f"SwinTransformer takes an input of shape (N, C, H, W). Got {x.shape} instead!"
+ outputs = {}
+ y = super().forward(x)
+ for k in y.keys():
+ if k in self._out_features:
+ outputs[k] = y[k]
+ return outputs
+
+ def output_shape(self):
+ return {
+ name: ShapeSpec(
+ channels=self._out_feature_channels[name], stride=self._out_feature_strides[name]
+ )
+ for name in self._out_features
+ }
+
+ @property
+ def size_divisibility(self):
+ return 32
+
+@register_backbone
+def get_focal_backbone(cfg):
+ focal = D2FocalNet(cfg['MODEL'], 224)
+
+ if cfg['MODEL']['BACKBONE']['LOAD_PRETRAINED'] is True:
+ filename = cfg['MODEL']['BACKBONE']['PRETRAINED']
+ logger.info(f'=> init from {filename}')
+ with PathManager.open(filename, "rb") as f:
+ ckpt = torch.load(f)['model']
+ focal.load_weights(ckpt, cfg['MODEL']['BACKBONE']['FOCAL'].get('PRETRAINED_LAYERS', ['*']), cfg['VERBOSE'])
+
+ return focal
\ No newline at end of file
diff --git a/xdecoder/backbone/focal_dw.py b/xdecoder/backbone/focal_dw.py
new file mode 100755
index 0000000000000000000000000000000000000000..4306ec6fc347a8e5798f79ba9e08e1a1d687fbb5
--- /dev/null
+++ b/xdecoder/backbone/focal_dw.py
@@ -0,0 +1,789 @@
+# --------------------------------------------------------
+# FocalNet for Semantic Segmentation
+# Copyright (c) 2022 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Jianwei Yang
+# --------------------------------------------------------
+import math
+import time
+import numpy as np
+import logging
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+import torch.utils.checkpoint as checkpoint
+from timm.models.layers import DropPath, to_2tuple, trunc_normal_
+
+from detectron2.utils.file_io import PathManager
+from detectron2.modeling import BACKBONE_REGISTRY, Backbone, ShapeSpec
+
+from .registry import register_backbone
+
+logger = logging.getLogger(__name__)
+
+class Mlp(nn.Module):
+ """ Multilayer perceptron."""
+
+ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
+ super().__init__()
+ out_features = out_features or in_features
+ hidden_features = hidden_features or in_features
+ self.fc1 = nn.Linear(in_features, hidden_features)
+ self.act = act_layer()
+ self.fc2 = nn.Linear(hidden_features, out_features)
+ self.drop = nn.Dropout(drop)
+
+ def forward(self, x):
+ x = self.fc1(x)
+ x = self.act(x)
+ x = self.drop(x)
+ x = self.fc2(x)
+ x = self.drop(x)
+ return x
+
+class FocalModulation(nn.Module):
+ """ Focal Modulation
+
+ Args:
+ dim (int): Number of input channels.
+ proj_drop (float, optional): Dropout ratio of output. Default: 0.0
+ focal_level (int): Number of focal levels
+ focal_window (int): Focal window size at focal level 1
+ focal_factor (int, default=2): Step to increase the focal window
+ use_postln (bool, default=False): Whether use post-modulation layernorm
+ """
+
+ def __init__(self, dim, proj_drop=0., focal_level=2, focal_window=7, focal_factor=2, use_postln=False, use_postln_in_modulation=False, scaling_modulator=False):
+
+ super().__init__()
+ self.dim = dim
+
+ # specific args for focalv3
+ self.focal_level = focal_level
+ self.focal_window = focal_window
+ self.focal_factor = focal_factor
+ self.use_postln_in_modulation = use_postln_in_modulation
+ self.scaling_modulator = scaling_modulator
+
+ self.f = nn.Linear(dim, 2*dim+(self.focal_level+1), bias=True)
+ self.h = nn.Conv2d(dim, dim, kernel_size=1, stride=1, padding=0, groups=1, bias=True)
+
+ self.act = nn.GELU()
+ self.proj = nn.Linear(dim, dim)
+ self.proj_drop = nn.Dropout(proj_drop)
+ self.focal_layers = nn.ModuleList()
+
+ if self.use_postln_in_modulation:
+ self.ln = nn.LayerNorm(dim)
+
+ for k in range(self.focal_level):
+ kernel_size = self.focal_factor*k + self.focal_window
+ self.focal_layers.append(
+ nn.Sequential(
+ nn.Conv2d(dim, dim, kernel_size=kernel_size, stride=1, groups=dim,
+ padding=kernel_size//2, bias=False),
+ nn.GELU(),
+ )
+ )
+
+ def forward(self, x):
+ """ Forward function.
+
+ Args:
+ x: input features with shape of (B, H, W, C)
+ """
+ B, nH, nW, C = x.shape
+ x = self.f(x)
+ x = x.permute(0, 3, 1, 2).contiguous()
+ q, ctx, gates = torch.split(x, (C, C, self.focal_level+1), 1)
+
+ ctx_all = 0
+ for l in range(self.focal_level):
+ ctx = self.focal_layers[l](ctx)
+ ctx_all = ctx_all + ctx*gates[:, l:l+1]
+ ctx_global = self.act(ctx.mean(2, keepdim=True).mean(3, keepdim=True))
+ ctx_all = ctx_all + ctx_global*gates[:,self.focal_level:]
+
+ if self.scaling_modulator:
+ ctx_all = ctx_all / (self.focal_level + 1)
+
+ x_out = q * self.h(ctx_all)
+ x_out = x_out.permute(0, 2, 3, 1).contiguous()
+ if self.use_postln_in_modulation:
+ x_out = self.ln(x_out)
+ x_out = self.proj(x_out)
+ x_out = self.proj_drop(x_out)
+ return x_out
+
+class FocalModulationBlock(nn.Module):
+ """ Focal Modulation Block.
+
+ Args:
+ dim (int): Number of input channels.
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
+ drop (float, optional): Dropout rate. Default: 0.0
+ drop_path (float, optional): Stochastic depth rate. Default: 0.0
+ act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
+ focal_level (int): number of focal levels
+ focal_window (int): focal kernel size at level 1
+ """
+
+ def __init__(self, dim, mlp_ratio=4., drop=0., drop_path=0.,
+ act_layer=nn.GELU, norm_layer=nn.LayerNorm,
+ focal_level=2, focal_window=9,
+ use_postln=False, use_postln_in_modulation=False,
+ scaling_modulator=False,
+ use_layerscale=False,
+ layerscale_value=1e-4):
+ super().__init__()
+ self.dim = dim
+ self.mlp_ratio = mlp_ratio
+ self.focal_window = focal_window
+ self.focal_level = focal_level
+ self.use_postln = use_postln
+ self.use_layerscale = use_layerscale
+
+ self.dw1 = nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, groups=dim)
+ self.norm1 = norm_layer(dim)
+ self.modulation = FocalModulation(
+ dim, focal_window=self.focal_window, focal_level=self.focal_level, proj_drop=drop, use_postln_in_modulation=use_postln_in_modulation, scaling_modulator=scaling_modulator
+ )
+
+ self.dw2 = nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, groups=dim)
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
+ self.norm2 = norm_layer(dim)
+ mlp_hidden_dim = int(dim * mlp_ratio)
+ self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
+
+ self.H = None
+ self.W = None
+
+ self.gamma_1 = 1.0
+ self.gamma_2 = 1.0
+ if self.use_layerscale:
+ self.gamma_1 = nn.Parameter(layerscale_value * torch.ones((dim)), requires_grad=True)
+ self.gamma_2 = nn.Parameter(layerscale_value * torch.ones((dim)), requires_grad=True)
+
+ def forward(self, x):
+ """ Forward function.
+
+ Args:
+ x: Input feature, tensor size (B, H*W, C).
+ H, W: Spatial resolution of the input feature.
+ """
+ B, L, C = x.shape
+ H, W = self.H, self.W
+ assert L == H * W, "input feature has wrong size"
+
+ x = x.view(B, H, W, C).permute(0, 3, 1, 2).contiguous()
+ x = x + self.dw1(x)
+ x = x.permute(0, 2, 3, 1).contiguous().view(B, L, C)
+
+ shortcut = x
+ if not self.use_postln:
+ x = self.norm1(x)
+ x = x.view(B, H, W, C)
+
+ # FM
+ x = self.modulation(x).view(B, H * W, C)
+ x = shortcut + self.drop_path(self.gamma_1 * x)
+ if self.use_postln:
+ x = self.norm1(x)
+
+ x = x.view(B, H, W, C).permute(0, 3, 1, 2).contiguous()
+ x = x + self.dw2(x)
+ x = x.permute(0, 2, 3, 1).contiguous().view(B, L, C)
+
+ if not self.use_postln:
+ x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
+ else:
+ x = x + self.drop_path(self.gamma_2 * self.mlp(x))
+ x = self.norm2(x)
+
+ return x
+
+class BasicLayer(nn.Module):
+ """ A basic focal modulation layer for one stage.
+
+ Args:
+ dim (int): Number of feature channels
+ depth (int): Depths of this stage.
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
+ drop (float, optional): Dropout rate. Default: 0.0
+ drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
+ downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
+ focal_level (int): Number of focal levels
+ focal_window (int): Focal window size at focal level 1
+ use_conv_embed (bool): Use overlapped convolution for patch embedding or now. Default: False
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
+ """
+
+ def __init__(self,
+ dim,
+ depth,
+ mlp_ratio=4.,
+ drop=0.,
+ drop_path=0.,
+ norm_layer=nn.LayerNorm,
+ downsample=None,
+ focal_window=9,
+ focal_level=2,
+ use_conv_embed=False,
+ use_postln=False,
+ use_postln_in_modulation=False,
+ scaling_modulator=False,
+ use_layerscale=False,
+ use_checkpoint=False,
+ use_pre_norm=False,
+ ):
+ super().__init__()
+ self.depth = depth
+ self.use_checkpoint = use_checkpoint
+
+ # build blocks
+ self.blocks = nn.ModuleList([
+ FocalModulationBlock(
+ dim=dim,
+ mlp_ratio=mlp_ratio,
+ drop=drop,
+ drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
+ focal_window=focal_window,
+ focal_level=focal_level,
+ use_postln=use_postln,
+ use_postln_in_modulation=use_postln_in_modulation,
+ scaling_modulator=scaling_modulator,
+ use_layerscale=use_layerscale,
+ norm_layer=norm_layer)
+ for i in range(depth)])
+
+ # patch merging layer
+ if downsample is not None:
+ self.downsample = downsample(
+ patch_size=2,
+ in_chans=dim, embed_dim=2*dim,
+ use_conv_embed=use_conv_embed,
+ norm_layer=norm_layer,
+ is_stem=False,
+ use_pre_norm=use_pre_norm
+ )
+
+ else:
+ self.downsample = None
+
+ def forward(self, x, H, W):
+ """ Forward function.
+
+ Args:
+ x: Input feature, tensor size (B, H*W, C).
+ H, W: Spatial resolution of the input feature.
+ """
+ for blk in self.blocks:
+ blk.H, blk.W = H, W
+ if self.use_checkpoint:
+ x = checkpoint.checkpoint(blk, x)
+ else:
+ x = blk(x)
+ if self.downsample is not None:
+ x_reshaped = x.transpose(1, 2).view(x.shape[0], x.shape[-1], H, W)
+ x_down = self.downsample(x_reshaped)
+ x_down = x_down.flatten(2).transpose(1, 2)
+ Wh, Ww = (H + 1) // 2, (W + 1) // 2
+ return x, H, W, x_down, Wh, Ww
+ else:
+ return x, H, W, x, H, W
+
+
+# class PatchEmbed(nn.Module):
+# r""" Image to Patch Embedding
+
+# Args:
+# img_size (int): Image size. Default: 224.
+# patch_size (int): Patch token size. Default: 4.
+# in_chans (int): Number of input image channels. Default: 3.
+# embed_dim (int): Number of linear projection output channels. Default: 96.
+# norm_layer (nn.Module, optional): Normalization layer. Default: None
+# """
+
+# def __init__(self, img_size=(224, 224), patch_size=4, in_chans=3, embed_dim=96,
+# use_conv_embed=False, norm_layer=None, is_stem=False, use_pre_norm=False):
+# super().__init__()
+# patch_size = to_2tuple(patch_size)
+# patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
+# self.img_size = img_size
+# self.patch_size = patch_size
+# self.patches_resolution = patches_resolution
+# self.num_patches = patches_resolution[0] * patches_resolution[1]
+
+# self.in_chans = in_chans
+# self.embed_dim = embed_dim
+# self.use_pre_norm = use_pre_norm
+
+# if use_conv_embed:
+# # if we choose to use conv embedding, then we treat the stem and non-stem differently
+# if is_stem:
+# kernel_size = 7; padding = 3; stride = 4
+# else:
+# kernel_size = 3; padding = 1; stride = 2
+# self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding)
+# else:
+# self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
+
+# if self.use_pre_norm:
+# if norm_layer is not None:
+# self.norm = norm_layer(in_chans)
+# else:
+# self.norm = None
+# else:
+# if norm_layer is not None:
+# self.norm = norm_layer(embed_dim)
+# else:
+# self.norm = None
+
+# def forward(self, x):
+# B, C, H, W = x.shape
+# # FIXME look at relaxing size constraints
+# assert H == self.img_size[0] and W == self.img_size[1], \
+# f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
+
+# if self.use_pre_norm:
+# if self.norm is not None:
+# x = x.flatten(2).transpose(1, 2) # B Ph*Pw C
+# x = self.norm(x).transpose(1, 2).view(B, C, H, W)
+# x = self.proj(x).flatten(2).transpose(1, 2)
+# else:
+# x = self.proj(x).flatten(2).transpose(1, 2) # B Ph*Pw C
+# if self.norm is not None:
+# x = self.norm(x)
+# return x
+
+# def flops(self):
+# Ho, Wo = self.patches_resolution
+# flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
+# if self.norm is not None:
+# flops += Ho * Wo * self.embed_dim
+# return flops
+
+class PatchEmbed(nn.Module):
+ """ Image to Patch Embedding
+
+ Args:
+ patch_size (int): Patch token size. Default: 4.
+ in_chans (int): Number of input image channels. Default: 3.
+ embed_dim (int): Number of linear projection output channels. Default: 96.
+ norm_layer (nn.Module, optional): Normalization layer. Default: None
+ use_conv_embed (bool): Whether use overlapped convolution for patch embedding. Default: False
+ is_stem (bool): Is the stem block or not.
+ """
+
+ def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None, use_conv_embed=False, is_stem=False, use_pre_norm=False):
+ super().__init__()
+ patch_size = to_2tuple(patch_size)
+ self.patch_size = patch_size
+
+ self.in_chans = in_chans
+ self.embed_dim = embed_dim
+ self.use_pre_norm = use_pre_norm
+
+ if use_conv_embed:
+ # if we choose to use conv embedding, then we treat the stem and non-stem differently
+ if is_stem:
+ kernel_size = 7; padding = 3; stride = 4
+ else:
+ kernel_size = 3; padding = 1; stride = 2
+ self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding)
+ else:
+ self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
+
+ if self.use_pre_norm:
+ if norm_layer is not None:
+ self.norm = norm_layer(in_chans)
+ else:
+ self.norm = None
+ else:
+ if norm_layer is not None:
+ self.norm = norm_layer(embed_dim)
+ else:
+ self.norm = None
+
+ def forward(self, x):
+ """Forward function."""
+ B, C, H, W = x.size()
+ if W % self.patch_size[1] != 0:
+ x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
+ if H % self.patch_size[0] != 0:
+ x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
+
+ if self.use_pre_norm:
+ if self.norm is not None:
+ x = x.flatten(2).transpose(1, 2) # B Ph*Pw C
+ x = self.norm(x).transpose(1, 2).view(B, C, H, W)
+ x = self.proj(x)
+ else:
+ x = self.proj(x) # B C Wh Ww
+ if self.norm is not None:
+ Wh, Ww = x.size(2), x.size(3)
+ x = x.flatten(2).transpose(1, 2)
+ x = self.norm(x)
+ x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
+
+ return x
+
+
+class FocalNet(nn.Module):
+ """ FocalNet backbone.
+
+ Args:
+ pretrain_img_size (int): Input image size for training the pretrained model,
+ used in absolute postion embedding. Default 224.
+ patch_size (int | tuple(int)): Patch size. Default: 4.
+ in_chans (int): Number of input image channels. Default: 3.
+ embed_dim (int): Number of linear projection output channels. Default: 96.
+ depths (tuple[int]): Depths of each Swin Transformer stage.
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
+ drop_rate (float): Dropout rate.
+ drop_path_rate (float): Stochastic depth rate. Default: 0.2.
+ norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
+ patch_norm (bool): If True, add normalization after patch embedding. Default: True.
+ out_indices (Sequence[int]): Output from which stages.
+ frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
+ -1 means not freezing any parameters.
+ focal_levels (Sequence[int]): Number of focal levels at four stages
+ focal_windows (Sequence[int]): Focal window sizes at first focal level at four stages
+ use_conv_embed (bool): Whether use overlapped convolution for patch embedding
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
+ """
+
+ def __init__(self,
+ pretrain_img_size=1600,
+ patch_size=4,
+ in_chans=3,
+ embed_dim=96,
+ depths=[2, 2, 6, 2],
+ mlp_ratio=4.,
+ drop_rate=0.,
+ drop_path_rate=0.2,
+ norm_layer=nn.LayerNorm,
+ patch_norm=True,
+ out_indices=[0, 1, 2, 3],
+ frozen_stages=-1,
+ focal_levels=[2,2,2,2],
+ focal_windows=[9,9,9,9],
+ use_pre_norms=[False, False, False, False],
+ use_conv_embed=False,
+ use_postln=False,
+ use_postln_in_modulation=False,
+ scaling_modulator=False,
+ use_layerscale=False,
+ use_checkpoint=False,
+ ):
+ super().__init__()
+
+ self.pretrain_img_size = pretrain_img_size
+ self.num_layers = len(depths)
+ self.embed_dim = embed_dim
+ self.patch_norm = patch_norm
+ self.out_indices = out_indices
+ self.frozen_stages = frozen_stages
+
+ # split image into non-overlapping patches
+ self.patch_embed = PatchEmbed(
+ patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
+ norm_layer=norm_layer if self.patch_norm else None,
+ use_conv_embed=use_conv_embed, is_stem=True, use_pre_norm=False)
+
+ self.pos_drop = nn.Dropout(p=drop_rate)
+
+ # stochastic depth
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
+
+ # build layers
+ self.layers = nn.ModuleList()
+ for i_layer in range(self.num_layers):
+ layer = BasicLayer(
+ dim=int(embed_dim * 2 ** i_layer),
+ depth=depths[i_layer],
+ mlp_ratio=mlp_ratio,
+ drop=drop_rate,
+ drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
+ norm_layer=norm_layer,
+ downsample=PatchEmbed if (i_layer < self.num_layers - 1) else None,
+ focal_window=focal_windows[i_layer],
+ focal_level=focal_levels[i_layer],
+ use_pre_norm=use_pre_norms[i_layer],
+ use_conv_embed=use_conv_embed,
+ use_postln=use_postln,
+ use_postln_in_modulation=use_postln_in_modulation,
+ scaling_modulator=scaling_modulator,
+ use_layerscale=use_layerscale,
+ use_checkpoint=use_checkpoint)
+ self.layers.append(layer)
+
+ num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)]
+ self.num_features = num_features
+ # self.norm = norm_layer(num_features[-1])
+
+ # add a norm layer for each output
+ for i_layer in self.out_indices:
+ layer = norm_layer(num_features[i_layer])
+ layer_name = f'norm{i_layer}'
+ self.add_module(layer_name, layer)
+
+ self._freeze_stages()
+
+ def _freeze_stages(self):
+ if self.frozen_stages >= 0:
+ self.patch_embed.eval()
+ for param in self.patch_embed.parameters():
+ param.requires_grad = False
+
+ if self.frozen_stages >= 2:
+ self.pos_drop.eval()
+ for i in range(0, self.frozen_stages - 1):
+ m = self.layers[i]
+ m.eval()
+ for param in m.parameters():
+ param.requires_grad = False
+
+ def init_weights(self, pretrained=None):
+ """Initialize the weights in backbone.
+
+ Args:
+ pretrained (str, optional): Path to pre-trained weights.
+ Defaults to None.
+ """
+
+ def _init_weights(m):
+ if isinstance(m, nn.Linear):
+ trunc_normal_(m.weight, std=.02)
+ if isinstance(m, nn.Linear) and m.bias is not None:
+ nn.init.constant_(m.bias, 0)
+ elif isinstance(m, nn.LayerNorm):
+ nn.init.constant_(m.bias, 0)
+ nn.init.constant_(m.weight, 1.0)
+
+ if isinstance(pretrained, str):
+ self.apply(_init_weights)
+ logger = get_root_logger()
+ load_checkpoint(self, pretrained, strict=False, logger=logger)
+ elif pretrained is None:
+ self.apply(_init_weights)
+ else:
+ raise TypeError('pretrained must be a str or None')
+
+ def load_weights(self, pretrained_dict=None, pretrained_layers=[], verbose=True):
+ model_dict = self.state_dict()
+
+ missed_dict = [k for k in model_dict.keys() if k not in pretrained_dict]
+ logger.info(f'=> Missed keys {missed_dict}')
+ unexpected_dict = [k for k in pretrained_dict.keys() if k not in model_dict]
+ logger.info(f'=> Unexpected keys {unexpected_dict}')
+
+ pretrained_dict = {
+ k: v for k, v in pretrained_dict.items()
+ if k in model_dict.keys()
+ }
+
+ need_init_state_dict = {}
+ for k, v in pretrained_dict.items():
+ need_init = (
+ (
+ k.split('.')[0] in pretrained_layers
+ or pretrained_layers[0] == '*'
+ )
+ and 'relative_position_index' not in k
+ and 'attn_mask' not in k
+ )
+
+ if need_init:
+ # if verbose:
+ # logger.info(f'=> init {k} from {pretrained}')
+
+ if ('pool_layers' in k) or ('focal_layers' in k) and v.size() != model_dict[k].size():
+ table_pretrained = v
+ table_current = model_dict[k]
+ fsize1 = table_pretrained.shape[2]
+ fsize2 = table_current.shape[2]
+
+ # NOTE: different from interpolation used in self-attention, we use padding or clipping for focal conv
+ if fsize1 < fsize2:
+ table_pretrained_resized = torch.zeros(table_current.shape)
+ table_pretrained_resized[:, :, (fsize2-fsize1)//2:-(fsize2-fsize1)//2, (fsize2-fsize1)//2:-(fsize2-fsize1)//2] = table_pretrained
+ v = table_pretrained_resized
+ elif fsize1 > fsize2:
+ table_pretrained_resized = table_pretrained[:, :, (fsize1-fsize2)//2:-(fsize1-fsize2)//2, (fsize1-fsize2)//2:-(fsize1-fsize2)//2]
+ v = table_pretrained_resized
+
+
+ if ("modulation.f" in k or "pre_conv" in k):
+ table_pretrained = v
+ table_current = model_dict[k]
+ if table_pretrained.shape != table_current.shape:
+ if len(table_pretrained.shape) == 2:
+ dim = table_pretrained.shape[1]
+ assert table_current.shape[1] == dim
+ L1 = table_pretrained.shape[0]
+ L2 = table_current.shape[0]
+
+ if L1 < L2:
+ table_pretrained_resized = torch.zeros(table_current.shape)
+ # copy for linear project
+ table_pretrained_resized[:2*dim] = table_pretrained[:2*dim]
+ # copy for global token gating
+ table_pretrained_resized[-1] = table_pretrained[-1]
+ # copy for first multiple focal levels
+ table_pretrained_resized[2*dim:2*dim+(L1-2*dim-1)] = table_pretrained[2*dim:-1]
+ # reassign pretrained weights
+ v = table_pretrained_resized
+ elif L1 > L2:
+ raise NotImplementedError
+ elif len(table_pretrained.shape) == 1:
+ dim = table_pretrained.shape[0]
+ L1 = table_pretrained.shape[0]
+ L2 = table_current.shape[0]
+ if L1 < L2:
+ table_pretrained_resized = torch.zeros(table_current.shape)
+ # copy for linear project
+ table_pretrained_resized[:dim] = table_pretrained[:dim]
+ # copy for global token gating
+ table_pretrained_resized[-1] = table_pretrained[-1]
+ # copy for first multiple focal levels
+ # table_pretrained_resized[dim:2*dim+(L1-2*dim-1)] = table_pretrained[2*dim:-1]
+ # reassign pretrained weights
+ v = table_pretrained_resized
+ elif L1 > L2:
+ raise NotImplementedError
+
+ need_init_state_dict[k] = v
+
+ self.load_state_dict(need_init_state_dict, strict=False)
+
+
+ def forward(self, x):
+ """Forward function."""
+ tic = time.time()
+ x = self.patch_embed(x)
+ Wh, Ww = x.size(2), x.size(3)
+
+ x = x.flatten(2).transpose(1, 2)
+ x = self.pos_drop(x)
+
+ outs = {}
+ for i in range(self.num_layers):
+ layer = self.layers[i]
+ x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
+ if i in self.out_indices:
+ norm_layer = getattr(self, f'norm{i}')
+ x_out = norm_layer(x_out)
+
+ out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
+ outs["res{}".format(i + 2)] = out
+
+ if len(self.out_indices) == 0:
+ outs["res5"] = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
+
+ toc = time.time()
+ return outs
+
+ def train(self, mode=True):
+ """Convert the model into training mode while keep layers freezed."""
+ super(FocalNet, self).train(mode)
+ self._freeze_stages()
+
+
+class D2FocalNet(FocalNet, Backbone):
+ def __init__(self, cfg, input_shape):
+
+ pretrain_img_size = cfg['BACKBONE']['FOCAL']['PRETRAIN_IMG_SIZE']
+ patch_size = cfg['BACKBONE']['FOCAL']['PATCH_SIZE']
+ in_chans = 3
+ embed_dim = cfg['BACKBONE']['FOCAL']['EMBED_DIM']
+ depths = cfg['BACKBONE']['FOCAL']['DEPTHS']
+ mlp_ratio = cfg['BACKBONE']['FOCAL']['MLP_RATIO']
+ drop_rate = cfg['BACKBONE']['FOCAL']['DROP_RATE']
+ drop_path_rate = cfg['BACKBONE']['FOCAL']['DROP_PATH_RATE']
+ norm_layer = nn.LayerNorm
+ patch_norm = cfg['BACKBONE']['FOCAL']['PATCH_NORM']
+ use_checkpoint = cfg['BACKBONE']['FOCAL']['USE_CHECKPOINT']
+ out_indices = cfg['BACKBONE']['FOCAL']['OUT_INDICES']
+ scaling_modulator = cfg['BACKBONE']['FOCAL'].get('SCALING_MODULATOR', False)
+
+ super().__init__(
+ pretrain_img_size,
+ patch_size,
+ in_chans,
+ embed_dim,
+ depths,
+ mlp_ratio,
+ drop_rate,
+ drop_path_rate,
+ norm_layer,
+ patch_norm,
+ out_indices,
+ focal_levels=cfg['BACKBONE']['FOCAL']['FOCAL_LEVELS'],
+ focal_windows=cfg['BACKBONE']['FOCAL']['FOCAL_WINDOWS'],
+ use_conv_embed=cfg['BACKBONE']['FOCAL']['USE_CONV_EMBED'],
+ use_postln=cfg['BACKBONE']['FOCAL']['USE_POSTLN'],
+ use_postln_in_modulation=cfg['BACKBONE']['FOCAL']['USE_POSTLN_IN_MODULATION'],
+ scaling_modulator=scaling_modulator,
+ use_layerscale=cfg['BACKBONE']['FOCAL']['USE_LAYERSCALE'],
+ use_checkpoint=use_checkpoint,
+ )
+
+ self._out_features = cfg['BACKBONE']['FOCAL']['OUT_FEATURES']
+
+ self._out_feature_strides = {
+ "res2": 4,
+ "res3": 8,
+ "res4": 16,
+ "res5": 32,
+ }
+ self._out_feature_channels = {
+ "res2": self.num_features[0],
+ "res3": self.num_features[1],
+ "res4": self.num_features[2],
+ "res5": self.num_features[3],
+ }
+
+ def forward(self, x):
+ """
+ Args:
+ x: Tensor of shape (N,C,H,W). H, W must be a multiple of ``self.size_divisibility``.
+ Returns:
+ dict[str->Tensor]: names and the corresponding features
+ """
+ assert (
+ x.dim() == 4
+ ), f"SwinTransformer takes an input of shape (N, C, H, W). Got {x.shape} instead!"
+ outputs = {}
+ y = super().forward(x)
+ for k in y.keys():
+ if k in self._out_features:
+ outputs[k] = y[k]
+ return outputs
+
+ def output_shape(self):
+ return {
+ name: ShapeSpec(
+ channels=self._out_feature_channels[name], stride=self._out_feature_strides[name]
+ )
+ for name in self._out_features
+ }
+
+ @property
+ def size_divisibility(self):
+ return 32
+
+@register_backbone
+def get_focal_backbone(cfg):
+ focal = D2FocalNet(cfg['MODEL'], 224)
+
+ if cfg['MODEL']['BACKBONE']['LOAD_PRETRAINED'] is True:
+ filename = cfg['MODEL']['BACKBONE']['PRETRAINED']
+ logger.info(f'=> init from {filename}')
+ with PathManager.open(filename, "rb") as f:
+ ckpt = torch.load(f)['model']
+ focal.load_weights(ckpt, cfg['MODEL']['BACKBONE']['FOCAL'].get('PRETRAINED_LAYERS', ['*']), cfg['VERBOSE'])
+
+ return focal
\ No newline at end of file
diff --git a/xdecoder/backbone/registry.py b/xdecoder/backbone/registry.py
new file mode 100755
index 0000000000000000000000000000000000000000..9e19cc8068fff5f5de219c0739594b404d837e00
--- /dev/null
+++ b/xdecoder/backbone/registry.py
@@ -0,0 +1,14 @@
+_model_entrypoints = {}
+
+
+def register_backbone(fn):
+ module_name_split = fn.__module__.split('.')
+ model_name = module_name_split[-1]
+ _model_entrypoints[model_name] = fn
+ return fn
+
+def model_entrypoints(model_name):
+ return _model_entrypoints[model_name]
+
+def is_model(model_name):
+ return model_name in _model_entrypoints
diff --git a/xdecoder/backbone/resnet.py b/xdecoder/backbone/resnet.py
new file mode 100755
index 0000000000000000000000000000000000000000..dbfaa85ccb7937b93fc7f8a0ca57cc2e785ec2e6
--- /dev/null
+++ b/xdecoder/backbone/resnet.py
@@ -0,0 +1,731 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+import pickle
+import numpy as np
+from typing import Any, Dict
+import fvcore.nn.weight_init as weight_init
+import torch
+import torch.nn.functional as F
+from torch import nn
+
+
+from .backbone import Backbone
+from .registry import register_backbone
+
+from detectron2.layers import (
+ CNNBlockBase,
+ Conv2d,
+ DeformConv,
+ ModulatedDeformConv,
+ ShapeSpec,
+ get_norm,
+)
+from detectron2.utils.file_io import PathManager
+
+__all__ = [
+ "ResNetBlockBase",
+ "BasicBlock",
+ "BottleneckBlock",
+ "DeformBottleneckBlock",
+ "BasicStem",
+ "ResNet",
+ "make_stage",
+ "get_resnet_backbone",
+]
+
+
+class BasicBlock(CNNBlockBase):
+ """
+ The basic residual block for ResNet-18 and ResNet-34 defined in :paper:`ResNet`,
+ with two 3x3 conv layers and a projection shortcut if needed.
+ """
+
+ def __init__(self, in_channels, out_channels, *, stride=1, norm="BN"):
+ """
+ Args:
+ in_channels (int): Number of input channels.
+ out_channels (int): Number of output channels.
+ stride (int): Stride for the first conv.
+ norm (str or callable): normalization for all conv layers.
+ See :func:`layers.get_norm` for supported format.
+ """
+ super().__init__(in_channels, out_channels, stride)
+
+ if in_channels != out_channels:
+ self.shortcut = Conv2d(
+ in_channels,
+ out_channels,
+ kernel_size=1,
+ stride=stride,
+ bias=False,
+ norm=get_norm(norm, out_channels),
+ )
+ else:
+ self.shortcut = None
+
+ self.conv1 = Conv2d(
+ in_channels,
+ out_channels,
+ kernel_size=3,
+ stride=stride,
+ padding=1,
+ bias=False,
+ norm=get_norm(norm, out_channels),
+ )
+
+ self.conv2 = Conv2d(
+ out_channels,
+ out_channels,
+ kernel_size=3,
+ stride=1,
+ padding=1,
+ bias=False,
+ norm=get_norm(norm, out_channels),
+ )
+
+ for layer in [self.conv1, self.conv2, self.shortcut]:
+ if layer is not None: # shortcut can be None
+ weight_init.c2_msra_fill(layer)
+
+ def forward(self, x):
+ out = self.conv1(x)
+ out = F.relu_(out)
+ out = self.conv2(out)
+
+ if self.shortcut is not None:
+ shortcut = self.shortcut(x)
+ else:
+ shortcut = x
+
+ out += shortcut
+ out = F.relu_(out)
+ return out
+
+
+class BottleneckBlock(CNNBlockBase):
+ """
+ The standard bottleneck residual block used by ResNet-50, 101 and 152
+ defined in :paper:`ResNet`. It contains 3 conv layers with kernels
+ 1x1, 3x3, 1x1, and a projection shortcut if needed.
+ """
+
+ def __init__(
+ self,
+ in_channels,
+ out_channels,
+ *,
+ bottleneck_channels,
+ stride=1,
+ num_groups=1,
+ norm="BN",
+ stride_in_1x1=False,
+ dilation=1,
+ ):
+ """
+ Args:
+ bottleneck_channels (int): number of output channels for the 3x3
+ "bottleneck" conv layers.
+ num_groups (int): number of groups for the 3x3 conv layer.
+ norm (str or callable): normalization for all conv layers.
+ See :func:`layers.get_norm` for supported format.
+ stride_in_1x1 (bool): when stride>1, whether to put stride in the
+ first 1x1 convolution or the bottleneck 3x3 convolution.
+ dilation (int): the dilation rate of the 3x3 conv layer.
+ """
+ super().__init__(in_channels, out_channels, stride)
+
+ if in_channels != out_channels:
+ self.shortcut = Conv2d(
+ in_channels,
+ out_channels,
+ kernel_size=1,
+ stride=stride,
+ bias=False,
+ norm=get_norm(norm, out_channels),
+ )
+ else:
+ self.shortcut = None
+
+ # The original MSRA ResNet models have stride in the first 1x1 conv
+ # The subsequent fb.torch.resnet and Caffe2 ResNe[X]t implementations have
+ # stride in the 3x3 conv
+ stride_1x1, stride_3x3 = (stride, 1) if stride_in_1x1 else (1, stride)
+
+ self.conv1 = Conv2d(
+ in_channels,
+ bottleneck_channels,
+ kernel_size=1,
+ stride=stride_1x1,
+ bias=False,
+ norm=get_norm(norm, bottleneck_channels),
+ )
+
+ self.conv2 = Conv2d(
+ bottleneck_channels,
+ bottleneck_channels,
+ kernel_size=3,
+ stride=stride_3x3,
+ padding=1 * dilation,
+ bias=False,
+ groups=num_groups,
+ dilation=dilation,
+ norm=get_norm(norm, bottleneck_channels),
+ )
+
+ self.conv3 = Conv2d(
+ bottleneck_channels,
+ out_channels,
+ kernel_size=1,
+ bias=False,
+ norm=get_norm(norm, out_channels),
+ )
+
+ for layer in [self.conv1, self.conv2, self.conv3, self.shortcut]:
+ if layer is not None: # shortcut can be None
+ weight_init.c2_msra_fill(layer)
+
+ # Zero-initialize the last normalization in each residual branch,
+ # so that at the beginning, the residual branch starts with zeros,
+ # and each residual block behaves like an identity.
+ # See Sec 5.1 in "Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour":
+ # "For BN layers, the learnable scaling coefficient γ is initialized
+ # to be 1, except for each residual block's last BN
+ # where γ is initialized to be 0."
+
+ # nn.init.constant_(self.conv3.norm.weight, 0)
+ # TODO this somehow hurts performance when training GN models from scratch.
+ # Add it as an option when we need to use this code to train a backbone.
+
+ def forward(self, x):
+ out = self.conv1(x)
+ out = F.relu_(out)
+
+ out = self.conv2(out)
+ out = F.relu_(out)
+
+ out = self.conv3(out)
+
+ if self.shortcut is not None:
+ shortcut = self.shortcut(x)
+ else:
+ shortcut = x
+
+ out += shortcut
+ out = F.relu_(out)
+ return out
+
+
+class DeformBottleneckBlock(CNNBlockBase):
+ """
+ Similar to :class:`BottleneckBlock`, but with :paper:`deformable conv `
+ in the 3x3 convolution.
+ """
+
+ def __init__(
+ self,
+ in_channels,
+ out_channels,
+ *,
+ bottleneck_channels,
+ stride=1,
+ num_groups=1,
+ norm="BN",
+ stride_in_1x1=False,
+ dilation=1,
+ deform_modulated=False,
+ deform_num_groups=1,
+ ):
+ super().__init__(in_channels, out_channels, stride)
+ self.deform_modulated = deform_modulated
+
+ if in_channels != out_channels:
+ self.shortcut = Conv2d(
+ in_channels,
+ out_channels,
+ kernel_size=1,
+ stride=stride,
+ bias=False,
+ norm=get_norm(norm, out_channels),
+ )
+ else:
+ self.shortcut = None
+
+ stride_1x1, stride_3x3 = (stride, 1) if stride_in_1x1 else (1, stride)
+
+ self.conv1 = Conv2d(
+ in_channels,
+ bottleneck_channels,
+ kernel_size=1,
+ stride=stride_1x1,
+ bias=False,
+ norm=get_norm(norm, bottleneck_channels),
+ )
+
+ if deform_modulated:
+ deform_conv_op = ModulatedDeformConv
+ # offset channels are 2 or 3 (if with modulated) * kernel_size * kernel_size
+ offset_channels = 27
+ else:
+ deform_conv_op = DeformConv
+ offset_channels = 18
+
+ self.conv2_offset = Conv2d(
+ bottleneck_channels,
+ offset_channels * deform_num_groups,
+ kernel_size=3,
+ stride=stride_3x3,
+ padding=1 * dilation,
+ dilation=dilation,
+ )
+ self.conv2 = deform_conv_op(
+ bottleneck_channels,
+ bottleneck_channels,
+ kernel_size=3,
+ stride=stride_3x3,
+ padding=1 * dilation,
+ bias=False,
+ groups=num_groups,
+ dilation=dilation,
+ deformable_groups=deform_num_groups,
+ norm=get_norm(norm, bottleneck_channels),
+ )
+
+ self.conv3 = Conv2d(
+ bottleneck_channels,
+ out_channels,
+ kernel_size=1,
+ bias=False,
+ norm=get_norm(norm, out_channels),
+ )
+
+ for layer in [self.conv1, self.conv2, self.conv3, self.shortcut]:
+ if layer is not None: # shortcut can be None
+ weight_init.c2_msra_fill(layer)
+
+ nn.init.constant_(self.conv2_offset.weight, 0)
+ nn.init.constant_(self.conv2_offset.bias, 0)
+
+ def forward(self, x):
+ out = self.conv1(x)
+ out = F.relu_(out)
+
+ if self.deform_modulated:
+ offset_mask = self.conv2_offset(out)
+ offset_x, offset_y, mask = torch.chunk(offset_mask, 3, dim=1)
+ offset = torch.cat((offset_x, offset_y), dim=1)
+ mask = mask.sigmoid()
+ out = self.conv2(out, offset, mask)
+ else:
+ offset = self.conv2_offset(out)
+ out = self.conv2(out, offset)
+ out = F.relu_(out)
+
+ out = self.conv3(out)
+
+ if self.shortcut is not None:
+ shortcut = self.shortcut(x)
+ else:
+ shortcut = x
+
+ out += shortcut
+ out = F.relu_(out)
+ return out
+
+
+class BasicStem(CNNBlockBase):
+ """
+ The standard ResNet stem (layers before the first residual block),
+ with a conv, relu and max_pool.
+ """
+
+ def __init__(self, in_channels=3, out_channels=64, norm="BN"):
+ """
+ Args:
+ norm (str or callable): norm after the first conv layer.
+ See :func:`layers.get_norm` for supported format.
+ """
+ super().__init__(in_channels, out_channels, 4)
+ self.in_channels = in_channels
+ self.conv1 = Conv2d(
+ in_channels,
+ out_channels,
+ kernel_size=7,
+ stride=2,
+ padding=3,
+ bias=False,
+ norm=get_norm(norm, out_channels),
+ )
+ weight_init.c2_msra_fill(self.conv1)
+
+ def forward(self, x):
+ x = self.conv1(x)
+ x = F.relu_(x)
+ x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1)
+ return x
+
+
+class ResNet(Backbone):
+ """
+ Implement :paper:`ResNet`.
+ """
+
+ def __init__(self, stem, stages, num_classes=None, out_features=None, freeze_at=0):
+ """
+ Args:
+ stem (nn.Module): a stem module
+ stages (list[list[CNNBlockBase]]): several (typically 4) stages,
+ each contains multiple :class:`CNNBlockBase`.
+ num_classes (None or int): if None, will not perform classification.
+ Otherwise, will create a linear layer.
+ out_features (list[str]): name of the layers whose outputs should
+ be returned in forward. Can be anything in "stem", "linear", or "res2" ...
+ If None, will return the output of the last layer.
+ freeze_at (int): The number of stages at the beginning to freeze.
+ see :meth:`freeze` for detailed explanation.
+ """
+ super().__init__()
+ self.stem = stem
+ self.num_classes = num_classes
+
+ current_stride = self.stem.stride
+ self._out_feature_strides = {"stem": current_stride}
+ self._out_feature_channels = {"stem": self.stem.out_channels}
+
+ self.stage_names, self.stages = [], []
+
+ if out_features is not None:
+ # Avoid keeping unused layers in this module. They consume extra memory
+ # and may cause allreduce to fail
+ num_stages = max(
+ [{"res2": 1, "res3": 2, "res4": 3, "res5": 4}.get(f, 0) for f in out_features]
+ )
+ stages = stages[:num_stages]
+ for i, blocks in enumerate(stages):
+ assert len(blocks) > 0, len(blocks)
+ for block in blocks:
+ assert isinstance(block, CNNBlockBase), block
+
+ name = "res" + str(i + 2)
+ stage = nn.Sequential(*blocks)
+
+ self.add_module(name, stage)
+ self.stage_names.append(name)
+ self.stages.append(stage)
+
+ self._out_feature_strides[name] = current_stride = int(
+ current_stride * np.prod([k.stride for k in blocks])
+ )
+ self._out_feature_channels[name] = curr_channels = blocks[-1].out_channels
+ self.stage_names = tuple(self.stage_names) # Make it static for scripting
+
+ if num_classes is not None:
+ self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
+ self.linear = nn.Linear(curr_channels, num_classes)
+
+ # Sec 5.1 in "Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour":
+ # "The 1000-way fully-connected layer is initialized by
+ # drawing weights from a zero-mean Gaussian with standard deviation of 0.01."
+ nn.init.normal_(self.linear.weight, std=0.01)
+ name = "linear"
+
+ if out_features is None:
+ out_features = [name]
+ self._out_features = out_features
+ assert len(self._out_features)
+ children = [x[0] for x in self.named_children()]
+ for out_feature in self._out_features:
+ assert out_feature in children, "Available children: {}".format(", ".join(children))
+ self.freeze(freeze_at)
+
+ def forward(self, x):
+ """
+ Args:
+ x: Tensor of shape (N,C,H,W). H, W must be a multiple of ``self.size_divisibility``.
+
+ Returns:
+ dict[str->Tensor]: names and the corresponding features
+ """
+ assert x.dim() == 4, f"ResNet takes an input of shape (N, C, H, W). Got {x.shape} instead!"
+ outputs = {}
+ x = self.stem(x)
+ if "stem" in self._out_features:
+ outputs["stem"] = x
+ for name, stage in zip(self.stage_names, self.stages):
+ x = stage(x)
+ if name in self._out_features:
+ outputs[name] = x
+ if self.num_classes is not None:
+ x = self.avgpool(x)
+ x = torch.flatten(x, 1)
+ x = self.linear(x)
+ if "linear" in self._out_features:
+ outputs["linear"] = x
+ return outputs
+
+ def output_shape(self):
+ return {
+ name: ShapeSpec(
+ channels=self._out_feature_channels[name], stride=self._out_feature_strides[name]
+ )
+ for name in self._out_features
+ }
+
+ def freeze(self, freeze_at=0):
+ """
+ Freeze the first several stages of the ResNet. Commonly used in
+ fine-tuning.
+
+ Layers that produce the same feature map spatial size are defined as one
+ "stage" by :paper:`FPN`.
+
+ Args:
+ freeze_at (int): number of stages to freeze.
+ `1` means freezing the stem. `2` means freezing the stem and
+ one residual stage, etc.
+
+ Returns:
+ nn.Module: this ResNet itself
+ """
+ if freeze_at >= 1:
+ self.stem.freeze()
+ for idx, stage in enumerate(self.stages, start=2):
+ if freeze_at >= idx:
+ for block in stage.children():
+ block.freeze()
+ return self
+
+ @staticmethod
+ def make_stage(block_class, num_blocks, *, in_channels, out_channels, **kwargs):
+ """
+ Create a list of blocks of the same type that forms one ResNet stage.
+
+ Args:
+ block_class (type): a subclass of CNNBlockBase that's used to create all blocks in this
+ stage. A module of this type must not change spatial resolution of inputs unless its
+ stride != 1.
+ num_blocks (int): number of blocks in this stage
+ in_channels (int): input channels of the entire stage.
+ out_channels (int): output channels of **every block** in the stage.
+ kwargs: other arguments passed to the constructor of
+ `block_class`. If the argument name is "xx_per_block", the
+ argument is a list of values to be passed to each block in the
+ stage. Otherwise, the same argument is passed to every block
+ in the stage.
+
+ Returns:
+ list[CNNBlockBase]: a list of block module.
+
+ Examples:
+ ::
+ stage = ResNet.make_stage(
+ BottleneckBlock, 3, in_channels=16, out_channels=64,
+ bottleneck_channels=16, num_groups=1,
+ stride_per_block=[2, 1, 1],
+ dilations_per_block=[1, 1, 2]
+ )
+
+ Usually, layers that produce the same feature map spatial size are defined as one
+ "stage" (in :paper:`FPN`). Under such definition, ``stride_per_block[1:]`` should
+ all be 1.
+ """
+ blocks = []
+ for i in range(num_blocks):
+ curr_kwargs = {}
+ for k, v in kwargs.items():
+ if k.endswith("_per_block"):
+ assert len(v) == num_blocks, (
+ f"Argument '{k}' of make_stage should have the "
+ f"same length as num_blocks={num_blocks}."
+ )
+ newk = k[: -len("_per_block")]
+ assert newk not in kwargs, f"Cannot call make_stage with both {k} and {newk}!"
+ curr_kwargs[newk] = v[i]
+ else:
+ curr_kwargs[k] = v
+
+ blocks.append(
+ block_class(in_channels=in_channels, out_channels=out_channels, **curr_kwargs)
+ )
+ in_channels = out_channels
+ return blocks
+
+ @staticmethod
+ def make_default_stages(depth, block_class=None, **kwargs):
+ """
+ Created list of ResNet stages from pre-defined depth (one of 18, 34, 50, 101, 152).
+ If it doesn't create the ResNet variant you need, please use :meth:`make_stage`
+ instead for fine-grained customization.
+
+ Args:
+ depth (int): depth of ResNet
+ block_class (type): the CNN block class. Has to accept
+ `bottleneck_channels` argument for depth > 50.
+ By default it is BasicBlock or BottleneckBlock, based on the
+ depth.
+ kwargs:
+ other arguments to pass to `make_stage`. Should not contain
+ stride and channels, as they are predefined for each depth.
+
+ Returns:
+ list[list[CNNBlockBase]]: modules in all stages; see arguments of
+ :class:`ResNet.__init__`.
+ """
+ num_blocks_per_stage = {
+ 18: [2, 2, 2, 2],
+ 34: [3, 4, 6, 3],
+ 50: [3, 4, 6, 3],
+ 101: [3, 4, 23, 3],
+ 152: [3, 8, 36, 3],
+ }[depth]
+ if block_class is None:
+ block_class = BasicBlock if depth < 50 else BottleneckBlock
+ if depth < 50:
+ in_channels = [64, 64, 128, 256]
+ out_channels = [64, 128, 256, 512]
+ else:
+ in_channels = [64, 256, 512, 1024]
+ out_channels = [256, 512, 1024, 2048]
+ ret = []
+ for (n, s, i, o) in zip(num_blocks_per_stage, [1, 2, 2, 2], in_channels, out_channels):
+ if depth >= 50:
+ kwargs["bottleneck_channels"] = o // 4
+ ret.append(
+ ResNet.make_stage(
+ block_class=block_class,
+ num_blocks=n,
+ stride_per_block=[s] + [1] * (n - 1),
+ in_channels=i,
+ out_channels=o,
+ **kwargs,
+ )
+ )
+ return ret
+
+
+ResNetBlockBase = CNNBlockBase
+"""
+Alias for backward compatibiltiy.
+"""
+
+
+def make_stage(*args, **kwargs):
+ """
+ Deprecated alias for backward compatibiltiy.
+ """
+ return ResNet.make_stage(*args, **kwargs)
+
+
+def _convert_ndarray_to_tensor(state_dict: Dict[str, Any]) -> None:
+ """
+ In-place convert all numpy arrays in the state_dict to torch tensor.
+ Args:
+ state_dict (dict): a state-dict to be loaded to the model.
+ Will be modified.
+ """
+ # model could be an OrderedDict with _metadata attribute
+ # (as returned by Pytorch's state_dict()). We should preserve these
+ # properties.
+ for k in list(state_dict.keys()):
+ v = state_dict[k]
+ if not isinstance(v, np.ndarray) and not isinstance(v, torch.Tensor):
+ raise ValueError(
+ "Unsupported type found in checkpoint! {}: {}".format(k, type(v))
+ )
+ if not isinstance(v, torch.Tensor):
+ state_dict[k] = torch.from_numpy(v)
+
+
+@register_backbone
+def get_resnet_backbone(cfg):
+ """
+ Create a ResNet instance from config.
+
+ Returns:
+ ResNet: a :class:`ResNet` instance.
+ """
+ res_cfg = cfg['MODEL']['BACKBONE']['RESNETS']
+
+ # need registration of new blocks/stems?
+ norm = res_cfg['NORM']
+ stem = BasicStem(
+ in_channels=res_cfg['STEM_IN_CHANNELS'],
+ out_channels=res_cfg['STEM_OUT_CHANNELS'],
+ norm=norm,
+ )
+
+ # fmt: off
+ freeze_at = res_cfg['FREEZE_AT']
+ out_features = res_cfg['OUT_FEATURES']
+ depth = res_cfg['DEPTH']
+ num_groups = res_cfg['NUM_GROUPS']
+ width_per_group = res_cfg['WIDTH_PER_GROUP']
+ bottleneck_channels = num_groups * width_per_group
+ in_channels = res_cfg['STEM_OUT_CHANNELS']
+ out_channels = res_cfg['RES2_OUT_CHANNELS']
+ stride_in_1x1 = res_cfg['STRIDE_IN_1X1']
+ res5_dilation = res_cfg['RES5_DILATION']
+ deform_on_per_stage = res_cfg['DEFORM_ON_PER_STAGE']
+ deform_modulated = res_cfg['DEFORM_MODULATED']
+ deform_num_groups = res_cfg['DEFORM_NUM_GROUPS']
+ # fmt: on
+ assert res5_dilation in {1, 2}, "res5_dilation cannot be {}.".format(res5_dilation)
+
+ num_blocks_per_stage = {
+ 18: [2, 2, 2, 2],
+ 34: [3, 4, 6, 3],
+ 50: [3, 4, 6, 3],
+ 101: [3, 4, 23, 3],
+ 152: [3, 8, 36, 3],
+ }[depth]
+
+ if depth in [18, 34]:
+ assert out_channels == 64, "Must set MODEL.RESNETS.RES2_OUT_CHANNELS = 64 for R18/R34"
+ assert not any(
+ deform_on_per_stage
+ ), "MODEL.RESNETS.DEFORM_ON_PER_STAGE unsupported for R18/R34"
+ assert res5_dilation == 1, "Must set MODEL.RESNETS.RES5_DILATION = 1 for R18/R34"
+ assert num_groups == 1, "Must set MODEL.RESNETS.NUM_GROUPS = 1 for R18/R34"
+
+ stages = []
+
+ for idx, stage_idx in enumerate(range(2, 6)):
+ # res5_dilation is used this way as a convention in R-FCN & Deformable Conv paper
+ dilation = res5_dilation if stage_idx == 5 else 1
+ first_stride = 1 if idx == 0 or (stage_idx == 5 and dilation == 2) else 2
+ stage_kargs = {
+ "num_blocks": num_blocks_per_stage[idx],
+ "stride_per_block": [first_stride] + [1] * (num_blocks_per_stage[idx] - 1),
+ "in_channels": in_channels,
+ "out_channels": out_channels,
+ "norm": norm,
+ }
+ # Use BasicBlock for R18 and R34.
+ if depth in [18, 34]:
+ stage_kargs["block_class"] = BasicBlock
+ else:
+ stage_kargs["bottleneck_channels"] = bottleneck_channels
+ stage_kargs["stride_in_1x1"] = stride_in_1x1
+ stage_kargs["dilation"] = dilation
+ stage_kargs["num_groups"] = num_groups
+ if deform_on_per_stage[idx]:
+ stage_kargs["block_class"] = DeformBottleneckBlock
+ stage_kargs["deform_modulated"] = deform_modulated
+ stage_kargs["deform_num_groups"] = deform_num_groups
+ else:
+ stage_kargs["block_class"] = BottleneckBlock
+ blocks = ResNet.make_stage(**stage_kargs)
+ in_channels = out_channels
+ out_channels *= 2
+ bottleneck_channels *= 2
+ stages.append(blocks)
+ backbone = ResNet(stem, stages, out_features=out_features, freeze_at=freeze_at)
+
+ if cfg['MODEL']['BACKBONE']['LOAD_PRETRAINED'] is True:
+ filename = cfg['MODEL']['BACKBONE']['PRETRAINED']
+ with PathManager.open(filename, "rb") as f:
+ ckpt = pickle.load(f, encoding="latin1")['model']
+ _convert_ndarray_to_tensor(ckpt)
+ ckpt.pop('stem.fc.weight')
+ ckpt.pop('stem.fc.bias')
+ backbone.load_state_dict(ckpt)
+
+ return backbone
diff --git a/xdecoder/backbone/swin.py b/xdecoder/backbone/swin.py
new file mode 100755
index 0000000000000000000000000000000000000000..ed66e670a10762d7faf1e16bb2d6d80691182aca
--- /dev/null
+++ b/xdecoder/backbone/swin.py
@@ -0,0 +1,892 @@
+# --------------------------------------------------------
+# Swin Transformer
+# Copyright (c) 2021 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Ze Liu, Yutong Lin, Yixuan Wei
+# --------------------------------------------------------
+
+# Copyright (c) Facebook, Inc. and its affiliates.
+# Modified by Bowen Cheng from https://github.com/SwinTransformer/Swin-Transformer-Semantic-Segmentation/blob/main/mmseg/models/backbones/swin_transformer.py
+import logging
+import numpy as np
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+import torch.utils.checkpoint as checkpoint
+from timm.models.layers import DropPath, to_2tuple, trunc_normal_
+
+from detectron2.modeling import Backbone, ShapeSpec
+from detectron2.utils.file_io import PathManager
+
+from .registry import register_backbone
+
+logger = logging.getLogger(__name__)
+
+
+class Mlp(nn.Module):
+ """Multilayer perceptron."""
+
+ def __init__(
+ self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0
+ ):
+ super().__init__()
+ out_features = out_features or in_features
+ hidden_features = hidden_features or in_features
+ self.fc1 = nn.Linear(in_features, hidden_features)
+ self.act = act_layer()
+ self.fc2 = nn.Linear(hidden_features, out_features)
+ self.drop = nn.Dropout(drop)
+
+ def forward(self, x):
+ x = self.fc1(x)
+ x = self.act(x)
+ x = self.drop(x)
+ x = self.fc2(x)
+ x = self.drop(x)
+ return x
+
+
+def window_partition(x, window_size):
+ """
+ Args:
+ x: (B, H, W, C)
+ window_size (int): window size
+ Returns:
+ windows: (num_windows*B, window_size, window_size, C)
+ """
+ B, H, W, C = x.shape
+ x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
+ windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
+ return windows
+
+
+def window_reverse(windows, window_size, H, W):
+ """
+ Args:
+ windows: (num_windows*B, window_size, window_size, C)
+ window_size (int): Window size
+ H (int): Height of image
+ W (int): Width of image
+ Returns:
+ x: (B, H, W, C)
+ """
+ B = int(windows.shape[0] / (H * W / window_size / window_size))
+ x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
+ x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
+ return x
+
+
+class WindowAttention(nn.Module):
+ """Window based multi-head self attention (W-MSA) module with relative position bias.
+ It supports both of shifted and non-shifted window.
+ Args:
+ dim (int): Number of input channels.
+ window_size (tuple[int]): The height and width of the window.
+ num_heads (int): Number of attention heads.
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
+ attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
+ proj_drop (float, optional): Dropout ratio of output. Default: 0.0
+ """
+
+ def __init__(
+ self,
+ dim,
+ window_size,
+ num_heads,
+ qkv_bias=True,
+ qk_scale=None,
+ attn_drop=0.0,
+ proj_drop=0.0,
+ ):
+
+ super().__init__()
+ self.dim = dim
+ self.window_size = window_size # Wh, Ww
+ self.num_heads = num_heads
+ head_dim = dim // num_heads
+ self.scale = qk_scale or head_dim ** -0.5
+
+ # define a parameter table of relative position bias
+ self.relative_position_bias_table = nn.Parameter(
+ torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)
+ ) # 2*Wh-1 * 2*Ww-1, nH
+
+ # get pair-wise relative position index for each token inside the window
+ coords_h = torch.arange(self.window_size[0])
+ coords_w = torch.arange(self.window_size[1])
+ coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
+ coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
+ relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
+ relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
+ relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
+ relative_coords[:, :, 1] += self.window_size[1] - 1
+ relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
+ relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
+ self.register_buffer("relative_position_index", relative_position_index)
+
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
+ self.attn_drop = nn.Dropout(attn_drop)
+ self.proj = nn.Linear(dim, dim)
+ self.proj_drop = nn.Dropout(proj_drop)
+
+ trunc_normal_(self.relative_position_bias_table, std=0.02)
+ self.softmax = nn.Softmax(dim=-1)
+
+ def forward(self, x, mask=None):
+ """Forward function.
+ Args:
+ x: input features with shape of (num_windows*B, N, C)
+ mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
+ """
+ B_, N, C = x.shape
+ qkv = (
+ self.qkv(x)
+ .reshape(B_, N, 3, self.num_heads, C // self.num_heads)
+ .permute(2, 0, 3, 1, 4)
+ )
+ q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
+
+ q = q * self.scale
+ attn = q @ k.transpose(-2, -1)
+
+ relative_position_bias = self.relative_position_bias_table[
+ self.relative_position_index.view(-1)
+ ].view(
+ self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1
+ ) # Wh*Ww,Wh*Ww,nH
+ relative_position_bias = relative_position_bias.permute(
+ 2, 0, 1
+ ).contiguous() # nH, Wh*Ww, Wh*Ww
+ attn = attn + relative_position_bias.unsqueeze(0)
+
+ if mask is not None:
+ nW = mask.shape[0]
+ attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
+ attn = attn.view(-1, self.num_heads, N, N)
+ attn = self.softmax(attn)
+ else:
+ attn = self.softmax(attn)
+
+ attn = self.attn_drop(attn)
+
+ x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
+ x = self.proj(x)
+ x = self.proj_drop(x)
+
+ return x
+
+
+class SwinTransformerBlock(nn.Module):
+ """Swin Transformer Block.
+ Args:
+ dim (int): Number of input channels.
+ num_heads (int): Number of attention heads.
+ window_size (int): Window size.
+ shift_size (int): Shift size for SW-MSA.
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
+ drop (float, optional): Dropout rate. Default: 0.0
+ attn_drop (float, optional): Attention dropout rate. Default: 0.0
+ drop_path (float, optional): Stochastic depth rate. Default: 0.0
+ act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
+ """
+
+ def __init__(
+ self,
+ dim,
+ num_heads,
+ window_size=7,
+ shift_size=0,
+ mlp_ratio=4.0,
+ qkv_bias=True,
+ qk_scale=None,
+ drop=0.0,
+ attn_drop=0.0,
+ drop_path=0.0,
+ act_layer=nn.GELU,
+ norm_layer=nn.LayerNorm,
+ ):
+ super().__init__()
+ self.dim = dim
+ self.num_heads = num_heads
+ self.window_size = window_size
+ self.shift_size = shift_size
+ self.mlp_ratio = mlp_ratio
+ assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
+
+ self.norm1 = norm_layer(dim)
+ self.attn = WindowAttention(
+ dim,
+ window_size=to_2tuple(self.window_size),
+ num_heads=num_heads,
+ qkv_bias=qkv_bias,
+ qk_scale=qk_scale,
+ attn_drop=attn_drop,
+ proj_drop=drop,
+ )
+
+ self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
+ self.norm2 = norm_layer(dim)
+ mlp_hidden_dim = int(dim * mlp_ratio)
+ self.mlp = Mlp(
+ in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop
+ )
+
+ self.H = None
+ self.W = None
+
+ def forward(self, x, mask_matrix):
+ """Forward function.
+ Args:
+ x: Input feature, tensor size (B, H*W, C).
+ H, W: Spatial resolution of the input feature.
+ mask_matrix: Attention mask for cyclic shift.
+ """
+ B, L, C = x.shape
+ H, W = self.H, self.W
+ assert L == H * W, "input feature has wrong size"
+
+ # HACK model will not upsampling
+ # if min([H, W]) <= self.window_size:
+ # if window size is larger than input resolution, we don't partition windows
+ # self.shift_size = 0
+ # self.window_size = min([H,W])
+
+ shortcut = x
+ x = self.norm1(x)
+ x = x.view(B, H, W, C)
+
+ # pad feature maps to multiples of window size
+ pad_l = pad_t = 0
+ pad_r = (self.window_size - W % self.window_size) % self.window_size
+ pad_b = (self.window_size - H % self.window_size) % self.window_size
+ x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
+ _, Hp, Wp, _ = x.shape
+
+ # cyclic shift
+ if self.shift_size > 0:
+ shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
+ attn_mask = mask_matrix
+ else:
+ shifted_x = x
+ attn_mask = None
+
+ # partition windows
+ x_windows = window_partition(
+ shifted_x, self.window_size
+ ) # nW*B, window_size, window_size, C
+ x_windows = x_windows.view(
+ -1, self.window_size * self.window_size, C
+ ) # nW*B, window_size*window_size, C
+
+ # W-MSA/SW-MSA
+ attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
+
+ # merge windows
+ attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
+ shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C
+
+ # reverse cyclic shift
+ if self.shift_size > 0:
+ x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
+ else:
+ x = shifted_x
+
+ if pad_r > 0 or pad_b > 0:
+ x = x[:, :H, :W, :].contiguous()
+
+ x = x.view(B, H * W, C)
+
+ # FFN
+ x = shortcut + self.drop_path(x)
+ x = x + self.drop_path(self.mlp(self.norm2(x)))
+ return x
+
+
+class PatchMerging(nn.Module):
+ """Patch Merging Layer
+ Args:
+ dim (int): Number of input channels.
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
+ """
+
+ def __init__(self, dim, norm_layer=nn.LayerNorm):
+ super().__init__()
+ self.dim = dim
+ self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
+ self.norm = norm_layer(4 * dim)
+
+ def forward(self, x, H, W):
+ """Forward function.
+ Args:
+ x: Input feature, tensor size (B, H*W, C).
+ H, W: Spatial resolution of the input feature.
+ """
+ B, L, C = x.shape
+ assert L == H * W, "input feature has wrong size"
+
+ x = x.view(B, H, W, C)
+
+ # padding
+ pad_input = (H % 2 == 1) or (W % 2 == 1)
+ if pad_input:
+ x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
+
+ x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
+ x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
+ x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
+ x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
+ x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
+ x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
+
+ x = self.norm(x)
+ x = self.reduction(x)
+
+ return x
+
+
+class BasicLayer(nn.Module):
+ """A basic Swin Transformer layer for one stage.
+ Args:
+ dim (int): Number of feature channels
+ depth (int): Depths of this stage.
+ num_heads (int): Number of attention head.
+ window_size (int): Local window size. Default: 7.
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
+ drop (float, optional): Dropout rate. Default: 0.0
+ attn_drop (float, optional): Attention dropout rate. Default: 0.0
+ drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
+ downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
+ """
+
+ def __init__(
+ self,
+ dim,
+ depth,
+ num_heads,
+ window_size=7,
+ mlp_ratio=4.0,
+ qkv_bias=True,
+ qk_scale=None,
+ drop=0.0,
+ attn_drop=0.0,
+ drop_path=0.0,
+ norm_layer=nn.LayerNorm,
+ downsample=None,
+ use_checkpoint=False,
+ ):
+ super().__init__()
+ self.window_size = window_size
+ self.shift_size = window_size // 2
+ self.depth = depth
+ self.use_checkpoint = use_checkpoint
+
+ # build blocks
+ self.blocks = nn.ModuleList(
+ [
+ SwinTransformerBlock(
+ dim=dim,
+ num_heads=num_heads,
+ window_size=window_size,
+ shift_size=0 if (i % 2 == 0) else window_size // 2,
+ mlp_ratio=mlp_ratio,
+ qkv_bias=qkv_bias,
+ qk_scale=qk_scale,
+ drop=drop,
+ attn_drop=attn_drop,
+ drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
+ norm_layer=norm_layer,
+ )
+ for i in range(depth)
+ ]
+ )
+
+ # patch merging layer
+ if downsample is not None:
+ self.downsample = downsample(dim=dim, norm_layer=norm_layer)
+ else:
+ self.downsample = None
+
+ def forward(self, x, H, W):
+ """Forward function.
+ Args:
+ x: Input feature, tensor size (B, H*W, C).
+ H, W: Spatial resolution of the input feature.
+ """
+
+ # calculate attention mask for SW-MSA
+ Hp = int(np.ceil(H / self.window_size)) * self.window_size
+ Wp = int(np.ceil(W / self.window_size)) * self.window_size
+ img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1
+ h_slices = (
+ slice(0, -self.window_size),
+ slice(-self.window_size, -self.shift_size),
+ slice(-self.shift_size, None),
+ )
+ w_slices = (
+ slice(0, -self.window_size),
+ slice(-self.window_size, -self.shift_size),
+ slice(-self.shift_size, None),
+ )
+ cnt = 0
+ for h in h_slices:
+ for w in w_slices:
+ img_mask[:, h, w, :] = cnt
+ cnt += 1
+
+ mask_windows = window_partition(
+ img_mask, self.window_size
+ ) # nW, window_size, window_size, 1
+ mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
+ attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
+ attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(
+ attn_mask == 0, float(0.0)
+ ).type(x.dtype)
+
+ for blk in self.blocks:
+ blk.H, blk.W = H, W
+ if self.use_checkpoint:
+ x = checkpoint.checkpoint(blk, x, attn_mask)
+ else:
+ x = blk(x, attn_mask)
+ if self.downsample is not None:
+ x_down = self.downsample(x, H, W)
+ Wh, Ww = (H + 1) // 2, (W + 1) // 2
+ return x, H, W, x_down, Wh, Ww
+ else:
+ return x, H, W, x, H, W
+
+
+class PatchEmbed(nn.Module):
+ """Image to Patch Embedding
+ Args:
+ patch_size (int): Patch token size. Default: 4.
+ in_chans (int): Number of input image channels. Default: 3.
+ embed_dim (int): Number of linear projection output channels. Default: 96.
+ norm_layer (nn.Module, optional): Normalization layer. Default: None
+ """
+
+ def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
+ super().__init__()
+ patch_size = to_2tuple(patch_size)
+ self.patch_size = patch_size
+
+ self.in_chans = in_chans
+ self.embed_dim = embed_dim
+
+ self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
+ if norm_layer is not None:
+ self.norm = norm_layer(embed_dim)
+ else:
+ self.norm = None
+
+ def forward(self, x):
+ """Forward function."""
+ # padding
+ _, _, H, W = x.size()
+ if W % self.patch_size[1] != 0:
+ x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
+ if H % self.patch_size[0] != 0:
+ x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
+
+ x = self.proj(x) # B C Wh Ww
+ if self.norm is not None:
+ Wh, Ww = x.size(2), x.size(3)
+ x = x.flatten(2).transpose(1, 2)
+ x = self.norm(x)
+ x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
+
+ return x
+
+
+class SwinTransformer(nn.Module):
+ """Swin Transformer backbone.
+ A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
+ https://arxiv.org/pdf/2103.14030
+ Args:
+ pretrain_img_size (int): Input image size for training the pretrained model,
+ used in absolute postion embedding. Default 224.
+ patch_size (int | tuple(int)): Patch size. Default: 4.
+ in_chans (int): Number of input image channels. Default: 3.
+ embed_dim (int): Number of linear projection output channels. Default: 96.
+ depths (tuple[int]): Depths of each Swin Transformer stage.
+ num_heads (tuple[int]): Number of attention head of each stage.
+ window_size (int): Window size. Default: 7.
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
+ qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
+ qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
+ drop_rate (float): Dropout rate.
+ attn_drop_rate (float): Attention dropout rate. Default: 0.
+ drop_path_rate (float): Stochastic depth rate. Default: 0.2.
+ norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
+ ape (bool): If True, add absolute position embedding to the patch embedding. Default: False.
+ patch_norm (bool): If True, add normalization after patch embedding. Default: True.
+ out_indices (Sequence[int]): Output from which stages.
+ frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
+ -1 means not freezing any parameters.
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
+ """
+
+ def __init__(
+ self,
+ pretrain_img_size=224,
+ patch_size=4,
+ in_chans=3,
+ embed_dim=96,
+ depths=[2, 2, 6, 2],
+ num_heads=[3, 6, 12, 24],
+ window_size=7,
+ mlp_ratio=4.0,
+ qkv_bias=True,
+ qk_scale=None,
+ drop_rate=0.0,
+ attn_drop_rate=0.0,
+ drop_path_rate=0.2,
+ norm_layer=nn.LayerNorm,
+ ape=False,
+ patch_norm=True,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=-1,
+ use_checkpoint=False,
+ ):
+ super().__init__()
+
+ self.pretrain_img_size = pretrain_img_size
+ self.num_layers = len(depths)
+ self.embed_dim = embed_dim
+ self.ape = ape
+ self.patch_norm = patch_norm
+ self.out_indices = out_indices
+ self.frozen_stages = frozen_stages
+
+ # split image into non-overlapping patches
+ self.patch_embed = PatchEmbed(
+ patch_size=patch_size,
+ in_chans=in_chans,
+ embed_dim=embed_dim,
+ norm_layer=norm_layer if self.patch_norm else None,
+ )
+
+ # absolute position embedding
+ if self.ape:
+ pretrain_img_size = to_2tuple(pretrain_img_size)
+ patch_size = to_2tuple(patch_size)
+ patches_resolution = [
+ pretrain_img_size[0] // patch_size[0],
+ pretrain_img_size[1] // patch_size[1],
+ ]
+
+ self.absolute_pos_embed = nn.Parameter(
+ torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1])
+ )
+ trunc_normal_(self.absolute_pos_embed, std=0.02)
+
+ self.pos_drop = nn.Dropout(p=drop_rate)
+
+ # stochastic depth
+ dpr = [
+ x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))
+ ] # stochastic depth decay rule
+
+ # build layers
+ self.layers = nn.ModuleList()
+ for i_layer in range(self.num_layers):
+ layer = BasicLayer(
+ dim=int(embed_dim * 2 ** i_layer),
+ depth=depths[i_layer],
+ num_heads=num_heads[i_layer],
+ window_size=window_size,
+ mlp_ratio=mlp_ratio,
+ qkv_bias=qkv_bias,
+ qk_scale=qk_scale,
+ drop=drop_rate,
+ attn_drop=attn_drop_rate,
+ drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])],
+ norm_layer=norm_layer,
+ downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
+ use_checkpoint=use_checkpoint,
+ )
+ self.layers.append(layer)
+
+ num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)]
+ self.num_features = num_features
+
+ # add a norm layer for each output
+ for i_layer in out_indices:
+ layer = norm_layer(num_features[i_layer])
+ layer_name = f"norm{i_layer}"
+ self.add_module(layer_name, layer)
+
+ self._freeze_stages()
+
+ def _freeze_stages(self):
+ if self.frozen_stages >= 0:
+ self.patch_embed.eval()
+ for param in self.patch_embed.parameters():
+ param.requires_grad = False
+
+ if self.frozen_stages >= 1 and self.ape:
+ self.absolute_pos_embed.requires_grad = False
+
+ if self.frozen_stages >= 2:
+ self.pos_drop.eval()
+ for i in range(0, self.frozen_stages - 1):
+ m = self.layers[i]
+ m.eval()
+ for param in m.parameters():
+ param.requires_grad = False
+
+ def init_weights(self, pretrained=None):
+ """Initialize the weights in backbone.
+ Args:
+ pretrained (str, optional): Path to pre-trained weights.
+ Defaults to None.
+ """
+
+ def _init_weights(m):
+ if isinstance(m, nn.Linear):
+ trunc_normal_(m.weight, std=0.02)
+ if isinstance(m, nn.Linear) and m.bias is not None:
+ nn.init.constant_(m.bias, 0)
+ elif isinstance(m, nn.LayerNorm):
+ nn.init.constant_(m.bias, 0)
+ nn.init.constant_(m.weight, 1.0)
+
+
+ def load_weights(self, pretrained_dict=None, pretrained_layers=[], verbose=True):
+ model_dict = self.state_dict()
+ pretrained_dict = {
+ k: v for k, v in pretrained_dict.items()
+ if k in model_dict.keys()
+ }
+ need_init_state_dict = {}
+ for k, v in pretrained_dict.items():
+ need_init = (
+ (
+ k.split('.')[0] in pretrained_layers
+ or pretrained_layers[0] == '*'
+ )
+ and 'relative_position_index' not in k
+ and 'attn_mask' not in k
+ )
+
+ if need_init:
+ # if verbose:
+ # logger.info(f'=> init {k} from {pretrained}')
+
+ if 'relative_position_bias_table' in k and v.size() != model_dict[k].size():
+ relative_position_bias_table_pretrained = v
+ relative_position_bias_table_current = model_dict[k]
+ L1, nH1 = relative_position_bias_table_pretrained.size()
+ L2, nH2 = relative_position_bias_table_current.size()
+ if nH1 != nH2:
+ logger.info(f"Error in loading {k}, passing")
+ else:
+ if L1 != L2:
+ logger.info(
+ '=> load_pretrained: resized variant: {} to {}'
+ .format((L1, nH1), (L2, nH2))
+ )
+ S1 = int(L1 ** 0.5)
+ S2 = int(L2 ** 0.5)
+ relative_position_bias_table_pretrained_resized = torch.nn.functional.interpolate(
+ relative_position_bias_table_pretrained.permute(1, 0).view(1, nH1, S1, S1),
+ size=(S2, S2),
+ mode='bicubic')
+ v = relative_position_bias_table_pretrained_resized.view(nH2, L2).permute(1, 0)
+
+ if 'absolute_pos_embed' in k and v.size() != model_dict[k].size():
+ absolute_pos_embed_pretrained = v
+ absolute_pos_embed_current = model_dict[k]
+ _, L1, C1 = absolute_pos_embed_pretrained.size()
+ _, L2, C2 = absolute_pos_embed_current.size()
+ if C1 != C1:
+ logger.info(f"Error in loading {k}, passing")
+ else:
+ if L1 != L2:
+ logger.info(
+ '=> load_pretrained: resized variant: {} to {}'
+ .format((1, L1, C1), (1, L2, C2))
+ )
+ S1 = int(L1 ** 0.5)
+ S2 = int(L2 ** 0.5)
+ absolute_pos_embed_pretrained = absolute_pos_embed_pretrained.reshape(-1, S1, S1, C1)
+ absolute_pos_embed_pretrained = absolute_pos_embed_pretrained.permute(0, 3, 1, 2)
+ absolute_pos_embed_pretrained_resized = torch.nn.functional.interpolate(
+ absolute_pos_embed_pretrained, size=(S2, S2), mode='bicubic')
+ v = absolute_pos_embed_pretrained_resized.permute(0, 2, 3, 1).flatten(1, 2)
+
+ need_init_state_dict[k] = v
+ self.load_state_dict(need_init_state_dict, strict=False)
+
+
+ def forward(self, x):
+ """Forward function."""
+ x = self.patch_embed(x)
+
+ Wh, Ww = x.size(2), x.size(3)
+ if self.ape:
+ # interpolate the position embedding to the corresponding size
+ absolute_pos_embed = F.interpolate(
+ self.absolute_pos_embed, size=(Wh, Ww), mode="bicubic"
+ )
+ x = (x + absolute_pos_embed).flatten(2).transpose(1, 2) # B Wh*Ww C
+ else:
+ x = x.flatten(2).transpose(1, 2)
+ x = self.pos_drop(x)
+
+ outs = {}
+ for i in range(self.num_layers):
+ layer = self.layers[i]
+ x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
+
+ if i in self.out_indices:
+ norm_layer = getattr(self, f"norm{i}")
+ x_out = norm_layer(x_out)
+
+ out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
+ outs["res{}".format(i + 2)] = out
+
+ if len(self.out_indices) == 0:
+ outs["res5"] = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
+
+
+ return outs
+
+ def train(self, mode=True):
+ """Convert the model into training mode while keep layers freezed."""
+ super(SwinTransformer, self).train(mode)
+ self._freeze_stages()
+
+
+class D2SwinTransformer(SwinTransformer, Backbone):
+ def __init__(self, cfg, pretrain_img_size, patch_size, in_chans, embed_dim,
+ depths, num_heads, window_size, mlp_ratio, qkv_bias, qk_scale,
+ drop_rate, attn_drop_rate, drop_path_rate, norm_layer, ape,
+ patch_norm, out_indices, use_checkpoint):
+ super().__init__(
+ pretrain_img_size,
+ patch_size,
+ in_chans,
+ embed_dim,
+ depths,
+ num_heads,
+ window_size,
+ mlp_ratio,
+ qkv_bias,
+ qk_scale,
+ drop_rate,
+ attn_drop_rate,
+ drop_path_rate,
+ norm_layer,
+ ape,
+ patch_norm,
+ out_indices,
+ use_checkpoint=use_checkpoint,
+ )
+
+ self._out_features = cfg['OUT_FEATURES']
+
+ self._out_feature_strides = {
+ "res2": 4,
+ "res3": 8,
+ "res4": 16,
+ "res5": 32,
+ }
+ self._out_feature_channels = {
+ "res2": self.num_features[0],
+ "res3": self.num_features[1],
+ "res4": self.num_features[2],
+ "res5": self.num_features[3],
+ }
+
+ def forward(self, x):
+ """
+ Args:
+ x: Tensor of shape (N,C,H,W). H, W must be a multiple of ``self.size_divisibility``.
+ Returns:
+ dict[str->Tensor]: names and the corresponding features
+ """
+ assert (
+ x.dim() == 4
+ ), f"SwinTransformer takes an input of shape (N, C, H, W). Got {x.shape} instead!"
+ outputs = {}
+ y = super().forward(x)
+ for k in y.keys():
+ if k in self._out_features:
+ outputs[k] = y[k]
+ return outputs
+
+ def output_shape(self):
+ feature_names = list(set(self._out_feature_strides.keys()) & set(self._out_features))
+ return {
+ name: ShapeSpec(
+ channels=self._out_feature_channels[name], stride=self._out_feature_strides[name]
+ )
+ for name in feature_names
+ }
+
+ @property
+ def size_divisibility(self):
+ return 32
+
+
+@register_backbone
+def get_swin_backbone(cfg):
+ swin_cfg = cfg['MODEL']['BACKBONE']['SWIN']
+
+ pretrain_img_size = swin_cfg['PRETRAIN_IMG_SIZE']
+ patch_size = swin_cfg['PATCH_SIZE']
+ in_chans = 3
+ embed_dim = swin_cfg['EMBED_DIM']
+ depths = swin_cfg['DEPTHS']
+ num_heads = swin_cfg['NUM_HEADS']
+ window_size = swin_cfg['WINDOW_SIZE']
+ mlp_ratio = swin_cfg['MLP_RATIO']
+ qkv_bias = swin_cfg['QKV_BIAS']
+ qk_scale = swin_cfg['QK_SCALE']
+ drop_rate = swin_cfg['DROP_RATE']
+ attn_drop_rate = swin_cfg['ATTN_DROP_RATE']
+ drop_path_rate = swin_cfg['DROP_PATH_RATE']
+ norm_layer = nn.LayerNorm
+ ape = swin_cfg['APE']
+ patch_norm = swin_cfg['PATCH_NORM']
+ use_checkpoint = swin_cfg['USE_CHECKPOINT']
+ out_indices = swin_cfg.get('OUT_INDICES', [0,1,2,3])
+
+ swin = D2SwinTransformer(
+ swin_cfg,
+ pretrain_img_size,
+ patch_size,
+ in_chans,
+ embed_dim,
+ depths,
+ num_heads,
+ window_size,
+ mlp_ratio,
+ qkv_bias,
+ qk_scale,
+ drop_rate,
+ attn_drop_rate,
+ drop_path_rate,
+ norm_layer,
+ ape,
+ patch_norm,
+ out_indices,
+ use_checkpoint=use_checkpoint,
+ )
+
+ if cfg['MODEL']['BACKBONE']['LOAD_PRETRAINED'] is True:
+ filename = cfg['MODEL']['BACKBONE']['PRETRAINED']
+ with PathManager.open(filename, "rb") as f:
+ ckpt = torch.load(f, map_location=cfg['device'])['model']
+ swin.load_weights(ckpt, swin_cfg.get('PRETRAINED_LAYERS', ['*']), cfg['VERBOSE'])
+
+ return swin
\ No newline at end of file
diff --git a/xdecoder/body/__init__.py b/xdecoder/body/__init__.py
new file mode 100755
index 0000000000000000000000000000000000000000..5b5e32900735a900cc4daef04bb5038cf9f178c9
--- /dev/null
+++ b/xdecoder/body/__init__.py
@@ -0,0 +1 @@
+from .build import build_xdecoder_head
\ No newline at end of file
diff --git a/xdecoder/body/build.py b/xdecoder/body/build.py
new file mode 100755
index 0000000000000000000000000000000000000000..fb35e4cc266c64418f4b21e9d95c7844417a2a56
--- /dev/null
+++ b/xdecoder/body/build.py
@@ -0,0 +1,13 @@
+from .registry import model_entrypoints
+from .registry import is_model
+
+from .xdecoder_head import *
+
+
+def build_xdecoder_head(config, *args, **kwargs):
+ model_name = config['MODEL']['HEAD']
+ if not is_model(model_name):
+ raise ValueError(f'Unkown model: {model_name}')
+
+ body = model_entrypoints(model_name)(config, *args, **kwargs)
+ return body
\ No newline at end of file
diff --git a/xdecoder/body/decoder/__init__.py b/xdecoder/body/decoder/__init__.py
new file mode 100755
index 0000000000000000000000000000000000000000..bbce50aad955329e5cba93e1d4d2f25e3cf694c7
--- /dev/null
+++ b/xdecoder/body/decoder/__init__.py
@@ -0,0 +1 @@
+from .build import build_decoder
\ No newline at end of file
diff --git a/xdecoder/body/decoder/build.py b/xdecoder/body/decoder/build.py
new file mode 100755
index 0000000000000000000000000000000000000000..c5c9be6f177885315a53845a624175430fa48ff1
--- /dev/null
+++ b/xdecoder/body/decoder/build.py
@@ -0,0 +1,12 @@
+from .registry import model_entrypoints
+from .registry import is_model
+
+from .xdecoder import *
+
+def build_decoder(config, *args, **kwargs):
+ model_name = config['MODEL']['DECODER']['NAME']
+
+ if not is_model(model_name):
+ raise ValueError(f'Unkown model: {model_name}')
+
+ return model_entrypoints(model_name)(config, *args, **kwargs)
\ No newline at end of file
diff --git a/xdecoder/body/decoder/registry.py b/xdecoder/body/decoder/registry.py
new file mode 100755
index 0000000000000000000000000000000000000000..bd9a7453d5bace3cdd892226f2f40c1a0be1fdb6
--- /dev/null
+++ b/xdecoder/body/decoder/registry.py
@@ -0,0 +1,13 @@
+_model_entrypoints = {}
+
+def register_decoder(fn):
+ module_name_split = fn.__module__.split('.')
+ model_name = module_name_split[-1]
+ _model_entrypoints[model_name] = fn
+ return fn
+
+def model_entrypoints(model_name):
+ return _model_entrypoints[model_name]
+
+def is_model(model_name):
+ return model_name in _model_entrypoints
\ No newline at end of file
diff --git a/xdecoder/body/decoder/tmp.py b/xdecoder/body/decoder/tmp.py
new file mode 100644
index 0000000000000000000000000000000000000000..d449b4e8fb6ad90b58f6aad20c410450572f647c
--- /dev/null
+++ b/xdecoder/body/decoder/tmp.py
@@ -0,0 +1,664 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+# Modified by Bowen Cheng from: https://github.com/facebookresearch/detr/blob/master/models/detr.py
+import logging
+from typing import Optional
+
+import torch
+from torch import nn, Tensor
+from torch.nn import functional as F
+
+from timm.models.layers import trunc_normal_
+from detectron2.layers import Conv2d
+import fvcore.nn.weight_init as weight_init
+
+from .registry import register_decoder
+from ...utils import configurable
+from ...modules import PositionEmbeddingSine
+
+from image2html.visualizer import VL
+
+
+class SelfAttentionLayer(nn.Module):
+
+ def __init__(self, d_model, nhead, dropout=0.0,
+ activation="relu", normalize_before=False):
+ super().__init__()
+ self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
+
+ self.norm = nn.LayerNorm(d_model)
+ self.dropout = nn.Dropout(dropout)
+
+ self.activation = _get_activation_fn(activation)
+ self.normalize_before = normalize_before
+
+ self._reset_parameters()
+
+ def _reset_parameters(self):
+ for p in self.parameters():
+ if p.dim() > 1:
+ nn.init.xavier_uniform_(p)
+
+ def with_pos_embed(self, tensor, pos: Optional[Tensor]):
+ return tensor if pos is None else tensor + pos
+
+ def forward_post(self, tgt,
+ tgt_mask: Optional[Tensor] = None,
+ tgt_key_padding_mask: Optional[Tensor] = None,
+ query_pos: Optional[Tensor] = None):
+ q = k = self.with_pos_embed(tgt, query_pos)
+ tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask,
+ key_padding_mask=tgt_key_padding_mask)[0]
+ tgt = tgt + self.dropout(tgt2)
+ tgt = self.norm(tgt)
+
+ return tgt
+
+ def forward_pre(self, tgt,
+ tgt_mask: Optional[Tensor] = None,
+ tgt_key_padding_mask: Optional[Tensor] = None,
+ query_pos: Optional[Tensor] = None):
+ tgt2 = self.norm(tgt)
+ q = k = self.with_pos_embed(tgt2, query_pos)
+ tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask,
+ key_padding_mask=tgt_key_padding_mask)[0]
+ tgt = tgt + self.dropout(tgt2)
+
+ return tgt
+
+ def forward(self, tgt,
+ tgt_mask: Optional[Tensor] = None,
+ tgt_key_padding_mask: Optional[Tensor] = None,
+ query_pos: Optional[Tensor] = None):
+ if self.normalize_before:
+ return self.forward_pre(tgt, tgt_mask,
+ tgt_key_padding_mask, query_pos)
+ return self.forward_post(tgt, tgt_mask,
+ tgt_key_padding_mask, query_pos)
+
+
+class CrossAttentionLayer(nn.Module):
+
+ def __init__(self, d_model, nhead, dropout=0.0,
+ activation="relu", normalize_before=False):
+ super().__init__()
+ self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
+
+ self.norm = nn.LayerNorm(d_model)
+ self.dropout = nn.Dropout(dropout)
+
+ self.activation = _get_activation_fn(activation)
+ self.normalize_before = normalize_before
+
+ self._reset_parameters()
+
+ def _reset_parameters(self):
+ for p in self.parameters():
+ if p.dim() > 1:
+ nn.init.xavier_uniform_(p)
+
+ def with_pos_embed(self, tensor, pos: Optional[Tensor]):
+ return tensor if pos is None else tensor + pos
+
+ def forward_post(self, tgt, memory,
+ memory_mask: Optional[Tensor] = None,
+ memory_key_padding_mask: Optional[Tensor] = None,
+ pos: Optional[Tensor] = None,
+ query_pos: Optional[Tensor] = None):
+ tgt2, avg_attn = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos),
+ key=self.with_pos_embed(memory, pos),
+ value=memory, attn_mask=memory_mask,
+ key_padding_mask=memory_key_padding_mask)
+ tgt = tgt + self.dropout(tgt2)
+ tgt = self.norm(tgt)
+ return tgt, avg_attn
+
+ def forward_pre(self, tgt, memory,
+ memory_mask: Optional[Tensor] = None,
+ memory_key_padding_mask: Optional[Tensor] = None,
+ pos: Optional[Tensor] = None,
+ query_pos: Optional[Tensor] = None):
+ tgt2 = self.norm(tgt)
+ tgt2, avg_attn = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos),
+ key=self.with_pos_embed(memory, pos),
+ value=memory, attn_mask=memory_mask,
+ key_padding_mask=memory_key_padding_mask)
+ tgt = tgt + self.dropout(tgt2)
+
+ return tgt, avg_attn
+
+ def forward(self, tgt, memory,
+ memory_mask: Optional[Tensor] = None,
+ memory_key_padding_mask: Optional[Tensor] = None,
+ pos: Optional[Tensor] = None,
+ query_pos: Optional[Tensor] = None):
+ if self.normalize_before:
+ return self.forward_pre(tgt, memory, memory_mask,
+ memory_key_padding_mask, pos, query_pos)
+ return self.forward_post(tgt, memory, memory_mask,
+ memory_key_padding_mask, pos, query_pos)
+
+
+class FFNLayer(nn.Module):
+
+ def __init__(self, d_model, dim_feedforward=2048, dropout=0.0,
+ activation="relu", normalize_before=False):
+ super().__init__()
+ # Implementation of Feedforward model
+ self.linear1 = nn.Linear(d_model, dim_feedforward)
+ self.dropout = nn.Dropout(dropout)
+ self.linear2 = nn.Linear(dim_feedforward, d_model)
+
+ self.norm = nn.LayerNorm(d_model)
+
+ self.activation = _get_activation_fn(activation)
+ self.normalize_before = normalize_before
+
+ self._reset_parameters()
+
+ def _reset_parameters(self):
+ for p in self.parameters():
+ if p.dim() > 1:
+ nn.init.xavier_uniform_(p)
+
+ def with_pos_embed(self, tensor, pos: Optional[Tensor]):
+ return tensor if pos is None else tensor + pos
+
+ def forward_post(self, tgt):
+ tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
+ tgt = tgt + self.dropout(tgt2)
+ tgt = self.norm(tgt)
+ return tgt
+
+ def forward_pre(self, tgt):
+ tgt2 = self.norm(tgt)
+ tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
+ tgt = tgt + self.dropout(tgt2)
+ return tgt
+
+ def forward(self, tgt):
+ if self.normalize_before:
+ return self.forward_pre(tgt)
+ return self.forward_post(tgt)
+
+
+def _get_activation_fn(activation):
+ """Return an activation function given a string"""
+ if activation == "relu":
+ return F.relu
+ if activation == "gelu":
+ return F.gelu
+ if activation == "glu":
+ return F.glu
+ raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
+
+
+class MLP(nn.Module):
+ """ Very simple multi-layer perceptron (also called FFN)"""
+
+ def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
+ super().__init__()
+ self.num_layers = num_layers
+ h = [hidden_dim] * (num_layers - 1)
+ self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
+
+ def forward(self, x):
+ for i, layer in enumerate(self.layers):
+ x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
+ return x
+
+
+class MultiScaleMaskedTransformerDecoder(nn.Module):
+
+ _version = 2
+
+ @configurable
+ def __init__(
+ self,
+ lang_encoder: nn.Module,
+ in_channels,
+ mask_classification=True,
+ *,
+ hidden_dim: int,
+ dim_proj: int,
+ num_queries: int,
+ contxt_len: int,
+ nheads: int,
+ dim_feedforward: int,
+ dec_layers: int,
+ pre_norm: bool,
+ mask_dim: int,
+ task_switch: dict,
+ captioning_step: int,
+ enforce_input_project: bool,
+ ):
+ """
+ NOTE: this interface is experimental.
+ Args:
+ in_channels: channels of the input features
+ mask_classification: whether to add mask classifier or not
+ num_classes: number of classes
+ hidden_dim: Transformer feature dimension
+ num_queries: number of queries
+ nheads: number of heads
+ dim_feedforward: feature dimension in feedforward network
+ enc_layers: number of Transformer encoder layers
+ dec_layers: number of Transformer decoder layers
+ pre_norm: whether to use pre-LayerNorm or not
+ mask_dim: mask feature dimension
+ enforce_input_project: add input project 1x1 conv even if input
+ channels and hidden dim is identical
+ """
+ super().__init__()
+ assert mask_classification, "Only support mask classification model"
+ self.mask_classification = mask_classification
+
+ # positional encoding
+ N_steps = hidden_dim // 2
+ self.pe_layer = PositionEmbeddingSine(N_steps, normalize=True)
+
+ # define Transformer decoder here
+ self.num_heads = nheads
+ self.num_layers = dec_layers
+ self.contxt_len = contxt_len
+ self.transformer_self_attention_layers = nn.ModuleList()
+ self.transformer_cross_attention_layers = nn.ModuleList()
+ self.transformer_ffn_layers = nn.ModuleList()
+
+ for _ in range(self.num_layers):
+ self.transformer_self_attention_layers.append(
+ SelfAttentionLayer(
+ d_model=hidden_dim,
+ nhead=nheads,
+ dropout=0.0,
+ normalize_before=pre_norm,
+ )
+ )
+
+ self.transformer_cross_attention_layers.append(
+ CrossAttentionLayer(
+ d_model=hidden_dim,
+ nhead=nheads,
+ dropout=0.0,
+ normalize_before=pre_norm,
+ )
+ )
+
+ self.transformer_ffn_layers.append(
+ FFNLayer(
+ d_model=hidden_dim,
+ dim_feedforward=dim_feedforward,
+ dropout=0.0,
+ normalize_before=pre_norm,
+ )
+ )
+
+ self.decoder_norm = nn.LayerNorm(hidden_dim)
+
+ self.num_queries = num_queries
+ # learnable query features
+ self.query_feat = nn.Embedding(num_queries, hidden_dim)
+ # learnable query p.e.
+ self.query_embed = nn.Embedding(num_queries, hidden_dim)
+
+ # level embedding (we always use 3 scales)
+ self.num_feature_levels = 3
+ self.level_embed = nn.Embedding(self.num_feature_levels, hidden_dim)
+ self.input_proj = nn.ModuleList()
+
+ for _ in range(self.num_feature_levels):
+ if in_channels != hidden_dim or enforce_input_project:
+ self.input_proj.append(Conv2d(in_channels, hidden_dim, kernel_size=1))
+ weight_init.c2_xavier_fill(self.input_proj[-1])
+ else:
+ self.input_proj.append(nn.Sequential())
+
+ self.task_switch = task_switch
+
+ # output FFNs
+ self.lang_encoder = lang_encoder
+ if self.task_switch['mask']:
+ self.mask_embed = MLP(hidden_dim, hidden_dim, mask_dim, 3)
+
+ self.class_embed = nn.Parameter(torch.empty(hidden_dim, dim_proj))
+ trunc_normal_(self.class_embed, std=.02)
+
+ if task_switch['bbox']:
+ self.bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3)
+
+ # Caption Project and query
+ if task_switch['captioning']:
+ self.caping_embed = nn.Parameter(torch.empty(hidden_dim, dim_proj))
+ trunc_normal_(self.caping_embed, std=.02)
+ self.query_feat_caping = nn.Embedding(contxt_len, hidden_dim)
+ self.captioning_step = captioning_step
+
+ # register self_attn_mask to avoid information leakage, it includes interaction between object query, class query and caping query
+ self_attn_mask = torch.zeros((1, num_queries + contxt_len, num_queries + contxt_len)).bool()
+ self_attn_mask[:, :num_queries, num_queries:] = True # object+class query does not attend with caption query.
+ self_attn_mask[:, num_queries:, num_queries:] = torch.triu(torch.ones((1, contxt_len, contxt_len)), diagonal=1).bool() # caption query only attend with previous token.
+ self_attn_mask[:, :num_queries-1, num_queries-1:num_queries] = True # object query does not attend with class query.
+ self_attn_mask[:, num_queries-1:num_queries, :num_queries-1] = True # class query does not attend with object query.
+ self.register_buffer("self_attn_mask", self_attn_mask)
+
+
+ @classmethod
+ def from_config(cls, cfg, in_channels, lang_encoder, mask_classification, extra):
+ ret = {}
+
+ ret["lang_encoder"] = lang_encoder
+ ret["in_channels"] = in_channels
+ ret["mask_classification"] = mask_classification
+
+ enc_cfg = cfg['MODEL']['ENCODER']
+ dec_cfg = cfg['MODEL']['DECODER']
+
+ ret["hidden_dim"] = dec_cfg['HIDDEN_DIM']
+ ret["dim_proj"] = cfg['MODEL']['DIM_PROJ']
+ ret["num_queries"] = dec_cfg['NUM_OBJECT_QUERIES']
+ ret["contxt_len"] = cfg['MODEL']['TEXT']['CONTEXT_LENGTH']
+
+ # Transformer parameters:
+ ret["nheads"] = dec_cfg['NHEADS']
+ ret["dim_feedforward"] = dec_cfg['DIM_FEEDFORWARD']
+
+ # NOTE: because we add learnable query features which requires supervision,
+ # we add minus 1 to decoder layers to be consistent with our loss
+ # implementation: that is, number of auxiliary losses is always
+ # equal to number of decoder layers. With learnable query features, the number of
+ # auxiliary losses equals number of decoders plus 1.
+ assert dec_cfg['DEC_LAYERS'] >= 1
+ ret["dec_layers"] = dec_cfg['DEC_LAYERS'] - 1
+ ret["pre_norm"] = dec_cfg['PRE_NORM']
+ ret["enforce_input_project"] = dec_cfg['ENFORCE_INPUT_PROJ']
+ ret["mask_dim"] = enc_cfg['MASK_DIM']
+
+ ret["task_switch"] = extra['task_switch']
+ ret["captioning_step"] = dec_cfg['CAPTIONING'].get('STEP', 50)
+
+ return ret
+
+ def forward(self, x, mask_features, mask=None, target_queries=None, target_vlp=None, task='seg', extra={}):
+ if task == 'captioning_infer':
+ return self.forward_captioning(x, mask_features, mask=mask, target_queries=target_queries, target_vlp=target_vlp, task=task, extra=extra)
+ # x is a list of multi-scale feature
+ assert len(x) == self.num_feature_levels
+ src = []
+ pos = []
+ size_list = []
+
+ # disable mask, it does not affect performance
+ del mask
+ for i in range(self.num_feature_levels):
+ size_list.append(x[i].shape[-2:])
+ pos.append(self.pe_layer(x[i], None).flatten(2))
+ src.append(self.input_proj[i](x[i]).flatten(2) + self.level_embed.weight[i][None, :, None])
+
+ # flatten NxCxHxW to HWxNxC
+ pos[-1] = pos[-1].permute(2, 0, 1)
+ src[-1] = src[-1].permute(2, 0, 1)
+
+ _, bs, _ = src[0].shape
+
+ # QxNxC
+ query_embed = self.query_embed.weight.unsqueeze(1).repeat(1, bs, 1)
+ output = self.query_feat.weight.unsqueeze(1).repeat(1, bs, 1)
+
+ predictions_class = []
+ predictions_mask = []
+ predictions_bbox = []
+ predictions_caption = []
+ predictions_captioning = []
+
+ self_tgt_mask = None
+ if self.training and task == 'vlp' and self.task_switch['captioning']:
+ output = torch.cat((output, self.query_feat_caping.weight.unsqueeze(1).repeat(1, bs, 1)), dim=0) # concat object query, class token and caption token.
+ caping_lang_embed = torch.cat([caption['caption_tokens'] for caption in target_vlp], dim=0).transpose(0, 1) # language output
+ query_embed = torch.cat((query_embed, caping_lang_embed), dim=0) # may not add at the beginning.
+ self_tgt_mask = self.self_attn_mask.repeat(output.shape[1]*self.num_heads, 1, 1)
+ elif (((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding']) \
+ or ((self.training and task == 'openimage') and self.task_switch['openimage']['grounding']):
+ self_tgt_mask = self.self_attn_mask[:,:self.num_queries,:self.num_queries].repeat(output.shape[1]*self.num_heads, 1, 1)
+ grounding_tokens = extra['grounding_tokens']
+ _grounding_tokens = grounding_tokens.detach().clone()
+ # initialize with negative attention at the beginning.
+ pad_tgt_mask = torch.ones((1, self.num_queries + (self.num_queries-1) + len(grounding_tokens), self.num_queries + (self.num_queries-1) + len(grounding_tokens)), device=self_tgt_mask.device).bool().repeat(output.shape[1]*self.num_heads, 1, 1)
+ pad_tgt_mask[:,:self.num_queries,:self.num_queries] = self_tgt_mask
+ pad_tgt_mask[:,self.num_queries:,self.num_queries:] = False # grounding tokens could attend with eatch other
+ self_tgt_mask = pad_tgt_mask
+ output = torch.cat((output, output[:-1]), dim=0)
+ query_embed = torch.cat((query_embed, query_embed[:-1]), dim=0) # also pad language embdding to fix embedding
+ else:
+ self_tgt_mask = self.self_attn_mask[:,:self.num_queries,:self.num_queries].repeat(output.shape[1]*self.num_heads, 1, 1)
+
+ # prediction heads on learnable query features
+ results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[0], task=task)
+ attn_mask = results["attn_mask"]
+ predictions_class.append(results["outputs_class"])
+ predictions_mask.append(results["outputs_mask"])
+ predictions_bbox.append(results["outputs_bbox"])
+ predictions_caption.append(results["outputs_caption"])
+ predictions_captioning.append(results["outputs_captionting"])
+
+ for i in range(self.num_layers):
+ level_index = i % self.num_feature_levels
+ attn_mask[torch.where(attn_mask.sum(-1) == attn_mask.shape[-1])] = False
+
+ if self.training and task == 'vlp' and self.task_switch['captioning']:
+ attn_mask = torch.cat((attn_mask, torch.zeros_like(attn_mask[:, :self.contxt_len, :])), dim=1)
+ # attention: cross-attention first
+ output, avg_attn = self.transformer_cross_attention_layers[i](
+ output, src[level_index],
+ memory_mask=attn_mask,
+ memory_key_padding_mask=None, # here we do not apply masking on padded region
+ pos=pos[level_index], query_pos=query_embed
+ )
+
+ if (((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding']) \
+ or ((self.training and task == 'openimage') and self.task_switch['openimage']['grounding']):
+ output = torch.cat((output, _grounding_tokens), dim=0)
+ query_embed = torch.cat((query_embed, grounding_tokens), dim=0)
+
+ output = self.transformer_self_attention_layers[i](
+ output, tgt_mask=self_tgt_mask,
+ tgt_key_padding_mask=None,
+ query_pos=query_embed
+ )
+
+ # FFN
+ output = self.transformer_ffn_layers[i](
+ output
+ )
+
+ if ((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding'] \
+ or ((self.training and task == 'openimage') and self.task_switch['openimage']['grounding']):
+ _grounding_tokens = output[-len(_grounding_tokens):]
+ output = output[:-len(_grounding_tokens)]
+ query_embed = query_embed[:-len(_grounding_tokens)]
+
+ results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[(i + 1) % self.num_feature_levels], layer_id=i, task=task)
+ attn_mask = results["attn_mask"]
+ predictions_class.append(results["outputs_class"])
+ predictions_mask.append(results["outputs_mask"])
+ predictions_bbox.append(results["outputs_bbox"])
+ predictions_caption.append(results["outputs_caption"])
+ predictions_captioning.append(results["outputs_captionting"])
+
+ assert len(predictions_class) == self.num_layers + 1
+ if task == 'vlp':
+ out = {'pred_captionings': predictions_captioning[-1],
+ 'pred_captions': predictions_caption[-1],
+ 'aux_outputs': [{'pred_captionings': x, 'pred_captions': y } for x, y in zip(predictions_captioning[:-1], predictions_caption[:-1])]}
+ return out
+ else:
+ out = {
+ 'pred_logits': predictions_class[-1],
+ 'pred_masks': predictions_mask[-1],
+ 'pred_boxes': predictions_bbox[-1],
+ 'pred_captions': predictions_caption[-1],
+ 'aux_outputs': self._set_aux_loss(
+ predictions_class if self.mask_classification else None, predictions_mask, predictions_bbox, predictions_caption
+ )
+ }
+ return out
+
+ def forward_captioning(self, x, mask_features, mask = None, target_queries = None, target_vlp = None, task='seg', extra={}):
+ # x is a list of multi-scale feature
+ assert len(x) == self.num_feature_levels
+ src = []
+ pos = []
+ size_list = []
+
+ # disable mask, it does not affect performance
+ del mask
+ for i in range(self.num_feature_levels):
+ size_list.append(x[i].shape[-2:])
+ pos.append(self.pe_layer(x[i], None).flatten(2))
+ src.append(self.input_proj[i](x[i]).flatten(2) + self.level_embed.weight[i][None, :, None])
+
+ # flatten NxCxHxW to HWxNxC
+ pos[-1] = pos[-1].permute(2, 0, 1)
+ src[-1] = src[-1].permute(2, 0, 1)
+
+ _, bs, _ = src[0].shape
+
+ # QxNxC
+ query_embed_ = self.query_embed.weight.unsqueeze(1).repeat(1, bs, 1)
+ query_feat = self.query_feat.weight.unsqueeze(1).repeat(1, bs, 1)
+ caping_lang_token = extra['start_token'].repeat(bs, 1)
+ query_feat_caping = self.query_feat_caping.weight.unsqueeze(1).repeat(1, bs, 1)
+
+ # prepare token embedding for evaluation
+ token_embs = self.lang_encoder.lang_encoder.token_embedding.weight
+ # token_embs = (token_embs / token_embs.norm(dim=-1, keepdim=True) + 1e-7)
+
+ for cap_idx in range(0, self.captioning_step):
+ caping_lang_embed = self.lang_encoder.forward_language_token((caping_lang_token,))[0].transpose(0, 1)
+ query_embed = torch.cat((query_embed_, caping_lang_embed), dim=0) # may not add at the beginning.
+ output = torch.cat((query_feat, query_feat_caping), dim=0) # concat object query, class token and caption token.
+
+ # prediction heads on learnable query features
+ results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[0], task=task)
+ attn_mask = results["attn_mask"]
+
+ for i in range(self.num_layers):
+ level_index = i % self.num_feature_levels
+ attn_mask[torch.where(attn_mask.sum(-1) == attn_mask.shape[-1])] = False
+ attn_mask = torch.cat((attn_mask, torch.zeros_like(attn_mask[:, :self.contxt_len, :])), dim=1)
+ self_tgt_mask = self.self_attn_mask.repeat(output.shape[1]*self.num_heads, 1, 1)
+
+ # attention: cross-attention first
+ output, avg_attn = self.transformer_cross_attention_layers[i](
+ output, src[level_index],
+ memory_mask=attn_mask,
+ memory_key_padding_mask=None, # here we do not apply masking on padded region
+ pos=pos[level_index], query_pos=query_embed
+ )
+
+ output = self.transformer_self_attention_layers[i](
+ output, tgt_mask=self_tgt_mask,
+ tgt_key_padding_mask=None,
+ query_pos=query_embed
+ )
+
+ # FFN
+ output = self.transformer_ffn_layers[i](
+ output
+ )
+
+ results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[(i + 1) % self.num_feature_levels], layer_id=i, task=task)
+ attn_mask = results["attn_mask"]
+
+ pred_captions_gen = results['outputs_captionting']
+ # pred_captions_gen = (pred_captions_gen / pred_captions_gen.norm(dim=-1, keepdim=True) + 1e-7)
+ pred_captions_gen = pred_captions_gen @ token_embs.t()
+ caping_lang_token[:,cap_idx+1] = pred_captions_gen[:,cap_idx].max(-1)[1]
+
+ out = {'pred_captionings': caping_lang_token,
+ 'pred_texts': self.lang_encoder.tokenizer.batch_decode(caping_lang_token, skip_special_tokens=True)}
+ return out
+
+
+ def forward_prediction_heads(self, output, mask_features, attn_mask_target_size, layer_id=-1, task='seg'):
+ decoder_output = self.decoder_norm(output)
+ decoder_output = decoder_output.transpose(0, 1)
+
+ # extract image captioning token from decoder output.
+ if self.task_switch['captioning'] and (task == 'vlp' or task == 'captioning_infer'):
+ outputs_captionting = decoder_output[:,self.num_queries:] @ self.caping_embed
+ else:
+ outputs_captionting = None
+
+ # recompute class token output.
+ norm_decoder_output = decoder_output / (decoder_output.norm(dim=-1, keepdim=True) + 1e-7)
+ obj_token = norm_decoder_output[:,:self.num_queries-1]
+ cls_token = norm_decoder_output[:,self.num_queries-1:self.num_queries]
+
+ sim = (cls_token @ obj_token.transpose(1,2)).softmax(-1)[:,0,:,None] # TODO include class token.
+ cls_token = (sim * decoder_output[:,:self.num_queries-1]).sum(dim=1, keepdim=True)
+
+ if (((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding']) \
+ or ((self.training and task == 'openimage') and self.task_switch['openimage']['grounding']):
+ decoder_output = torch.cat((decoder_output[:,:self.num_queries-1], cls_token, decoder_output[:,self.num_queries:2*self.num_queries-1]), dim=1)
+ else:
+ decoder_output = torch.cat((decoder_output[:,:self.num_queries-1], cls_token), dim=1)
+
+ # compute class, mask and bbox.
+ class_embed = decoder_output @ self.class_embed
+ # HACK do not compute similarity if mask is not on
+ outputs_class = self.lang_encoder.compute_similarity(class_embed, fake=(((not self.task_switch['mask']) and self.training) or (task == 'openimage')))
+
+ if self.task_switch['mask'] or self.task_switch['openimage']['mask']:
+ mask_embed = self.mask_embed(decoder_output)
+ outputs_mask = torch.einsum("bqc,bchw->bqhw", mask_embed, mask_features)
+
+ # NOTE: prediction is of higher-resolution
+ # [B, Q, H, W] -> [B, Q, H*W] -> [B, h, Q, H*W] -> [B*h, Q, HW]
+ attn_mask = F.interpolate(outputs_mask, size=attn_mask_target_size, mode="bilinear", align_corners=False)
+
+ # must use bool type
+ # If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged.
+ attn_mask = (attn_mask.sigmoid().flatten(2).unsqueeze(1).repeat(1, self.num_heads, 1, 1).flatten(0, 1) < 0.5).bool()
+ attn_mask = attn_mask.detach()
+
+ # NOTE: fill False for cls token (JY)
+ attn_mask[:, self.num_queries:self.num_queries+1].fill_(False)
+ else:
+ outputs_mask = None
+ attn_mask = torch.zeros((list(decoder_output.shape[:2]) + [attn_mask_target_size[0]*attn_mask_target_size[1]]), device=decoder_output.device).repeat(self.num_heads, 1, 1).bool()
+
+ outputs_bbox = [None for i in range(len(decoder_output))]
+ if self.task_switch['bbox']:
+ outputs_bbox = self.bbox_embed(decoder_output)
+
+ outputs_caption = None
+ if self.task_switch['caption']:
+ outputs_caption = class_embed
+
+
+ results = {
+ "outputs_class": outputs_class,
+ "outputs_mask": outputs_mask,
+ "outputs_bbox": outputs_bbox,
+ "attn_mask": attn_mask,
+ "outputs_caption": outputs_caption,
+ "outputs_captionting": outputs_captionting,
+ }
+ return results
+
+ @torch.jit.unused
+ def _set_aux_loss(self, outputs_class, outputs_seg_masks, outputs_boxes, outputs_captions):
+ # this is a workaround to make torchscript happy, as torchscript
+ # doesn't support dictionary with non-homogeneous values, such
+ # as a dict having both a Tensor and a list.
+ if self.mask_classification:
+ return [
+ {"pred_logits": a, "pred_masks": b, "pred_boxes": c, "pred_captions": d}
+ for a, b, c, d in zip(outputs_class[:-1], outputs_seg_masks[:-1], outputs_boxes[:-1], outputs_captions[:-1])
+ ]
+ else:
+ return [{"pred_masks": b} for b in outputs_seg_masks[:-1]]
+
+
+@register_decoder
+def get_masked_transformer_decoder(cfg, in_channels, lang_encoder, mask_classification, extra):
+ return MultiScaleMaskedTransformerDecoder(cfg, in_channels, lang_encoder, mask_classification, extra)
\ No newline at end of file
diff --git a/xdecoder/body/decoder/xdecoder.py b/xdecoder/body/decoder/xdecoder.py
new file mode 100755
index 0000000000000000000000000000000000000000..7e0543deaf932963c40bf414f904b8ef82f8fc63
--- /dev/null
+++ b/xdecoder/body/decoder/xdecoder.py
@@ -0,0 +1,700 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+# Modified by Bowen Cheng from: https://github.com/facebookresearch/detr/blob/master/models/detr.py
+
+# --------------------------------------------------------
+# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
+# Copyright (c) 2022 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Xueyan Zou (xueyan@cs.wisc.edu), Jianwei Yang (jianwyan@microsoft.com)
+# --------------------------------------------------------
+
+
+import logging
+from typing import Optional
+
+import torch
+from torch import nn, Tensor
+from torch.nn import functional as F
+
+from timm.models.layers import trunc_normal_
+from detectron2.layers import Conv2d
+import fvcore.nn.weight_init as weight_init
+
+from .registry import register_decoder
+from ...utils import configurable
+from ...modules import PositionEmbeddingSine
+
+
+class SelfAttentionLayer(nn.Module):
+
+ def __init__(self, d_model, nhead, dropout=0.0,
+ activation="relu", normalize_before=False):
+ super().__init__()
+ self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
+
+ self.norm = nn.LayerNorm(d_model)
+ self.dropout = nn.Dropout(dropout)
+
+ self.activation = _get_activation_fn(activation)
+ self.normalize_before = normalize_before
+
+ self._reset_parameters()
+
+ def _reset_parameters(self):
+ for p in self.parameters():
+ if p.dim() > 1:
+ nn.init.xavier_uniform_(p)
+
+ def with_pos_embed(self, tensor, pos: Optional[Tensor]):
+ return tensor if pos is None else tensor + pos
+
+ def forward_post(self, tgt,
+ tgt_mask: Optional[Tensor] = None,
+ tgt_key_padding_mask: Optional[Tensor] = None,
+ query_pos: Optional[Tensor] = None):
+ q = k = self.with_pos_embed(tgt, query_pos)
+ tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask,
+ key_padding_mask=tgt_key_padding_mask)[0]
+ tgt = tgt + self.dropout(tgt2)
+ tgt = self.norm(tgt)
+
+ return tgt
+
+ def forward_pre(self, tgt,
+ tgt_mask: Optional[Tensor] = None,
+ tgt_key_padding_mask: Optional[Tensor] = None,
+ query_pos: Optional[Tensor] = None):
+ tgt2 = self.norm(tgt)
+ q = k = self.with_pos_embed(tgt2, query_pos)
+ tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask,
+ key_padding_mask=tgt_key_padding_mask)[0]
+ tgt = tgt + self.dropout(tgt2)
+
+ return tgt
+
+ def forward(self, tgt,
+ tgt_mask: Optional[Tensor] = None,
+ tgt_key_padding_mask: Optional[Tensor] = None,
+ query_pos: Optional[Tensor] = None):
+ if self.normalize_before:
+ return self.forward_pre(tgt, tgt_mask,
+ tgt_key_padding_mask, query_pos)
+ return self.forward_post(tgt, tgt_mask,
+ tgt_key_padding_mask, query_pos)
+
+
+class CrossAttentionLayer(nn.Module):
+
+ def __init__(self, d_model, nhead, dropout=0.0,
+ activation="relu", normalize_before=False):
+ super().__init__()
+ self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
+
+ self.norm = nn.LayerNorm(d_model)
+ self.dropout = nn.Dropout(dropout)
+
+ self.activation = _get_activation_fn(activation)
+ self.normalize_before = normalize_before
+
+ self._reset_parameters()
+
+ def _reset_parameters(self):
+ for p in self.parameters():
+ if p.dim() > 1:
+ nn.init.xavier_uniform_(p)
+
+ def with_pos_embed(self, tensor, pos: Optional[Tensor]):
+ return tensor if pos is None else tensor + pos
+
+ def forward_post(self, tgt, memory,
+ memory_mask: Optional[Tensor] = None,
+ memory_key_padding_mask: Optional[Tensor] = None,
+ pos: Optional[Tensor] = None,
+ query_pos: Optional[Tensor] = None):
+ tgt2, avg_attn = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos),
+ key=self.with_pos_embed(memory, pos),
+ value=memory, attn_mask=memory_mask,
+ key_padding_mask=memory_key_padding_mask)
+ tgt = tgt + self.dropout(tgt2)
+ tgt = self.norm(tgt)
+ return tgt, avg_attn
+
+ def forward_pre(self, tgt, memory,
+ memory_mask: Optional[Tensor] = None,
+ memory_key_padding_mask: Optional[Tensor] = None,
+ pos: Optional[Tensor] = None,
+ query_pos: Optional[Tensor] = None):
+ tgt2 = self.norm(tgt)
+ tgt2, avg_attn = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos),
+ key=self.with_pos_embed(memory, pos),
+ value=memory, attn_mask=memory_mask,
+ key_padding_mask=memory_key_padding_mask)
+ tgt = tgt + self.dropout(tgt2)
+
+ return tgt, avg_attn
+
+ def forward(self, tgt, memory,
+ memory_mask: Optional[Tensor] = None,
+ memory_key_padding_mask: Optional[Tensor] = None,
+ pos: Optional[Tensor] = None,
+ query_pos: Optional[Tensor] = None):
+ if self.normalize_before:
+ return self.forward_pre(tgt, memory, memory_mask,
+ memory_key_padding_mask, pos, query_pos)
+ return self.forward_post(tgt, memory, memory_mask,
+ memory_key_padding_mask, pos, query_pos)
+
+
+class FFNLayer(nn.Module):
+
+ def __init__(self, d_model, dim_feedforward=2048, dropout=0.0,
+ activation="relu", normalize_before=False):
+ super().__init__()
+ # Implementation of Feedforward model
+ self.linear1 = nn.Linear(d_model, dim_feedforward)
+ self.dropout = nn.Dropout(dropout)
+ self.linear2 = nn.Linear(dim_feedforward, d_model)
+
+ self.norm = nn.LayerNorm(d_model)
+
+ self.activation = _get_activation_fn(activation)
+ self.normalize_before = normalize_before
+
+ self._reset_parameters()
+
+ def _reset_parameters(self):
+ for p in self.parameters():
+ if p.dim() > 1:
+ nn.init.xavier_uniform_(p)
+
+ def with_pos_embed(self, tensor, pos: Optional[Tensor]):
+ return tensor if pos is None else tensor + pos
+
+ def forward_post(self, tgt):
+ tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
+ tgt = tgt + self.dropout(tgt2)
+ tgt = self.norm(tgt)
+ return tgt
+
+ def forward_pre(self, tgt):
+ tgt2 = self.norm(tgt)
+ tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
+ tgt = tgt + self.dropout(tgt2)
+ return tgt
+
+ def forward(self, tgt):
+ if self.normalize_before:
+ return self.forward_pre(tgt)
+ return self.forward_post(tgt)
+
+
+def _get_activation_fn(activation):
+ """Return an activation function given a string"""
+ if activation == "relu":
+ return F.relu
+ if activation == "gelu":
+ return F.gelu
+ if activation == "glu":
+ return F.glu
+ raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
+
+
+class MLP(nn.Module):
+ """ Very simple multi-layer perceptron (also called FFN)"""
+
+ def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
+ super().__init__()
+ self.num_layers = num_layers
+ h = [hidden_dim] * (num_layers - 1)
+ self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
+
+ def forward(self, x):
+ for i, layer in enumerate(self.layers):
+ x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
+ return x
+
+
+class MultiScaleMaskedTransformerDecoder(nn.Module):
+
+ _version = 2
+
+ @configurable
+ def __init__(
+ self,
+ lang_encoder: nn.Module,
+ in_channels,
+ mask_classification=True,
+ *,
+ hidden_dim: int,
+ dim_proj: int,
+ num_queries: int,
+ contxt_len: int,
+ nheads: int,
+ dim_feedforward: int,
+ dec_layers: int,
+ pre_norm: bool,
+ mask_dim: int,
+ task_switch: dict,
+ captioning_step: int,
+ enforce_input_project: bool,
+ ):
+ """
+ NOTE: this interface is experimental.
+ Args:
+ in_channels: channels of the input features
+ mask_classification: whether to add mask classifier or not
+ num_classes: number of classes
+ hidden_dim: Transformer feature dimension
+ num_queries: number of queries
+ nheads: number of heads
+ dim_feedforward: feature dimension in feedforward network
+ enc_layers: number of Transformer encoder layers
+ dec_layers: number of Transformer decoder layers
+ pre_norm: whether to use pre-LayerNorm or not
+ mask_dim: mask feature dimension
+ enforce_input_project: add input project 1x1 conv even if input
+ channels and hidden dim is identical
+ """
+ super().__init__()
+ assert mask_classification, "Only support mask classification model"
+ self.mask_classification = mask_classification
+
+ # positional encoding
+ N_steps = hidden_dim // 2
+ self.pe_layer = PositionEmbeddingSine(N_steps, normalize=True)
+
+ # define Transformer decoder here
+ self.num_heads = nheads
+ self.num_layers = dec_layers
+ self.contxt_len = contxt_len
+ self.transformer_self_attention_layers = nn.ModuleList()
+ self.transformer_cross_attention_layers = nn.ModuleList()
+ self.transformer_ffn_layers = nn.ModuleList()
+
+ for _ in range(self.num_layers):
+ self.transformer_self_attention_layers.append(
+ SelfAttentionLayer(
+ d_model=hidden_dim,
+ nhead=nheads,
+ dropout=0.0,
+ normalize_before=pre_norm,
+ )
+ )
+
+ self.transformer_cross_attention_layers.append(
+ CrossAttentionLayer(
+ d_model=hidden_dim,
+ nhead=nheads,
+ dropout=0.0,
+ normalize_before=pre_norm,
+ )
+ )
+
+ self.transformer_ffn_layers.append(
+ FFNLayer(
+ d_model=hidden_dim,
+ dim_feedforward=dim_feedforward,
+ dropout=0.0,
+ normalize_before=pre_norm,
+ )
+ )
+
+ self.decoder_norm = nn.LayerNorm(hidden_dim)
+
+ self.num_queries = num_queries
+ # learnable query features
+ self.query_feat = nn.Embedding(num_queries, hidden_dim)
+ # learnable query p.e.
+ self.query_embed = nn.Embedding(num_queries, hidden_dim)
+
+ # level embedding (we always use 3 scales)
+ self.num_feature_levels = 3
+ self.level_embed = nn.Embedding(self.num_feature_levels, hidden_dim)
+ self.input_proj = nn.ModuleList()
+
+ for _ in range(self.num_feature_levels):
+ if in_channels != hidden_dim or enforce_input_project:
+ self.input_proj.append(Conv2d(in_channels, hidden_dim, kernel_size=1))
+ weight_init.c2_xavier_fill(self.input_proj[-1])
+ else:
+ self.input_proj.append(nn.Sequential())
+
+ self.task_switch = task_switch
+
+ # output FFNs
+ self.lang_encoder = lang_encoder
+ if self.task_switch['mask']:
+ self.mask_embed = MLP(hidden_dim, hidden_dim, mask_dim, 3)
+
+ self.class_embed = nn.Parameter(torch.empty(hidden_dim, dim_proj))
+ trunc_normal_(self.class_embed, std=.02)
+
+ if task_switch['bbox']:
+ self.bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3)
+
+ # Caption Project and query
+ if task_switch['captioning']:
+ self.caping_embed = nn.Parameter(torch.empty(hidden_dim, dim_proj))
+ trunc_normal_(self.caping_embed, std=.02)
+ # self.query_feat_caping = nn.Embedding(contxt_len, hidden_dim)
+ self.pos_embed_caping = nn.Embedding(contxt_len, hidden_dim)
+ self.captioning_step = captioning_step
+
+ # register self_attn_mask to avoid information leakage, it includes interaction between object query, class query and caping query
+ self_attn_mask = torch.zeros((1, num_queries + contxt_len, num_queries + contxt_len)).bool()
+ self_attn_mask[:, :num_queries, num_queries:] = True # object+class query does not attend with caption query.
+ self_attn_mask[:, num_queries:, num_queries:] = torch.triu(torch.ones((1, contxt_len, contxt_len)), diagonal=1).bool() # caption query only attend with previous token.
+ self_attn_mask[:, :num_queries-1, num_queries-1:num_queries] = True # object query does not attend with class query.
+ self_attn_mask[:, num_queries-1:num_queries, :num_queries-1] = True # class query does not attend with object query.
+ self.register_buffer("self_attn_mask", self_attn_mask)
+
+
+ @classmethod
+ def from_config(cls, cfg, in_channels, lang_encoder, mask_classification, extra):
+ ret = {}
+
+ ret["lang_encoder"] = lang_encoder
+ ret["in_channels"] = in_channels
+ ret["mask_classification"] = mask_classification
+
+ enc_cfg = cfg['MODEL']['ENCODER']
+ dec_cfg = cfg['MODEL']['DECODER']
+
+ ret["hidden_dim"] = dec_cfg['HIDDEN_DIM']
+ ret["dim_proj"] = cfg['MODEL']['DIM_PROJ']
+ ret["num_queries"] = dec_cfg['NUM_OBJECT_QUERIES']
+ ret["contxt_len"] = cfg['MODEL']['TEXT']['CONTEXT_LENGTH']
+
+ # Transformer parameters:
+ ret["nheads"] = dec_cfg['NHEADS']
+ ret["dim_feedforward"] = dec_cfg['DIM_FEEDFORWARD']
+
+ # NOTE: because we add learnable query features which requires supervision,
+ # we add minus 1 to decoder layers to be consistent with our loss
+ # implementation: that is, number of auxiliary losses is always
+ # equal to number of decoder layers. With learnable query features, the number of
+ # auxiliary losses equals number of decoders plus 1.
+ assert dec_cfg['DEC_LAYERS'] >= 1
+ ret["dec_layers"] = dec_cfg['DEC_LAYERS'] - 1
+ ret["pre_norm"] = dec_cfg['PRE_NORM']
+ ret["enforce_input_project"] = dec_cfg['ENFORCE_INPUT_PROJ']
+ ret["mask_dim"] = enc_cfg['MASK_DIM']
+
+ ret["task_switch"] = extra['task_switch']
+ ret["captioning_step"] = dec_cfg['CAPTIONING'].get('STEP', 50)
+
+ return ret
+
+ def forward(self, x, mask_features, mask=None, target_queries=None, target_vlp=None, task='seg', extra={}):
+ if task == 'captioning_infer':
+ return self.forward_captioning(x, mask_features, mask=mask, target_queries=target_queries, target_vlp=target_vlp, task=task, extra=extra)
+ # x is a list of multi-scale feature
+ assert len(x) == self.num_feature_levels
+ src = []
+ pos = []
+ size_list = []
+
+ # disable mask, it does not affect performance
+ del mask
+ for i in range(self.num_feature_levels):
+ size_list.append(x[i].shape[-2:])
+ pos.append(self.pe_layer(x[i], None).flatten(2))
+ src.append(self.input_proj[i](x[i]).flatten(2) + self.level_embed.weight[i][None, :, None])
+
+ # flatten NxCxHxW to HWxNxC
+ pos[-1] = pos[-1].permute(2, 0, 1)
+ src[-1] = src[-1].permute(2, 0, 1)
+
+ _, bs, _ = src[0].shape
+
+ # QxNxC
+ query_embed = self.query_embed.weight.unsqueeze(1).repeat(1, bs, 1)
+ output = self.query_feat.weight.unsqueeze(1).repeat(1, bs, 1)
+
+ predictions_class = []
+ predictions_mask = []
+ predictions_bbox = []
+ predictions_caption = []
+ predictions_captioning = []
+
+ self_tgt_mask = None
+ if self.training and task == 'vlp' and self.task_switch['captioning']:
+ # output = torch.cat((output, self.query_feat_caping.weight.unsqueeze(1).repeat(1, bs, 1)), dim=0) # concat object query, class token and caption token.
+ caping_lang_embed = torch.cat([caption['caption_tokens'] for caption in target_vlp], dim=0).transpose(0, 1) # language output
+ _caping_lang_embed = caping_lang_embed.detach().clone()
+ output = torch.cat((output, _caping_lang_embed), dim=0) # concat object query, class token and caption token.
+ caping_lang_embed += self.pos_embed_caping.weight.unsqueeze(1).repeat(1, bs, 1)
+ query_embed = torch.cat((query_embed, caping_lang_embed), dim=0) # may not add at the beginning.
+ self_tgt_mask = self.self_attn_mask.repeat(output.shape[1]*self.num_heads, 1, 1)
+ elif (((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding']) \
+ or ((self.training and task == 'openimage') and self.task_switch['openimage']['grounding']):
+ self_tgt_mask = self.self_attn_mask[:,:self.num_queries,:self.num_queries].repeat(output.shape[1]*self.num_heads, 1, 1)
+ grounding_tokens = extra['grounding_tokens']
+ _grounding_tokens = grounding_tokens.detach().clone()
+ # initialize with negative attention at the beginning.
+ pad_tgt_mask = torch.ones((1, self.num_queries + (self.num_queries-1) + len(grounding_tokens), self.num_queries + (self.num_queries-1) + len(grounding_tokens)), device=self_tgt_mask.device).bool().repeat(output.shape[1]*self.num_heads, 1, 1)
+ pad_tgt_mask[:,:self.num_queries,:self.num_queries] = self_tgt_mask
+ pad_tgt_mask[:,self.num_queries:,self.num_queries:] = False # grounding tokens could attend with eatch other
+ self_tgt_mask = pad_tgt_mask
+ output = torch.cat((output, output[:-1]), dim=0)
+ query_embed = torch.cat((query_embed, query_embed[:-1]), dim=0) # also pad language embdding to fix embedding
+ else:
+ self_tgt_mask = self.self_attn_mask[:,:self.num_queries,:self.num_queries].repeat(output.shape[1]*self.num_heads, 1, 1)
+
+ # prediction heads on learnable query features
+ results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[0], task=task)
+ attn_mask = results["attn_mask"]
+ predictions_class.append(results["outputs_class"])
+ predictions_mask.append(results["outputs_mask"])
+ predictions_bbox.append(results["outputs_bbox"])
+ predictions_caption.append(results["outputs_caption"])
+ predictions_captioning.append(results["outputs_captionting"])
+
+ for i in range(self.num_layers):
+ level_index = i % self.num_feature_levels
+ attn_mask[torch.where(attn_mask.sum(-1) == attn_mask.shape[-1])] = False
+
+ if self.training and task == 'vlp' and self.task_switch['captioning']:
+ attn_mask = torch.cat((attn_mask, torch.zeros_like(attn_mask[:, :self.contxt_len, :])), dim=1)
+ # attention: cross-attention first
+ output, avg_attn = self.transformer_cross_attention_layers[i](
+ output, src[level_index],
+ memory_mask=attn_mask,
+ memory_key_padding_mask=None, # here we do not apply masking on padded region
+ pos=pos[level_index], query_pos=query_embed
+ )
+
+ if (((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding']) \
+ or ((self.training and task == 'openimage') and self.task_switch['openimage']['grounding']):
+ output = torch.cat((output, _grounding_tokens), dim=0)
+ query_embed = torch.cat((query_embed, grounding_tokens), dim=0)
+
+ output = self.transformer_self_attention_layers[i](
+ output, tgt_mask=self_tgt_mask,
+ tgt_key_padding_mask=None,
+ query_pos=query_embed
+ )
+
+ # FFN
+ output = self.transformer_ffn_layers[i](
+ output
+ )
+
+ if ((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding'] \
+ or ((self.training and task == 'openimage') and self.task_switch['openimage']['grounding']):
+ _grounding_tokens = output[-len(_grounding_tokens):]
+ output = output[:-len(_grounding_tokens)]
+ query_embed = query_embed[:-len(_grounding_tokens)]
+
+ results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[(i + 1) % self.num_feature_levels], layer_id=i, task=task)
+ attn_mask = results["attn_mask"]
+ predictions_class.append(results["outputs_class"])
+ predictions_mask.append(results["outputs_mask"])
+ predictions_bbox.append(results["outputs_bbox"])
+ predictions_caption.append(results["outputs_caption"])
+ predictions_captioning.append(results["outputs_captionting"])
+
+ assert len(predictions_class) == self.num_layers + 1
+ if task == 'vlp':
+ out = {'pred_captionings': predictions_captioning[-1],
+ 'pred_captions': predictions_caption[-1],
+ 'aux_outputs': [{'pred_captionings': x, 'pred_captions': y } for x, y in zip(predictions_captioning[:-1], predictions_caption[:-1])]}
+ return out
+ else:
+ out = {
+ 'pred_logits': predictions_class[-1],
+ 'pred_masks': predictions_mask[-1],
+ 'pred_boxes': predictions_bbox[-1],
+ 'pred_captions': predictions_caption[-1],
+ 'aux_outputs': self._set_aux_loss(
+ predictions_class if self.mask_classification else None, predictions_mask, predictions_bbox, predictions_caption
+ )
+ }
+ return out
+
+ def forward_captioning(self, x, mask_features, mask = None, target_queries = None, target_vlp = None, task='seg', extra={}):
+ # x is a list of multi-scale feature
+ assert len(x) == self.num_feature_levels
+ src = []
+ pos = []
+ size_list = []
+
+ # disable mask, it does not affect performance
+ del mask
+ for i in range(self.num_feature_levels):
+ size_list.append(x[i].shape[-2:])
+ pos.append(self.pe_layer(x[i], None).flatten(2))
+ src.append(self.input_proj[i](x[i]).flatten(2) + self.level_embed.weight[i][None, :, None])
+
+ # flatten NxCxHxW to HWxNxC
+ pos[-1] = pos[-1].permute(2, 0, 1)
+ src[-1] = src[-1].permute(2, 0, 1)
+
+ _, bs, _ = src[0].shape
+
+ # QxNxC
+ query_embed_ = self.query_embed.weight.unsqueeze(1).repeat(1, bs, 1)
+ query_feat = self.query_feat.weight.unsqueeze(1).repeat(1, bs, 1)
+ caping_lang_token = extra['start_token'].repeat(bs, 1)
+ start_id = 0
+ if 'token' in extra:
+ caping_lang_token[:,:len(extra['token'][0])] = extra['token']
+ start_id = len(extra['token'][0])-1
+ # query_feat_caping = self.query_feat_caping.weight.unsqueeze(1).repeat(1, bs, 1)
+ pos_embed_caping = self.pos_embed_caping.weight.unsqueeze(1).repeat(1, bs, 1)
+ # prepare token embedding for evaluation
+ token_embs = self.lang_encoder.lang_encoder.token_embedding.weight
+ # token_embs = (token_embs / token_embs.norm(dim=-1, keepdim=True) + 1e-7)
+
+ for cap_idx in range(start_id, self.captioning_step):
+ caping_lang_embed = self.lang_encoder.forward_language_token((caping_lang_token,))[0].transpose(0, 1)
+ output = torch.cat((query_feat, caping_lang_embed), dim=0) # concat object query, class token and caption token.
+ caping_lang_embed += pos_embed_caping
+ query_embed = torch.cat((query_embed_, caping_lang_embed), dim=0) # may not add at the beginning.
+ # output = torch.cat((query_feat, query_feat_caping), dim=0) # concat object query, class token and caption token.
+
+ # prediction heads on learnable query features
+ results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[0], task=task)
+ attn_mask = results["attn_mask"]
+
+ for i in range(self.num_layers):
+ level_index = i % self.num_feature_levels
+ attn_mask[torch.where(attn_mask.sum(-1) == attn_mask.shape[-1])] = False
+ attn_mask = torch.cat((attn_mask, torch.zeros_like(attn_mask[:, :self.contxt_len, :])), dim=1)
+ self_tgt_mask = self.self_attn_mask.repeat(output.shape[1]*self.num_heads, 1, 1)
+
+ if extra['captioning_mask'] is not None:
+ bs,nq,wh = attn_mask.shape
+ assert bs==self.num_heads, "Only support single image referring captioning."
+ cap_mask = extra['captioning_mask']
+ attn_mask = attn_mask.reshape(bs,nq,size_list[i%3][0],size_list[i%3][1])
+ cap_mask = F.interpolate(cap_mask[None,].float(), size_list[i%3], mode='nearest').bool()[0,0]
+ attn_mask[:,self.num_queries:, cap_mask] = True
+ attn_mask = attn_mask.reshape(bs,nq,wh)
+
+ # attention: cross-attention first
+ output, avg_attn = self.transformer_cross_attention_layers[i](
+ output, src[level_index],
+ memory_mask=attn_mask,
+ memory_key_padding_mask=None, # here we do not apply masking on padded region
+ pos=pos[level_index], query_pos=query_embed
+ )
+
+ output = self.transformer_self_attention_layers[i](
+ output, tgt_mask=self_tgt_mask,
+ tgt_key_padding_mask=None,
+ query_pos=query_embed
+ )
+
+ # FFN
+ output = self.transformer_ffn_layers[i](
+ output
+ )
+
+ results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[(i + 1) % self.num_feature_levels], layer_id=i, task=task)
+ attn_mask = results["attn_mask"]
+
+ pred_captions_gen = results['outputs_captionting']
+ # pred_captions_gen = (pred_captions_gen / pred_captions_gen.norm(dim=-1, keepdim=True) + 1e-7)
+ pred_captions_gen = pred_captions_gen @ token_embs.t()
+ caping_lang_token[:,cap_idx+1] = pred_captions_gen[:,cap_idx].max(-1)[1]
+
+ texts = self.lang_encoder.tokenizer.batch_decode(caping_lang_token, skip_special_tokens=False)
+ texts_new = []
+
+ for x in texts:
+ x = x.split('<|endoftext|>')[0]
+ x = x.replace('<|endoftext|>','')
+ x = x.replace('<|startoftext|>','')
+ x = x.strip()
+ texts_new.append(x)
+
+ out = {'pred_captionings': caping_lang_token,
+ 'pred_texts': texts_new}
+ return out
+
+
+ def forward_prediction_heads(self, output, mask_features, attn_mask_target_size, layer_id=-1, task='seg'):
+ decoder_output = self.decoder_norm(output)
+ decoder_output = decoder_output.transpose(0, 1)
+
+ # extract image captioning token from decoder output.
+ if self.task_switch['captioning'] and (task == 'vlp' or task == 'captioning_infer'):
+ outputs_captionting = decoder_output[:,self.num_queries:] @ self.caping_embed
+ else:
+ outputs_captionting = None
+
+ # recompute class token output.
+ norm_decoder_output = decoder_output / (decoder_output.norm(dim=-1, keepdim=True) + 1e-7)
+ obj_token = norm_decoder_output[:,:self.num_queries-1]
+ cls_token = norm_decoder_output[:,self.num_queries-1:self.num_queries]
+
+ sim = (cls_token @ obj_token.transpose(1,2)).softmax(-1)[:,0,:,None] # TODO include class token.
+ cls_token = (sim * decoder_output[:,:self.num_queries-1]).sum(dim=1, keepdim=True)
+
+ if (((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding']) \
+ or ((self.training and task == 'openimage') and self.task_switch['openimage']['grounding']):
+ decoder_output = torch.cat((decoder_output[:,:self.num_queries-1], cls_token, decoder_output[:,self.num_queries:2*self.num_queries-1]), dim=1)
+ else:
+ decoder_output = torch.cat((decoder_output[:,:self.num_queries-1], cls_token), dim=1)
+
+ # compute class, mask and bbox.
+ class_embed = decoder_output @ self.class_embed
+ # HACK do not compute similarity if mask is not on
+ outputs_class = self.lang_encoder.compute_similarity(class_embed, fake=(((not self.task_switch['mask']) and self.training) or (task == 'openimage')))
+
+ if self.task_switch['mask'] or self.task_switch['openimage']['mask']:
+ mask_embed = self.mask_embed(decoder_output)
+ outputs_mask = torch.einsum("bqc,bchw->bqhw", mask_embed, mask_features)
+
+ # NOTE: prediction is of higher-resolution
+ # [B, Q, H, W] -> [B, Q, H*W] -> [B, h, Q, H*W] -> [B*h, Q, HW]
+ attn_mask = F.interpolate(outputs_mask, size=attn_mask_target_size, mode="bilinear", align_corners=False)
+
+ # must use bool type
+ # If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged.
+ attn_mask = (attn_mask.sigmoid().flatten(2).unsqueeze(1).repeat(1, self.num_heads, 1, 1).flatten(0, 1) < 0.5).bool()
+ attn_mask = attn_mask.detach()
+
+ # NOTE: fill False for cls token (JY)
+ attn_mask[:, self.num_queries:self.num_queries+1].fill_(False)
+ else:
+ outputs_mask = None
+ attn_mask = torch.zeros((list(decoder_output.shape[:2]) + [attn_mask_target_size[0]*attn_mask_target_size[1]]), device=decoder_output.device).repeat(self.num_heads, 1, 1).bool()
+
+ outputs_bbox = [None for i in range(len(decoder_output))]
+ if self.task_switch['bbox']:
+ outputs_bbox = self.bbox_embed(decoder_output)
+
+ outputs_caption = None
+ if self.task_switch['caption']:
+ outputs_caption = class_embed
+
+
+ results = {
+ "outputs_class": outputs_class,
+ "outputs_mask": outputs_mask,
+ "outputs_bbox": outputs_bbox,
+ "attn_mask": attn_mask,
+ "outputs_caption": outputs_caption,
+ "outputs_captionting": outputs_captionting,
+ }
+ return results
+
+ @torch.jit.unused
+ def _set_aux_loss(self, outputs_class, outputs_seg_masks, outputs_boxes, outputs_captions):
+ # this is a workaround to make torchscript happy, as torchscript
+ # doesn't support dictionary with non-homogeneous values, such
+ # as a dict having both a Tensor and a list.
+ if self.mask_classification:
+ return [
+ {"pred_logits": a, "pred_masks": b, "pred_boxes": c, "pred_captions": d}
+ for a, b, c, d in zip(outputs_class[:-1], outputs_seg_masks[:-1], outputs_boxes[:-1], outputs_captions[:-1])
+ ]
+ else:
+ return [{"pred_masks": b} for b in outputs_seg_masks[:-1]]
+
+
+@register_decoder
+def get_masked_transformer_decoder(cfg, in_channels, lang_encoder, mask_classification, extra):
+ return MultiScaleMaskedTransformerDecoder(cfg, in_channels, lang_encoder, mask_classification, extra)
\ No newline at end of file
diff --git a/xdecoder/body/decoder/xdecoder2.py b/xdecoder/body/decoder/xdecoder2.py
new file mode 100644
index 0000000000000000000000000000000000000000..e99d4623b2e987a66650db71c4a378a0ebaf241a
--- /dev/null
+++ b/xdecoder/body/decoder/xdecoder2.py
@@ -0,0 +1,700 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+# Modified by Bowen Cheng from: https://github.com/facebookresearch/detr/blob/master/models/detr.py
+
+# --------------------------------------------------------
+# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
+# Copyright (c) 2022 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Xueyan Zou (xueyan@cs.wisc.edu), Jianwei Yang (jianwyan@microsoft.com)
+# --------------------------------------------------------
+
+
+import logging
+from typing import Optional
+
+import torch
+from torch import nn, Tensor
+from torch.nn import functional as F
+
+from timm.models.layers import trunc_normal_
+from detectron2.layers import Conv2d
+import fvcore.nn.weight_init as weight_init
+
+from .registry import register_decoder
+from ...utils import configurable
+from ...modules import PositionEmbeddingSine
+
+
+class SelfAttentionLayer(nn.Module):
+
+ def __init__(self, d_model, nhead, dropout=0.0,
+ activation="relu", normalize_before=False):
+ super().__init__()
+ self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
+
+ self.norm = nn.LayerNorm(d_model)
+ self.dropout = nn.Dropout(dropout)
+
+ self.activation = _get_activation_fn(activation)
+ self.normalize_before = normalize_before
+
+ self._reset_parameters()
+
+ def _reset_parameters(self):
+ for p in self.parameters():
+ if p.dim() > 1:
+ nn.init.xavier_uniform_(p)
+
+ def with_pos_embed(self, tensor, pos: Optional[Tensor]):
+ return tensor if pos is None else tensor + pos
+
+ def forward_post(self, tgt,
+ tgt_mask: Optional[Tensor] = None,
+ tgt_key_padding_mask: Optional[Tensor] = None,
+ query_pos: Optional[Tensor] = None):
+ q = k = self.with_pos_embed(tgt, query_pos)
+ tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask,
+ key_padding_mask=tgt_key_padding_mask)[0]
+ tgt = tgt + self.dropout(tgt2)
+ tgt = self.norm(tgt)
+
+ return tgt
+
+ def forward_pre(self, tgt,
+ tgt_mask: Optional[Tensor] = None,
+ tgt_key_padding_mask: Optional[Tensor] = None,
+ query_pos: Optional[Tensor] = None):
+ tgt2 = self.norm(tgt)
+ q = k = self.with_pos_embed(tgt2, query_pos)
+ tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask,
+ key_padding_mask=tgt_key_padding_mask)[0]
+ tgt = tgt + self.dropout(tgt2)
+
+ return tgt
+
+ def forward(self, tgt,
+ tgt_mask: Optional[Tensor] = None,
+ tgt_key_padding_mask: Optional[Tensor] = None,
+ query_pos: Optional[Tensor] = None):
+ if self.normalize_before:
+ return self.forward_pre(tgt, tgt_mask,
+ tgt_key_padding_mask, query_pos)
+ return self.forward_post(tgt, tgt_mask,
+ tgt_key_padding_mask, query_pos)
+
+
+class CrossAttentionLayer(nn.Module):
+
+ def __init__(self, d_model, nhead, dropout=0.0,
+ activation="relu", normalize_before=False):
+ super().__init__()
+ self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
+
+ self.norm = nn.LayerNorm(d_model)
+ self.dropout = nn.Dropout(dropout)
+
+ self.activation = _get_activation_fn(activation)
+ self.normalize_before = normalize_before
+
+ self._reset_parameters()
+
+ def _reset_parameters(self):
+ for p in self.parameters():
+ if p.dim() > 1:
+ nn.init.xavier_uniform_(p)
+
+ def with_pos_embed(self, tensor, pos: Optional[Tensor]):
+ return tensor if pos is None else tensor + pos
+
+ def forward_post(self, tgt, memory,
+ memory_mask: Optional[Tensor] = None,
+ memory_key_padding_mask: Optional[Tensor] = None,
+ pos: Optional[Tensor] = None,
+ query_pos: Optional[Tensor] = None):
+ tgt2, avg_attn = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos),
+ key=self.with_pos_embed(memory, pos),
+ value=memory, attn_mask=memory_mask,
+ key_padding_mask=memory_key_padding_mask)
+ tgt = tgt + self.dropout(tgt2)
+ tgt = self.norm(tgt)
+ return tgt, avg_attn
+
+ def forward_pre(self, tgt, memory,
+ memory_mask: Optional[Tensor] = None,
+ memory_key_padding_mask: Optional[Tensor] = None,
+ pos: Optional[Tensor] = None,
+ query_pos: Optional[Tensor] = None):
+ tgt2 = self.norm(tgt)
+ tgt2, avg_attn = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos),
+ key=self.with_pos_embed(memory, pos),
+ value=memory, attn_mask=memory_mask,
+ key_padding_mask=memory_key_padding_mask)
+ tgt = tgt + self.dropout(tgt2)
+
+ return tgt, avg_attn
+
+ def forward(self, tgt, memory,
+ memory_mask: Optional[Tensor] = None,
+ memory_key_padding_mask: Optional[Tensor] = None,
+ pos: Optional[Tensor] = None,
+ query_pos: Optional[Tensor] = None):
+ if self.normalize_before:
+ return self.forward_pre(tgt, memory, memory_mask,
+ memory_key_padding_mask, pos, query_pos)
+ return self.forward_post(tgt, memory, memory_mask,
+ memory_key_padding_mask, pos, query_pos)
+
+
+class FFNLayer(nn.Module):
+
+ def __init__(self, d_model, dim_feedforward=2048, dropout=0.0,
+ activation="relu", normalize_before=False):
+ super().__init__()
+ # Implementation of Feedforward model
+ self.linear1 = nn.Linear(d_model, dim_feedforward)
+ self.dropout = nn.Dropout(dropout)
+ self.linear2 = nn.Linear(dim_feedforward, d_model)
+
+ self.norm = nn.LayerNorm(d_model)
+
+ self.activation = _get_activation_fn(activation)
+ self.normalize_before = normalize_before
+
+ self._reset_parameters()
+
+ def _reset_parameters(self):
+ for p in self.parameters():
+ if p.dim() > 1:
+ nn.init.xavier_uniform_(p)
+
+ def with_pos_embed(self, tensor, pos: Optional[Tensor]):
+ return tensor if pos is None else tensor + pos
+
+ def forward_post(self, tgt):
+ tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
+ tgt = tgt + self.dropout(tgt2)
+ tgt = self.norm(tgt)
+ return tgt
+
+ def forward_pre(self, tgt):
+ tgt2 = self.norm(tgt)
+ tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
+ tgt = tgt + self.dropout(tgt2)
+ return tgt
+
+ def forward(self, tgt):
+ if self.normalize_before:
+ return self.forward_pre(tgt)
+ return self.forward_post(tgt)
+
+
+def _get_activation_fn(activation):
+ """Return an activation function given a string"""
+ if activation == "relu":
+ return F.relu
+ if activation == "gelu":
+ return F.gelu
+ if activation == "glu":
+ return F.glu
+ raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
+
+
+class MLP(nn.Module):
+ """ Very simple multi-layer perceptron (also called FFN)"""
+
+ def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
+ super().__init__()
+ self.num_layers = num_layers
+ h = [hidden_dim] * (num_layers - 1)
+ self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
+
+ def forward(self, x):
+ for i, layer in enumerate(self.layers):
+ x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
+ return x
+
+
+class MultiScaleMaskedTransformerDecoder(nn.Module):
+
+ _version = 2
+
+ @configurable
+ def __init__(
+ self,
+ lang_encoder: nn.Module,
+ in_channels,
+ mask_classification=True,
+ *,
+ hidden_dim: int,
+ dim_proj: int,
+ num_queries: int,
+ contxt_len: int,
+ nheads: int,
+ dim_feedforward: int,
+ dec_layers: int,
+ pre_norm: bool,
+ mask_dim: int,
+ task_switch: dict,
+ captioning_step: int,
+ enforce_input_project: bool,
+ ):
+ """
+ NOTE: this interface is experimental.
+ Args:
+ in_channels: channels of the input features
+ mask_classification: whether to add mask classifier or not
+ num_classes: number of classes
+ hidden_dim: Transformer feature dimension
+ num_queries: number of queries
+ nheads: number of heads
+ dim_feedforward: feature dimension in feedforward network
+ enc_layers: number of Transformer encoder layers
+ dec_layers: number of Transformer decoder layers
+ pre_norm: whether to use pre-LayerNorm or not
+ mask_dim: mask feature dimension
+ enforce_input_project: add input project 1x1 conv even if input
+ channels and hidden dim is identical
+ """
+ super().__init__()
+ assert mask_classification, "Only support mask classification model"
+ self.mask_classification = mask_classification
+
+ # positional encoding
+ N_steps = hidden_dim // 2
+ self.pe_layer = PositionEmbeddingSine(N_steps, normalize=True)
+
+ # define Transformer decoder here
+ self.num_heads = nheads
+ self.num_layers = dec_layers
+ self.contxt_len = contxt_len
+ self.transformer_self_attention_layers = nn.ModuleList()
+ self.transformer_cross_attention_layers = nn.ModuleList()
+ self.transformer_ffn_layers = nn.ModuleList()
+
+ for _ in range(self.num_layers):
+ self.transformer_self_attention_layers.append(
+ SelfAttentionLayer(
+ d_model=hidden_dim,
+ nhead=nheads,
+ dropout=0.0,
+ normalize_before=pre_norm,
+ )
+ )
+
+ self.transformer_cross_attention_layers.append(
+ CrossAttentionLayer(
+ d_model=hidden_dim,
+ nhead=nheads,
+ dropout=0.0,
+ normalize_before=pre_norm,
+ )
+ )
+
+ self.transformer_ffn_layers.append(
+ FFNLayer(
+ d_model=hidden_dim,
+ dim_feedforward=dim_feedforward,
+ dropout=0.0,
+ normalize_before=pre_norm,
+ )
+ )
+
+ self.decoder_norm = nn.LayerNorm(hidden_dim)
+
+ self.num_queries = num_queries
+ # learnable query features
+ self.query_feat = nn.Embedding(num_queries, hidden_dim)
+ # learnable query p.e.
+ self.query_embed = nn.Embedding(num_queries, hidden_dim)
+
+ # level embedding (we always use 3 scales)
+ self.num_feature_levels = 3
+ self.level_embed = nn.Embedding(self.num_feature_levels, hidden_dim)
+ self.input_proj = nn.ModuleList()
+
+ for _ in range(self.num_feature_levels):
+ if in_channels != hidden_dim or enforce_input_project:
+ self.input_proj.append(Conv2d(in_channels, hidden_dim, kernel_size=1))
+ weight_init.c2_xavier_fill(self.input_proj[-1])
+ else:
+ self.input_proj.append(nn.Sequential())
+
+ self.task_switch = task_switch
+
+ # output FFNs
+ self.lang_encoder = lang_encoder
+ if self.task_switch['mask']:
+ self.mask_embed = MLP(hidden_dim, hidden_dim, mask_dim, 3)
+
+ self.class_embed = nn.Parameter(torch.empty(hidden_dim, dim_proj))
+ trunc_normal_(self.class_embed, std=.02)
+
+ if task_switch['bbox']:
+ self.bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3)
+
+ # Caption Project and query
+ if task_switch['captioning']:
+ self.caping_embed = nn.Parameter(torch.empty(hidden_dim, dim_proj))
+ trunc_normal_(self.caping_embed, std=.02)
+ self.query_feat_caping = nn.Embedding(contxt_len, hidden_dim)
+ # self.pos_embed_caping = nn.Embedding(contxt_len, hidden_dim)
+ self.captioning_step = captioning_step
+
+ # register self_attn_mask to avoid information leakage, it includes interaction between object query, class query and caping query
+ self_attn_mask = torch.zeros((1, num_queries + contxt_len, num_queries + contxt_len)).bool()
+ self_attn_mask[:, :num_queries, num_queries:] = True # object+class query does not attend with caption query.
+ self_attn_mask[:, num_queries:, num_queries:] = torch.triu(torch.ones((1, contxt_len, contxt_len)), diagonal=1).bool() # caption query only attend with previous token.
+ self_attn_mask[:, :num_queries-1, num_queries-1:num_queries] = True # object query does not attend with class query.
+ self_attn_mask[:, num_queries-1:num_queries, :num_queries-1] = True # class query does not attend with object query.
+ self.register_buffer("self_attn_mask", self_attn_mask)
+
+
+ @classmethod
+ def from_config(cls, cfg, in_channels, lang_encoder, mask_classification, extra):
+ ret = {}
+
+ ret["lang_encoder"] = lang_encoder
+ ret["in_channels"] = in_channels
+ ret["mask_classification"] = mask_classification
+
+ enc_cfg = cfg['MODEL']['ENCODER']
+ dec_cfg = cfg['MODEL']['DECODER']
+
+ ret["hidden_dim"] = dec_cfg['HIDDEN_DIM']
+ ret["dim_proj"] = cfg['MODEL']['DIM_PROJ']
+ ret["num_queries"] = dec_cfg['NUM_OBJECT_QUERIES']
+ ret["contxt_len"] = cfg['MODEL']['TEXT']['CONTEXT_LENGTH']
+
+ # Transformer parameters:
+ ret["nheads"] = dec_cfg['NHEADS']
+ ret["dim_feedforward"] = dec_cfg['DIM_FEEDFORWARD']
+
+ # NOTE: because we add learnable query features which requires supervision,
+ # we add minus 1 to decoder layers to be consistent with our loss
+ # implementation: that is, number of auxiliary losses is always
+ # equal to number of decoder layers. With learnable query features, the number of
+ # auxiliary losses equals number of decoders plus 1.
+ assert dec_cfg['DEC_LAYERS'] >= 1
+ ret["dec_layers"] = dec_cfg['DEC_LAYERS'] - 1
+ ret["pre_norm"] = dec_cfg['PRE_NORM']
+ ret["enforce_input_project"] = dec_cfg['ENFORCE_INPUT_PROJ']
+ ret["mask_dim"] = enc_cfg['MASK_DIM']
+
+ ret["task_switch"] = extra['task_switch']
+ ret["captioning_step"] = dec_cfg['CAPTIONING'].get('STEP', 50)
+
+ return ret
+
+ def forward(self, x, mask_features, mask=None, target_queries=None, target_vlp=None, task='seg', extra={}):
+ if task == 'captioning_infer':
+ return self.forward_captioning(x, mask_features, mask=mask, target_queries=target_queries, target_vlp=target_vlp, task=task, extra=extra)
+ # x is a list of multi-scale feature
+ assert len(x) == self.num_feature_levels
+ src = []
+ pos = []
+ size_list = []
+
+ # disable mask, it does not affect performance
+ del mask
+ for i in range(self.num_feature_levels):
+ size_list.append(x[i].shape[-2:])
+ pos.append(self.pe_layer(x[i], None).flatten(2))
+ src.append(self.input_proj[i](x[i]).flatten(2) + self.level_embed.weight[i][None, :, None])
+
+ # flatten NxCxHxW to HWxNxC
+ pos[-1] = pos[-1].permute(2, 0, 1)
+ src[-1] = src[-1].permute(2, 0, 1)
+
+ _, bs, _ = src[0].shape
+
+ # QxNxC
+ query_embed = self.query_embed.weight.unsqueeze(1).repeat(1, bs, 1)
+ output = self.query_feat.weight.unsqueeze(1).repeat(1, bs, 1)
+
+ predictions_class = []
+ predictions_mask = []
+ predictions_bbox = []
+ predictions_caption = []
+ predictions_captioning = []
+
+ self_tgt_mask = None
+ if self.training and task == 'vlp' and self.task_switch['captioning']:
+ output = torch.cat((output, self.query_feat_caping.weight.unsqueeze(1).repeat(1, bs, 1)), dim=0) # concat object query, class token and caption token.
+ caping_lang_embed = torch.cat([caption['caption_tokens'] for caption in target_vlp], dim=0).transpose(0, 1) # language output
+ # _caping_lang_embed = caping_lang_embed.detach().clone()
+ # output = torch.cat((output, _caping_lang_embed), dim=0) # concat object query, class token and caption token.
+ # caping_lang_embed += self.pos_embed_caping.weight.unsqueeze(1).repeat(1, bs, 1)
+ query_embed = torch.cat((query_embed, caping_lang_embed), dim=0) # may not add at the beginning.
+ self_tgt_mask = self.self_attn_mask.repeat(output.shape[1]*self.num_heads, 1, 1)
+ elif (((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding']) \
+ or ((self.training and task == 'openimage') and self.task_switch['openimage']['grounding']):
+ self_tgt_mask = self.self_attn_mask[:,:self.num_queries,:self.num_queries].repeat(output.shape[1]*self.num_heads, 1, 1)
+ grounding_tokens = extra['grounding_tokens']
+ _grounding_tokens = grounding_tokens.detach().clone()
+ # initialize with negative attention at the beginning.
+ pad_tgt_mask = torch.ones((1, self.num_queries + (self.num_queries-1) + len(grounding_tokens), self.num_queries + (self.num_queries-1) + len(grounding_tokens)), device=self_tgt_mask.device).bool().repeat(output.shape[1]*self.num_heads, 1, 1)
+ pad_tgt_mask[:,:self.num_queries,:self.num_queries] = self_tgt_mask
+ pad_tgt_mask[:,self.num_queries:,self.num_queries:] = False # grounding tokens could attend with eatch other
+ self_tgt_mask = pad_tgt_mask
+ output = torch.cat((output, output[:-1]), dim=0)
+ query_embed = torch.cat((query_embed, query_embed[:-1]), dim=0) # also pad language embdding to fix embedding
+ else:
+ self_tgt_mask = self.self_attn_mask[:,:self.num_queries,:self.num_queries].repeat(output.shape[1]*self.num_heads, 1, 1)
+
+ # prediction heads on learnable query features
+ results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[0], task=task)
+ attn_mask = results["attn_mask"]
+ predictions_class.append(results["outputs_class"])
+ predictions_mask.append(results["outputs_mask"])
+ predictions_bbox.append(results["outputs_bbox"])
+ predictions_caption.append(results["outputs_caption"])
+ predictions_captioning.append(results["outputs_captionting"])
+
+ for i in range(self.num_layers):
+ level_index = i % self.num_feature_levels
+ attn_mask[torch.where(attn_mask.sum(-1) == attn_mask.shape[-1])] = False
+
+ if self.training and task == 'vlp' and self.task_switch['captioning']:
+ attn_mask = torch.cat((attn_mask, torch.zeros_like(attn_mask[:, :self.contxt_len, :])), dim=1)
+ # attention: cross-attention first
+ output, avg_attn = self.transformer_cross_attention_layers[i](
+ output, src[level_index],
+ memory_mask=attn_mask,
+ memory_key_padding_mask=None, # here we do not apply masking on padded region
+ pos=pos[level_index], query_pos=query_embed
+ )
+
+ if (((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding']) \
+ or ((self.training and task == 'openimage') and self.task_switch['openimage']['grounding']):
+ output = torch.cat((output, _grounding_tokens), dim=0)
+ query_embed = torch.cat((query_embed, grounding_tokens), dim=0)
+
+ output = self.transformer_self_attention_layers[i](
+ output, tgt_mask=self_tgt_mask,
+ tgt_key_padding_mask=None,
+ query_pos=query_embed
+ )
+
+ # FFN
+ output = self.transformer_ffn_layers[i](
+ output
+ )
+
+ if ((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding'] \
+ or ((self.training and task == 'openimage') and self.task_switch['openimage']['grounding']):
+ _grounding_tokens = output[-len(_grounding_tokens):]
+ output = output[:-len(_grounding_tokens)]
+ query_embed = query_embed[:-len(_grounding_tokens)]
+
+ results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[(i + 1) % self.num_feature_levels], layer_id=i, task=task)
+ attn_mask = results["attn_mask"]
+ predictions_class.append(results["outputs_class"])
+ predictions_mask.append(results["outputs_mask"])
+ predictions_bbox.append(results["outputs_bbox"])
+ predictions_caption.append(results["outputs_caption"])
+ predictions_captioning.append(results["outputs_captionting"])
+
+ assert len(predictions_class) == self.num_layers + 1
+ if task == 'vlp':
+ out = {'pred_captionings': predictions_captioning[-1],
+ 'pred_captions': predictions_caption[-1],
+ 'aux_outputs': [{'pred_captionings': x, 'pred_captions': y } for x, y in zip(predictions_captioning[:-1], predictions_caption[:-1])]}
+ return out
+ else:
+ out = {
+ 'pred_logits': predictions_class[-1],
+ 'pred_masks': predictions_mask[-1],
+ 'pred_boxes': predictions_bbox[-1],
+ 'pred_captions': predictions_caption[-1],
+ 'aux_outputs': self._set_aux_loss(
+ predictions_class if self.mask_classification else None, predictions_mask, predictions_bbox, predictions_caption
+ )
+ }
+ return out
+
+ def forward_captioning(self, x, mask_features, mask = None, target_queries = None, target_vlp = None, task='seg', extra={}):
+ # x is a list of multi-scale feature
+ assert len(x) == self.num_feature_levels
+ src = []
+ pos = []
+ size_list = []
+
+ # disable mask, it does not affect performance
+ del mask
+ for i in range(self.num_feature_levels):
+ size_list.append(x[i].shape[-2:])
+ pos.append(self.pe_layer(x[i], None).flatten(2))
+ src.append(self.input_proj[i](x[i]).flatten(2) + self.level_embed.weight[i][None, :, None])
+
+ # flatten NxCxHxW to HWxNxC
+ pos[-1] = pos[-1].permute(2, 0, 1)
+ src[-1] = src[-1].permute(2, 0, 1)
+
+ _, bs, _ = src[0].shape
+
+ # QxNxC
+ query_embed_ = self.query_embed.weight.unsqueeze(1).repeat(1, bs, 1)
+ query_feat = self.query_feat.weight.unsqueeze(1).repeat(1, bs, 1)
+ caping_lang_token = extra['start_token'].repeat(bs, 1)
+ start_id = 0
+ if 'token' in extra:
+ caping_lang_token[:,:len(extra['token'][0])] = extra['token']
+ start_id = len(extra['token'][0])-1
+ query_feat_caping = self.query_feat_caping.weight.unsqueeze(1).repeat(1, bs, 1)
+ # pos_embed_caping = self.pos_embed_caping.weight.unsqueeze(1).repeat(1, bs, 1)
+ # prepare token embedding for evaluation
+ token_embs = self.lang_encoder.lang_encoder.token_embedding.weight
+ # token_embs = (token_embs / token_embs.norm(dim=-1, keepdim=True) + 1e-7)
+
+ for cap_idx in range(start_id, self.captioning_step):
+ caping_lang_embed = self.lang_encoder.forward_language_token((caping_lang_token,))[0].transpose(0, 1)
+ # output = torch.cat((query_feat, caping_lang_embed), dim=0) # concat object query, class token and caption token.
+ # caping_lang_embed += pos_embed_caping
+ query_embed = torch.cat((query_embed_, caping_lang_embed), dim=0) # may not add at the beginning.
+ output = torch.cat((query_feat, query_feat_caping), dim=0) # concat object query, class token and caption token.
+
+ # prediction heads on learnable query features
+ results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[0], task=task)
+ attn_mask = results["attn_mask"]
+
+ for i in range(self.num_layers):
+ level_index = i % self.num_feature_levels
+ attn_mask[torch.where(attn_mask.sum(-1) == attn_mask.shape[-1])] = False
+ attn_mask = torch.cat((attn_mask, torch.zeros_like(attn_mask[:, :self.contxt_len, :])), dim=1)
+ self_tgt_mask = self.self_attn_mask.repeat(output.shape[1]*self.num_heads, 1, 1)
+
+ if extra['captioning_mask'] is not None:
+ bs,nq,wh = attn_mask.shape
+ assert bs==self.num_heads, "Only support single image referring captioning."
+ cap_mask = extra['captioning_mask']
+ attn_mask = attn_mask.reshape(bs,nq,size_list[i%3][0],size_list[i%3][1])
+ cap_mask = F.interpolate(cap_mask[None,].float(), size_list[i%3], mode='nearest').bool()[0,0]
+ attn_mask[:,self.num_queries:, cap_mask] = True
+ attn_mask = attn_mask.reshape(bs,nq,wh)
+
+ # attention: cross-attention first
+ output, avg_attn = self.transformer_cross_attention_layers[i](
+ output, src[level_index],
+ memory_mask=attn_mask,
+ memory_key_padding_mask=None, # here we do not apply masking on padded region
+ pos=pos[level_index], query_pos=query_embed
+ )
+
+ output = self.transformer_self_attention_layers[i](
+ output, tgt_mask=self_tgt_mask,
+ tgt_key_padding_mask=None,
+ query_pos=query_embed
+ )
+
+ # FFN
+ output = self.transformer_ffn_layers[i](
+ output
+ )
+
+ results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[(i + 1) % self.num_feature_levels], layer_id=i, task=task)
+ attn_mask = results["attn_mask"]
+
+ pred_captions_gen = results['outputs_captionting']
+ # pred_captions_gen = (pred_captions_gen / pred_captions_gen.norm(dim=-1, keepdim=True) + 1e-7)
+ pred_captions_gen = pred_captions_gen @ token_embs.t()
+ caping_lang_token[:,cap_idx+1] = pred_captions_gen[:,cap_idx].max(-1)[1]
+
+ texts = self.lang_encoder.tokenizer.batch_decode(caping_lang_token, skip_special_tokens=False)
+ texts_new = []
+
+ for x in texts:
+ x = x.split('<|endoftext|>')[0]
+ x = x.replace('<|endoftext|>','')
+ x = x.replace('<|startoftext|>','')
+ x = x.strip()
+ texts_new.append(x)
+
+ out = {'pred_captionings': caping_lang_token,
+ 'pred_texts': texts_new}
+ return out
+
+
+ def forward_prediction_heads(self, output, mask_features, attn_mask_target_size, layer_id=-1, task='seg'):
+ decoder_output = self.decoder_norm(output)
+ decoder_output = decoder_output.transpose(0, 1)
+
+ # extract image captioning token from decoder output.
+ if self.task_switch['captioning'] and (task == 'vlp' or task == 'captioning_infer'):
+ outputs_captionting = decoder_output[:,self.num_queries:] @ self.caping_embed
+ else:
+ outputs_captionting = None
+
+ # recompute class token output.
+ norm_decoder_output = decoder_output / (decoder_output.norm(dim=-1, keepdim=True) + 1e-7)
+ obj_token = norm_decoder_output[:,:self.num_queries-1]
+ cls_token = norm_decoder_output[:,self.num_queries-1:self.num_queries]
+
+ sim = (cls_token @ obj_token.transpose(1,2)).softmax(-1)[:,0,:,None] # TODO include class token.
+ cls_token = (sim * decoder_output[:,:self.num_queries-1]).sum(dim=1, keepdim=True)
+
+ if (((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding']) \
+ or ((self.training and task == 'openimage') and self.task_switch['openimage']['grounding']):
+ decoder_output = torch.cat((decoder_output[:,:self.num_queries-1], cls_token, decoder_output[:,self.num_queries:2*self.num_queries-1]), dim=1)
+ else:
+ decoder_output = torch.cat((decoder_output[:,:self.num_queries-1], cls_token), dim=1)
+
+ # compute class, mask and bbox.
+ class_embed = decoder_output @ self.class_embed
+ # HACK do not compute similarity if mask is not on
+ outputs_class = self.lang_encoder.compute_similarity(class_embed, fake=(((not self.task_switch['mask']) and self.training) or (task == 'openimage')))
+
+ if self.task_switch['mask'] or self.task_switch['openimage']['mask']:
+ mask_embed = self.mask_embed(decoder_output)
+ outputs_mask = torch.einsum("bqc,bchw->bqhw", mask_embed, mask_features)
+
+ # NOTE: prediction is of higher-resolution
+ # [B, Q, H, W] -> [B, Q, H*W] -> [B, h, Q, H*W] -> [B*h, Q, HW]
+ attn_mask = F.interpolate(outputs_mask, size=attn_mask_target_size, mode="bilinear", align_corners=False)
+
+ # must use bool type
+ # If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged.
+ attn_mask = (attn_mask.sigmoid().flatten(2).unsqueeze(1).repeat(1, self.num_heads, 1, 1).flatten(0, 1) < 0.5).bool()
+ attn_mask = attn_mask.detach()
+
+ # NOTE: fill False for cls token (JY)
+ attn_mask[:, self.num_queries:self.num_queries+1].fill_(False)
+ else:
+ outputs_mask = None
+ attn_mask = torch.zeros((list(decoder_output.shape[:2]) + [attn_mask_target_size[0]*attn_mask_target_size[1]]), device=decoder_output.device).repeat(self.num_heads, 1, 1).bool()
+
+ outputs_bbox = [None for i in range(len(decoder_output))]
+ if self.task_switch['bbox']:
+ outputs_bbox = self.bbox_embed(decoder_output)
+
+ outputs_caption = None
+ if self.task_switch['caption']:
+ outputs_caption = class_embed
+
+
+ results = {
+ "outputs_class": outputs_class,
+ "outputs_mask": outputs_mask,
+ "outputs_bbox": outputs_bbox,
+ "attn_mask": attn_mask,
+ "outputs_caption": outputs_caption,
+ "outputs_captionting": outputs_captionting,
+ }
+ return results
+
+ @torch.jit.unused
+ def _set_aux_loss(self, outputs_class, outputs_seg_masks, outputs_boxes, outputs_captions):
+ # this is a workaround to make torchscript happy, as torchscript
+ # doesn't support dictionary with non-homogeneous values, such
+ # as a dict having both a Tensor and a list.
+ if self.mask_classification:
+ return [
+ {"pred_logits": a, "pred_masks": b, "pred_boxes": c, "pred_captions": d}
+ for a, b, c, d in zip(outputs_class[:-1], outputs_seg_masks[:-1], outputs_boxes[:-1], outputs_captions[:-1])
+ ]
+ else:
+ return [{"pred_masks": b} for b in outputs_seg_masks[:-1]]
+
+
+@register_decoder
+def get_masked_transformer_decoder(cfg, in_channels, lang_encoder, mask_classification, extra):
+ return MultiScaleMaskedTransformerDecoder(cfg, in_channels, lang_encoder, mask_classification, extra)
\ No newline at end of file
diff --git a/xdecoder/body/encoder/__init__.py b/xdecoder/body/encoder/__init__.py
new file mode 100755
index 0000000000000000000000000000000000000000..bf9bb57ca080f4e2f1d1edd7c696285a08faa706
--- /dev/null
+++ b/xdecoder/body/encoder/__init__.py
@@ -0,0 +1 @@
+from .build import build_encoder
\ No newline at end of file
diff --git a/xdecoder/body/encoder/build.py b/xdecoder/body/encoder/build.py
new file mode 100755
index 0000000000000000000000000000000000000000..aabf8bca5c6f54144af3187692afc28de4c9e296
--- /dev/null
+++ b/xdecoder/body/encoder/build.py
@@ -0,0 +1,12 @@
+from .registry import model_entrypoints
+from .registry import is_model
+
+from .transformer_encoder_fpn import *
+
+def build_encoder(config, *args, **kwargs):
+ model_name = config['MODEL']['ENCODER']['NAME']
+
+ if not is_model(model_name):
+ raise ValueError(f'Unkown model: {model_name}')
+
+ return model_entrypoints(model_name)(config, *args, **kwargs)
\ No newline at end of file
diff --git a/xdecoder/body/encoder/registry.py b/xdecoder/body/encoder/registry.py
new file mode 100755
index 0000000000000000000000000000000000000000..99426a4495cf65e7ce82193f711aaa225b6d2395
--- /dev/null
+++ b/xdecoder/body/encoder/registry.py
@@ -0,0 +1,13 @@
+_model_entrypoints = {}
+
+def register_encoder(fn):
+ module_name_split = fn.__module__.split('.')
+ model_name = module_name_split[-1]
+ _model_entrypoints[model_name] = fn
+ return fn
+
+def model_entrypoints(model_name):
+ return _model_entrypoints[model_name]
+
+def is_model(model_name):
+ return model_name in _model_entrypoints
diff --git a/xdecoder/body/encoder/transformer_encoder_fpn.py b/xdecoder/body/encoder/transformer_encoder_fpn.py
new file mode 100755
index 0000000000000000000000000000000000000000..16e449fd3ac19a5d143d4fc61cbafc16158b0654
--- /dev/null
+++ b/xdecoder/body/encoder/transformer_encoder_fpn.py
@@ -0,0 +1,324 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+import logging
+import numpy as np
+from typing import Callable, Dict, List, Optional, Tuple, Union
+
+import torch
+from torch import nn
+from torch.nn import functional as F
+from torch.nn.init import xavier_uniform_, constant_, uniform_, normal_
+from torch.cuda.amp import autocast
+
+import fvcore.nn.weight_init as weight_init
+from detectron2.layers import Conv2d, DeformConv, ShapeSpec, get_norm
+
+from .registry import register_encoder
+from ..transformer_blocks import TransformerEncoder, TransformerEncoderLayer, _get_clones, _get_activation_fn
+from ...modules import PositionEmbeddingSine
+from ...utils import configurable
+
+# from ..layers import Conv2d, DeformConv, ShapeSpec, get_norm
+
+# This is a modified FPN decoder.
+class BasePixelDecoder(nn.Module):
+ def __init__(
+ self,
+ input_shape: Dict[str, ShapeSpec],
+ *,
+ conv_dim: int,
+ mask_dim: int,
+ mask_on: bool,
+ norm: Optional[Union[str, Callable]] = None,
+ ):
+ """
+ NOTE: this interface is experimental.
+ Args:
+ input_shape: shapes (channels and stride) of the input features
+ conv_dims: number of output channels for the intermediate conv layers.
+ mask_dim: number of output channels for the final conv layer.
+ norm (str or callable): normalization for all conv layers
+ """
+ super().__init__()
+
+ input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride)
+ self.in_features = [k for k, v in input_shape] # starting from "res2" to "res5"
+ feature_channels = [v.channels for k, v in input_shape]
+
+ lateral_convs = []
+ output_convs = []
+
+ use_bias = norm == ""
+ for idx, in_channels in enumerate(feature_channels):
+ if idx == len(self.in_features) - 1:
+ output_norm = get_norm(norm, conv_dim)
+ output_conv = Conv2d(
+ in_channels,
+ conv_dim,
+ kernel_size=3,
+ stride=1,
+ padding=1,
+ bias=use_bias,
+ norm=output_norm,
+ activation=F.relu,
+ )
+ weight_init.c2_xavier_fill(output_conv)
+ self.add_module("layer_{}".format(idx + 1), output_conv)
+
+ lateral_convs.append(None)
+ output_convs.append(output_conv)
+ else:
+ lateral_norm = get_norm(norm, conv_dim)
+ output_norm = get_norm(norm, conv_dim)
+
+ lateral_conv = Conv2d(
+ in_channels, conv_dim, kernel_size=1, bias=use_bias, norm=lateral_norm
+ )
+ output_conv = Conv2d(
+ conv_dim,
+ conv_dim,
+ kernel_size=3,
+ stride=1,
+ padding=1,
+ bias=use_bias,
+ norm=output_norm,
+ activation=F.relu,
+ )
+ weight_init.c2_xavier_fill(lateral_conv)
+ weight_init.c2_xavier_fill(output_conv)
+ self.add_module("adapter_{}".format(idx + 1), lateral_conv)
+ self.add_module("layer_{}".format(idx + 1), output_conv)
+
+ lateral_convs.append(lateral_conv)
+ output_convs.append(output_conv)
+ # Place convs into top-down order (from low to high resolution)
+ # to make the top-down computation in forward clearer.
+ self.lateral_convs = lateral_convs[::-1]
+ self.output_convs = output_convs[::-1]
+
+ self.mask_on = mask_on
+ if self.mask_on:
+ self.mask_dim = mask_dim
+ self.mask_features = Conv2d(
+ conv_dim,
+ mask_dim,
+ kernel_size=3,
+ stride=1,
+ padding=1,
+ )
+ weight_init.c2_xavier_fill(self.mask_features)
+
+ self.maskformer_num_feature_levels = 3 # always use 3 scales
+
+ @classmethod
+ def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]):
+ enc_cfg = cfg['MODEL']['ENCODER']
+ ret = {}
+ ret["input_shape"] = {
+ k: v for k, v in input_shape.items() if k in enc_cfg['IN_FEATURES']
+ }
+ ret["conv_dim"] = enc_cfg['CONVS_DIM']
+ ret["mask_dim"] = enc_cfg['MASK_DIM']
+ ret["norm"] = enc_cfg['NORM']
+ return ret
+
+ def forward_features(self, features):
+ multi_scale_features = []
+ num_cur_levels = 0
+ # Reverse feature maps into top-down order (from low to high resolution)
+ for idx, f in enumerate(self.in_features[::-1]):
+ x = features[f]
+ lateral_conv = self.lateral_convs[idx]
+ output_conv = self.output_convs[idx]
+ if lateral_conv is None:
+ y = output_conv(x)
+ else:
+ cur_fpn = lateral_conv(x)
+ # Following FPN implementation, we use nearest upsampling here
+ y = cur_fpn + F.interpolate(y, size=cur_fpn.shape[-2:], mode="nearest")
+ y = output_conv(y)
+ if num_cur_levels < self.maskformer_num_feature_levels:
+ multi_scale_features.append(y)
+ num_cur_levels += 1
+
+ mask_features = self.mask_features(y) if self.mask_on else None
+ return mask_features, None, multi_scale_features
+
+ def forward(self, features, targets=None):
+ logger = logging.getLogger(__name__)
+ logger.warning("Calling forward() may cause unpredicted behavior of PixelDecoder module.")
+ return self.forward_features(features)
+
+
+class TransformerEncoderOnly(nn.Module):
+ def __init__(
+ self,
+ d_model=512,
+ nhead=8,
+ num_encoder_layers=6,
+ dim_feedforward=2048,
+ dropout=0.1,
+ activation="relu",
+ normalize_before=False,
+ ):
+ super().__init__()
+
+ encoder_layer = TransformerEncoderLayer(
+ d_model, nhead, dim_feedforward, dropout, activation, normalize_before
+ )
+ encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
+ self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)
+
+ self._reset_parameters()
+
+ self.d_model = d_model
+ self.nhead = nhead
+
+ def _reset_parameters(self):
+ for p in self.parameters():
+ if p.dim() > 1:
+ nn.init.xavier_uniform_(p)
+
+ def forward(self, src, mask, pos_embed):
+ # flatten NxCxHxW to HWxNxC
+ bs, c, h, w = src.shape
+ src = src.flatten(2).permute(2, 0, 1)
+ pos_embed = pos_embed.flatten(2).permute(2, 0, 1)
+ if mask is not None:
+ mask = mask.flatten(1)
+
+ memory = self.encoder(src, src_key_padding_mask=mask, pos=pos_embed)
+ return memory.permute(1, 2, 0).view(bs, c, h, w)
+
+
+# This is a modified FPN decoder with extra Transformer encoder that processes the lowest-resolution feature map.
+class TransformerEncoderPixelDecoder(BasePixelDecoder):
+ @configurable
+ def __init__(
+ self,
+ input_shape: Dict[str, ShapeSpec],
+ *,
+ transformer_dropout: float,
+ transformer_nheads: int,
+ transformer_dim_feedforward: int,
+ transformer_enc_layers: int,
+ transformer_pre_norm: bool,
+ conv_dim: int,
+ mask_dim: int,
+ mask_on: int,
+ norm: Optional[Union[str, Callable]] = None,
+ ):
+ """
+ NOTE: this interface is experimental.
+ Args:
+ input_shape: shapes (channels and stride) of the input features
+ transformer_dropout: dropout probability in transformer
+ transformer_nheads: number of heads in transformer
+ transformer_dim_feedforward: dimension of feedforward network
+ transformer_enc_layers: number of transformer encoder layers
+ transformer_pre_norm: whether to use pre-layernorm or not
+ conv_dims: number of output channels for the intermediate conv layers.
+ mask_dim: number of output channels for the final conv layer.
+ norm (str or callable): normalization for all conv layers
+ """
+ super().__init__(input_shape, conv_dim=conv_dim, mask_dim=mask_dim, norm=norm, mask_on=mask_on)
+
+ input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride)
+ self.in_features = [k for k, v in input_shape] # starting from "res2" to "res5"
+ feature_strides = [v.stride for k, v in input_shape]
+ feature_channels = [v.channels for k, v in input_shape]
+
+ in_channels = feature_channels[len(self.in_features) - 1]
+ self.input_proj = Conv2d(in_channels, conv_dim, kernel_size=1)
+ weight_init.c2_xavier_fill(self.input_proj)
+ self.transformer = TransformerEncoderOnly(
+ d_model=conv_dim,
+ dropout=transformer_dropout,
+ nhead=transformer_nheads,
+ dim_feedforward=transformer_dim_feedforward,
+ num_encoder_layers=transformer_enc_layers,
+ normalize_before=transformer_pre_norm,
+ )
+ N_steps = conv_dim // 2
+ self.pe_layer = PositionEmbeddingSine(N_steps, normalize=True)
+
+ # update layer
+ use_bias = norm == ""
+ output_norm = get_norm(norm, conv_dim)
+ output_conv = Conv2d(
+ conv_dim,
+ conv_dim,
+ kernel_size=3,
+ stride=1,
+ padding=1,
+ bias=use_bias,
+ norm=output_norm,
+ activation=F.relu,
+ )
+ weight_init.c2_xavier_fill(output_conv)
+ delattr(self, "layer_{}".format(len(self.in_features)))
+ self.add_module("layer_{}".format(len(self.in_features)), output_conv)
+ self.output_convs[0] = output_conv
+
+ @classmethod
+ def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]):
+ enc_cfg = cfg['MODEL']['ENCODER']
+ dec_cfg = cfg['MODEL']['DECODER']
+
+ ret = super().from_config(cfg, input_shape)
+ ret["transformer_dropout"] = dec_cfg['DROPOUT']
+ ret["transformer_nheads"] = dec_cfg['NHEADS']
+ ret["transformer_dim_feedforward"] = dec_cfg['DIM_FEEDFORWARD']
+ ret["transformer_enc_layers"] = enc_cfg['TRANSFORMER_ENC_LAYERS'] # a separate config
+ ret["transformer_pre_norm"] = dec_cfg['PRE_NORM']
+
+ ret['mask_on'] = cfg['MODEL']['DECODER']['MASK']
+ return ret
+
+ def forward_features(self, features):
+ multi_scale_features = []
+ num_cur_levels = 0
+
+ # Reverse feature maps into top-down order (from low to high resolution)
+ for idx, f in enumerate(self.in_features[::-1]):
+ x = features[f]
+ lateral_conv = self.lateral_convs[idx]
+ output_conv = self.output_convs[idx]
+ if lateral_conv is None:
+ transformer = self.input_proj(x)
+ pos = self.pe_layer(x)
+ transformer = self.transformer(transformer, None, pos)
+ y = output_conv(transformer)
+ # save intermediate feature as input to Transformer decoder
+ transformer_encoder_features = transformer
+ else:
+ cur_fpn = lateral_conv(x)
+ # Following FPN implementation, we use nearest upsampling here
+ y = cur_fpn + F.interpolate(y, size=cur_fpn.shape[-2:], mode="nearest")
+ y = output_conv(y)
+ if num_cur_levels < self.maskformer_num_feature_levels:
+ multi_scale_features.append(y)
+ num_cur_levels += 1
+
+ mask_features = self.mask_features(y) if self.mask_on else None
+ return mask_features, transformer_encoder_features, multi_scale_features
+
+ def forward(self, features, targets=None):
+ logger = logging.getLogger(__name__)
+ logger.warning("Calling forward() may cause unpredicted behavior of PixelDecoder module.")
+ return self.forward_features(features)
+
+
+
+@register_encoder
+def get_transformer_encoder_fpn(cfg, input_shape):
+ """
+ Build a pixel decoder from `cfg.MODEL.MASK_FORMER.PIXEL_DECODER_NAME`.
+ """
+ model = TransformerEncoderPixelDecoder(cfg, input_shape)
+ forward_features = getattr(model, "forward_features", None)
+ if not callable(forward_features):
+ raise ValueError(
+ "Only SEM_SEG_HEADS with forward_features method can be used as pixel decoder. "
+ f"Please implement forward_features for {name} to only return mask features."
+ )
+ return model
\ No newline at end of file
diff --git a/xdecoder/body/registry.py b/xdecoder/body/registry.py
new file mode 100755
index 0000000000000000000000000000000000000000..0200b0af6cd9e01451be4df9f713719f45f2e928
--- /dev/null
+++ b/xdecoder/body/registry.py
@@ -0,0 +1,14 @@
+_model_entrypoints = {}
+
+
+def register_body(fn):
+ module_name_split = fn.__module__.split('.')
+ model_name = module_name_split[-1]
+ _model_entrypoints[model_name] = fn
+ return fn
+
+def model_entrypoints(model_name):
+ return _model_entrypoints[model_name]
+
+def is_model(model_name):
+ return model_name in _model_entrypoints
\ No newline at end of file
diff --git a/xdecoder/body/transformer_blocks.py b/xdecoder/body/transformer_blocks.py
new file mode 100755
index 0000000000000000000000000000000000000000..54134f34556b32c98401be2eb862e539ccb812d4
--- /dev/null
+++ b/xdecoder/body/transformer_blocks.py
@@ -0,0 +1,370 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+# Modified by Bowen Cheng from: https://github.com/facebookresearch/detr/blob/master/models/transformer.py
+"""
+Transformer class.
+
+Copy-paste from torch.nn.Transformer with modifications:
+ * positional encodings are passed in MHattention
+ * extra LN at the end of encoder is removed
+ * decoder returns a stack of activations from all decoding layers
+"""
+import copy
+from typing import List, Optional
+
+import torch
+import torch.nn.functional as F
+from torch import Tensor, nn
+
+
+class Transformer(nn.Module):
+ def __init__(
+ self,
+ d_model=512,
+ nhead=8,
+ num_encoder_layers=6,
+ num_decoder_layers=6,
+ dim_feedforward=2048,
+ dropout=0.1,
+ activation="relu",
+ normalize_before=False,
+ return_intermediate_dec=False,
+ ):
+ super().__init__()
+
+ encoder_layer = TransformerEncoderLayer(
+ d_model, nhead, dim_feedforward, dropout, activation, normalize_before
+ )
+ encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
+ self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)
+
+ decoder_layer = TransformerDecoderLayer(
+ d_model, nhead, dim_feedforward, dropout, activation, normalize_before
+ )
+ decoder_norm = nn.LayerNorm(d_model)
+ self.decoder = TransformerDecoder(
+ decoder_layer,
+ num_decoder_layers,
+ decoder_norm,
+ return_intermediate=return_intermediate_dec,
+ )
+
+ self._reset_parameters()
+
+ self.d_model = d_model
+ self.nhead = nhead
+
+ def _reset_parameters(self):
+ for p in self.parameters():
+ if p.dim() > 1:
+ nn.init.xavier_uniform_(p)
+
+ def forward(self, src, mask, query_embed, pos_embed):
+ # flatten NxCxHxW to HWxNxC
+ bs, c, h, w = src.shape
+ src = src.flatten(2).permute(2, 0, 1)
+ pos_embed = pos_embed.flatten(2).permute(2, 0, 1)
+ query_embed = query_embed.unsqueeze(1).repeat(1, bs, 1)
+ if mask is not None:
+ mask = mask.flatten(1)
+
+ tgt = torch.zeros_like(query_embed)
+ memory = self.encoder(src, src_key_padding_mask=mask, pos=pos_embed)
+ hs = self.decoder(
+ tgt, memory, memory_key_padding_mask=mask, pos=pos_embed, query_pos=query_embed
+ )
+ return hs.transpose(1, 2), memory.permute(1, 2, 0).view(bs, c, h, w)
+
+
+class TransformerEncoder(nn.Module):
+ def __init__(self, encoder_layer, num_layers, norm=None):
+ super().__init__()
+ self.layers = _get_clones(encoder_layer, num_layers)
+ self.num_layers = num_layers
+ self.norm = norm
+
+ def forward(
+ self,
+ src,
+ mask: Optional[Tensor] = None,
+ src_key_padding_mask: Optional[Tensor] = None,
+ pos: Optional[Tensor] = None,
+ ):
+ output = src
+
+ for layer in self.layers:
+ output = layer(
+ output, src_mask=mask, src_key_padding_mask=src_key_padding_mask, pos=pos
+ )
+
+ if self.norm is not None:
+ output = self.norm(output)
+
+ return output
+
+
+class TransformerDecoder(nn.Module):
+ def __init__(self, decoder_layer, num_layers, norm=None, return_intermediate=False):
+ super().__init__()
+ self.layers = _get_clones(decoder_layer, num_layers)
+ self.num_layers = num_layers
+ self.norm = norm
+ self.return_intermediate = return_intermediate
+
+ def forward(
+ self,
+ tgt,
+ memory,
+ tgt_mask: Optional[Tensor] = None,
+ memory_mask: Optional[Tensor] = None,
+ tgt_key_padding_mask: Optional[Tensor] = None,
+ memory_key_padding_mask: Optional[Tensor] = None,
+ pos: Optional[Tensor] = None,
+ query_pos: Optional[Tensor] = None,
+ ):
+ output = tgt
+
+ intermediate = []
+
+ for layer in self.layers:
+ output = layer(
+ output,
+ memory,
+ tgt_mask=tgt_mask,
+ memory_mask=memory_mask,
+ tgt_key_padding_mask=tgt_key_padding_mask,
+ memory_key_padding_mask=memory_key_padding_mask,
+ pos=pos,
+ query_pos=query_pos,
+ )
+ if self.return_intermediate:
+ intermediate.append(self.norm(output))
+
+ if self.norm is not None:
+ output = self.norm(output)
+ if self.return_intermediate:
+ intermediate.pop()
+ intermediate.append(output)
+
+ if self.return_intermediate:
+ return torch.stack(intermediate)
+
+ return output.unsqueeze(0)
+
+
+class TransformerEncoderLayer(nn.Module):
+ def __init__(
+ self,
+ d_model,
+ nhead,
+ dim_feedforward=2048,
+ dropout=0.1,
+ activation="relu",
+ normalize_before=False,
+ ):
+ super().__init__()
+ self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
+ # Implementation of Feedforward model
+ self.linear1 = nn.Linear(d_model, dim_feedforward)
+ self.dropout = nn.Dropout(dropout)
+ self.linear2 = nn.Linear(dim_feedforward, d_model)
+
+ self.norm1 = nn.LayerNorm(d_model)
+ self.norm2 = nn.LayerNorm(d_model)
+ self.dropout1 = nn.Dropout(dropout)
+ self.dropout2 = nn.Dropout(dropout)
+
+ self.activation = _get_activation_fn(activation)
+ self.normalize_before = normalize_before
+
+ def with_pos_embed(self, tensor, pos: Optional[Tensor]):
+ return tensor if pos is None else tensor + pos
+
+ def forward_post(
+ self,
+ src,
+ src_mask: Optional[Tensor] = None,
+ src_key_padding_mask: Optional[Tensor] = None,
+ pos: Optional[Tensor] = None,
+ ):
+ q = k = self.with_pos_embed(src, pos)
+
+ src2 = self.self_attn(
+ q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask
+ )[0]
+ src = src + self.dropout1(src2)
+ src = self.norm1(src)
+ src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
+ src = src + self.dropout2(src2)
+ src = self.norm2(src)
+ return src
+
+ def forward_pre(
+ self,
+ src,
+ src_mask: Optional[Tensor] = None,
+ src_key_padding_mask: Optional[Tensor] = None,
+ pos: Optional[Tensor] = None,
+ ):
+ src2 = self.norm1(src)
+ q = k = self.with_pos_embed(src2, pos)
+ src2 = self.self_attn(
+ q, k, value=src2, attn_mask=src_mask, key_padding_mask=src_key_padding_mask
+ )[0]
+ src = src + self.dropout1(src2)
+ src2 = self.norm2(src)
+ src2 = self.linear2(self.dropout(self.activation(self.linear1(src2))))
+ src = src + self.dropout2(src2)
+ return src
+
+ def forward(
+ self,
+ src,
+ src_mask: Optional[Tensor] = None,
+ src_key_padding_mask: Optional[Tensor] = None,
+ pos: Optional[Tensor] = None,
+ ):
+ if self.normalize_before:
+ return self.forward_pre(src, src_mask, src_key_padding_mask, pos)
+ return self.forward_post(src, src_mask, src_key_padding_mask, pos)
+
+
+class TransformerDecoderLayer(nn.Module):
+ def __init__(
+ self,
+ d_model,
+ nhead,
+ dim_feedforward=2048,
+ dropout=0.1,
+ activation="relu",
+ normalize_before=False,
+ ):
+ super().__init__()
+ self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
+ self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
+ # Implementation of Feedforward model
+ self.linear1 = nn.Linear(d_model, dim_feedforward)
+ self.dropout = nn.Dropout(dropout)
+ self.linear2 = nn.Linear(dim_feedforward, d_model)
+
+ self.norm1 = nn.LayerNorm(d_model)
+ self.norm2 = nn.LayerNorm(d_model)
+ self.norm3 = nn.LayerNorm(d_model)
+ self.dropout1 = nn.Dropout(dropout)
+ self.dropout2 = nn.Dropout(dropout)
+ self.dropout3 = nn.Dropout(dropout)
+
+ self.activation = _get_activation_fn(activation)
+ self.normalize_before = normalize_before
+
+ def with_pos_embed(self, tensor, pos: Optional[Tensor]):
+ return tensor if pos is None else tensor + pos
+
+ def forward_post(
+ self,
+ tgt,
+ memory,
+ tgt_mask: Optional[Tensor] = None,
+ memory_mask: Optional[Tensor] = None,
+ tgt_key_padding_mask: Optional[Tensor] = None,
+ memory_key_padding_mask: Optional[Tensor] = None,
+ pos: Optional[Tensor] = None,
+ query_pos: Optional[Tensor] = None,
+ ):
+ q = k = self.with_pos_embed(tgt, query_pos)
+ tgt2 = self.self_attn(
+ q, k, value=tgt, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask
+ )[0]
+ tgt = tgt + self.dropout1(tgt2)
+ tgt = self.norm1(tgt)
+ tgt2 = self.multihead_attn(
+ query=self.with_pos_embed(tgt, query_pos),
+ key=self.with_pos_embed(memory, pos),
+ value=memory,
+ attn_mask=memory_mask,
+ key_padding_mask=memory_key_padding_mask,
+ )[0]
+ tgt = tgt + self.dropout2(tgt2)
+ tgt = self.norm2(tgt)
+ tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
+ tgt = tgt + self.dropout3(tgt2)
+ tgt = self.norm3(tgt)
+ return tgt
+
+ def forward_pre(
+ self,
+ tgt,
+ memory,
+ tgt_mask: Optional[Tensor] = None,
+ memory_mask: Optional[Tensor] = None,
+ tgt_key_padding_mask: Optional[Tensor] = None,
+ memory_key_padding_mask: Optional[Tensor] = None,
+ pos: Optional[Tensor] = None,
+ query_pos: Optional[Tensor] = None,
+ ):
+ tgt2 = self.norm1(tgt)
+ q = k = self.with_pos_embed(tgt2, query_pos)
+ tgt2 = self.self_attn(
+ q, k, value=tgt2, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask
+ )[0]
+ tgt = tgt + self.dropout1(tgt2)
+ tgt2 = self.norm2(tgt)
+ tgt2 = self.multihead_attn(
+ query=self.with_pos_embed(tgt2, query_pos),
+ key=self.with_pos_embed(memory, pos),
+ value=memory,
+ attn_mask=memory_mask,
+ key_padding_mask=memory_key_padding_mask,
+ )[0]
+ tgt = tgt + self.dropout2(tgt2)
+ tgt2 = self.norm3(tgt)
+ tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
+ tgt = tgt + self.dropout3(tgt2)
+ return tgt
+
+ def forward(
+ self,
+ tgt,
+ memory,
+ tgt_mask: Optional[Tensor] = None,
+ memory_mask: Optional[Tensor] = None,
+ tgt_key_padding_mask: Optional[Tensor] = None,
+ memory_key_padding_mask: Optional[Tensor] = None,
+ pos: Optional[Tensor] = None,
+ query_pos: Optional[Tensor] = None,
+ ):
+ if self.normalize_before:
+ return self.forward_pre(
+ tgt,
+ memory,
+ tgt_mask,
+ memory_mask,
+ tgt_key_padding_mask,
+ memory_key_padding_mask,
+ pos,
+ query_pos,
+ )
+ return self.forward_post(
+ tgt,
+ memory,
+ tgt_mask,
+ memory_mask,
+ tgt_key_padding_mask,
+ memory_key_padding_mask,
+ pos,
+ query_pos,
+ )
+
+
+def _get_clones(module, N):
+ return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
+
+
+def _get_activation_fn(activation):
+ """Return an activation function given a string"""
+ if activation == "relu":
+ return F.relu
+ if activation == "gelu":
+ return F.gelu
+ if activation == "glu":
+ return F.glu
+ raise RuntimeError(f"activation should be relu/gelu, not {activation}.")
diff --git a/xdecoder/body/xdecoder_head.py b/xdecoder/body/xdecoder_head.py
new file mode 100755
index 0000000000000000000000000000000000000000..b04af973501c2c361de2b4a3a78ebbab1ae44b8a
--- /dev/null
+++ b/xdecoder/body/xdecoder_head.py
@@ -0,0 +1,123 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+
+# --------------------------------------------------------
+# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
+# Copyright (c) 2022 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Jianwei Yang (jianwyan@microsoft.com), Xueyan Zou (xueyan@cs.wisc.edu)
+# --------------------------------------------------------
+
+from typing import Dict
+
+from torch import nn
+
+from detectron2.layers import ShapeSpec
+
+from .registry import register_body
+from .encoder import build_encoder
+from .decoder import build_decoder
+from ..utils import configurable
+
+
+class XDecoderHead(nn.Module):
+
+ @configurable
+ def __init__(
+ self,
+ input_shape: Dict[str, ShapeSpec],
+ *,
+ num_classes: int,
+ pixel_decoder: nn.Module,
+ loss_weight: float = 1.0,
+ ignore_value: int = -1,
+ # extra parameters
+ transformer_predictor: nn.Module,
+ transformer_in_feature: str,
+ ):
+ """
+ NOTE: this interface is experimental.
+ Args:
+ input_shape: shapes (channels and stride) of the input features
+ num_classes: number of classes to predict
+ pixel_decoder: the pixel decoder module
+ loss_weight: loss weight
+ ignore_value: category id to be ignored during training.
+ transformer_predictor: the transformer decoder that makes prediction
+ transformer_in_feature: input feature name to the transformer_predictor
+ """
+ super().__init__()
+
+ input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride)
+ self.in_features = [k for k, v in input_shape]
+ feature_strides = [v.stride for k, v in input_shape]
+ feature_channels = [v.channels for k, v in input_shape]
+
+ self.ignore_value = ignore_value
+ self.common_stride = 4
+ self.loss_weight = loss_weight
+
+ self.pixel_decoder = pixel_decoder
+ self.predictor = transformer_predictor
+ self.transformer_in_feature = transformer_in_feature
+
+ self.num_classes = num_classes
+
+ @classmethod
+ def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec], lang_encoder: nn.Module, extra: dict):
+
+ in_features_type = cfg['MODEL']['DECODER']['TRANSFORMER_IN_FEATURE']
+ enc_cfg = cfg['MODEL']['ENCODER']
+ dec_cfg = cfg['MODEL']['DECODER']
+
+ # figure out in_channels to transformer predictor
+ if in_features_type == "transformer_encoder":
+ transformer_predictor_in_channels = enc_cfg['CONVS_DIM']
+ elif in_features_type == "pixel_embedding":
+ transformer_predictor_in_channels = enc_cfg['MASK_DIM']
+ elif in_features_type == "multi_scale_pixel_decoder": # for maskformer2
+ transformer_predictor_in_channels = enc_cfg['CONVS_DIM']
+ else:
+ transformer_predictor_in_channels = input_shape[dec_cfg['TRANSFORMER_IN_FEATURE']].channels
+
+ return {
+ "input_shape": {
+ k: v for k, v in input_shape.items() if k in enc_cfg['IN_FEATURES']
+ },
+ "ignore_value": enc_cfg['IGNORE_VALUE'],
+ "num_classes": enc_cfg.get('NUM_CLASSES', None),
+ "pixel_decoder": build_encoder(cfg, input_shape),
+ "loss_weight": enc_cfg['LOSS_WEIGHT'],
+ "transformer_in_feature": dec_cfg['TRANSFORMER_IN_FEATURE'],
+ "transformer_predictor": build_decoder(
+ cfg,
+ transformer_predictor_in_channels,
+ lang_encoder,
+ mask_classification=True,
+ extra=extra,
+ ),
+ }
+
+ def forward(self, features, mask=None, target_queries=None, target_vlp=None, task='seg', extra={}):
+ return self.layers(features, mask, target_queries, target_vlp, task, extra)
+
+ def layers(self, features, mask=None, target_queries=None, target_vlp=None, task='seg', extra={}):
+ mask_features, transformer_encoder_features, multi_scale_features = self.pixel_decoder.forward_features(features)
+
+ if self.transformer_in_feature == "multi_scale_pixel_decoder":
+ predictions = self.predictor(multi_scale_features, mask_features, mask, target_queries, target_vlp, task, extra)
+ else:
+ if self.transformer_in_feature == "transformer_encoder":
+ assert (
+ transformer_encoder_features is not None
+ ), "Please use the TransformerEncoderPixelDecoder."
+ predictions = self.predictor(transformer_encoder_features, mask_features, mask)
+ elif self.transformer_in_feature == "pixel_embedding":
+ predictions = self.predictor(mask_features, mask_features, mask)
+ else:
+ predictions = self.predictor(features[self.transformer_in_feature], mask_features, mask)
+ return predictions
+
+
+@register_body
+def get_xdecoder_head(cfg, input_shape, lang_encoder, extra):
+ return XDecoderHead(cfg, input_shape, lang_encoder, extra)
\ No newline at end of file
diff --git a/xdecoder/language/LangEncoder/__init__.py b/xdecoder/language/LangEncoder/__init__.py
new file mode 100755
index 0000000000000000000000000000000000000000..ebc0a5d2e6bc4a4a93935450838acf09455004f6
--- /dev/null
+++ b/xdecoder/language/LangEncoder/__init__.py
@@ -0,0 +1,8 @@
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+from .build import build_lang_encoder
+from .build import build_tokenizer
+
+from .transformer import *
\ No newline at end of file
diff --git a/xdecoder/language/LangEncoder/build.py b/xdecoder/language/LangEncoder/build.py
new file mode 100755
index 0000000000000000000000000000000000000000..87a39af5e17ad08f583fc294716491fb87469287
--- /dev/null
+++ b/xdecoder/language/LangEncoder/build.py
@@ -0,0 +1,36 @@
+import os
+
+from transformers import CLIPTokenizer, CLIPTokenizerFast
+from transformers import AutoTokenizer
+
+from .registry import lang_encoders
+from .registry import is_lang_encoder
+
+
+def build_lang_encoder(config_encoder, tokenizer, verbose, **kwargs):
+ model_name = config_encoder['NAME']
+
+ if not is_lang_encoder(model_name):
+ raise ValueError(f'Unkown model: {model_name}')
+
+ return lang_encoders(model_name)(config_encoder, tokenizer, verbose, **kwargs)
+
+
+def build_tokenizer(config_encoder):
+ tokenizer = None
+ os.environ['TOKENIZERS_PARALLELISM'] = 'true'
+ if config_encoder['TOKENIZER'] == 'clip':
+ pretrained_tokenizer = config_encoder.get(
+ 'PRETRAINED_TOKENIZER', 'openai/clip-vit-base-patch32'
+ )
+ tokenizer = CLIPTokenizer.from_pretrained(pretrained_tokenizer)
+ tokenizer.add_special_tokens({'cls_token': tokenizer.eos_token})
+ elif config_encoder['TOKENIZER'] == 'clip-fast':
+ pretrained_tokenizer = config_encoder.get(
+ 'PRETRAINED_TOKENIZER', 'openai/clip-vit-base-patch32'
+ )
+ tokenizer = CLIPTokenizerFast.from_pretrained(pretrained_tokenizer, from_slow=True)
+ else:
+ tokenizer = AutoTokenizer.from_pretrained(config_encoder['TOKENIZER'])
+
+ return tokenizer
diff --git a/xdecoder/language/LangEncoder/registry.py b/xdecoder/language/LangEncoder/registry.py
new file mode 100755
index 0000000000000000000000000000000000000000..8991272a6e2294ea86eee338cf61d87e4123f724
--- /dev/null
+++ b/xdecoder/language/LangEncoder/registry.py
@@ -0,0 +1,18 @@
+_lang_encoders = {}
+
+
+def register_lang_encoder(fn):
+ module_name_split = fn.__module__.split('.')
+ model_name = module_name_split[-1]
+
+ _lang_encoders[model_name] = fn
+
+ return fn
+
+
+def lang_encoders(model_name):
+ return _lang_encoders[model_name]
+
+
+def is_lang_encoder(model_name):
+ return model_name in _lang_encoders
diff --git a/xdecoder/language/LangEncoder/transformer.py b/xdecoder/language/LangEncoder/transformer.py
new file mode 100755
index 0000000000000000000000000000000000000000..00123460f0aa93801bdf750af62e3a14753c0366
--- /dev/null
+++ b/xdecoder/language/LangEncoder/transformer.py
@@ -0,0 +1,222 @@
+from collections import OrderedDict
+from typing import Tuple, Union
+import logging
+import os
+
+import numpy as np
+import torch
+import torch.nn.functional as F
+from torch import nn
+
+from timm.models.layers import DropPath, trunc_normal_
+
+from .registry import register_lang_encoder
+from utils.distributed import is_main_process
+from utils.model import register_norm_module
+
+logger = logging.getLogger(__name__)
+
+
+@register_norm_module
+class LayerNorm(nn.Module):
+ def __init__(self, hidden_size, eps=1e-12):
+ """Construct a layernorm module in the TF style (epsilon inside the square root).
+ """
+ super(LayerNorm, self).__init__()
+ self.weight = nn.Parameter(torch.ones(hidden_size))
+ self.bias = nn.Parameter(torch.zeros(hidden_size))
+ self.variance_epsilon = eps
+
+ def forward(self, x):
+ pdtype = x.dtype
+ x = x.float()
+ u = x.mean(-1, keepdim=True)
+ s = (x - u).pow(2).mean(-1, keepdim=True)
+ x = (x - u) / torch.sqrt(s + self.variance_epsilon)
+ return self.weight * x.to(pdtype) + self.bias
+
+
+class QuickGELU(nn.Module):
+ def forward(self, x: torch.Tensor):
+ return x * torch.sigmoid(1.702 * x)
+
+
+class ResidualAttentionBlock(nn.Module):
+ def __init__(self,
+ d_model: int,
+ n_head: int,
+ attn_mask: torch.Tensor = None,
+ drop_path: float = 0.0):
+ super().__init__()
+
+ self.attn = nn.MultiheadAttention(d_model, n_head)
+ self.ln_1 = LayerNorm(d_model)
+ self.mlp = nn.Sequential(OrderedDict([
+ ("c_fc", nn.Linear(d_model, d_model * 4)),
+ ("gelu", QuickGELU()),
+ ("c_proj", nn.Linear(d_model * 4, d_model))
+ ]))
+ self.ln_2 = LayerNorm(d_model)
+ self.attn_mask = attn_mask
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
+
+ def attention(self, x: torch.Tensor, key_padding_mask: torch.Tensor = None):
+ self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) \
+ if self.attn_mask is not None else None
+
+
+ return self.attn(
+ x, x, x,
+ key_padding_mask=key_padding_mask,
+ need_weights=False,
+ attn_mask=self.attn_mask
+ )[0]
+
+ def forward(self, x: torch.Tensor, key_padding_mask: torch.Tensor = None):
+ x = x + self.drop_path(self.attention(self.ln_1(x), key_padding_mask=key_padding_mask))
+ x = x + self.drop_path(self.mlp(self.ln_2(x)))
+ return x
+
+
+class Transformer(nn.Module):
+ def __init__(self,
+ context_length: int,
+ vocab_size: int,
+ width: int,
+ layers: int,
+ heads: int,
+ drop_path: float = 0.0,
+ autogressive: bool =True):
+ super().__init__()
+
+ self.token_embedding = nn.Embedding(vocab_size, width)
+
+ self.context_length = context_length
+ self.positional_embedding = nn.Parameter(
+ torch.empty(self.context_length, width)
+ )
+
+ self.width = width
+ self.layers = layers
+ self.autogressive = autogressive
+ attn_mask = self.build_attention_mask() if autogressive else None
+ dpr = [x.item() for x in torch.linspace(0, drop_path, layers)] # stochastic depth decay rule
+ self.resblocks = nn.ModuleList(
+ [
+ ResidualAttentionBlock(width, heads, attn_mask, dpr[i])
+ for i in range(layers)
+ ]
+ )
+
+ self.ln_final = LayerNorm(width)
+
+ trunc_normal_(self.positional_embedding, std=.02)
+ # nn.init.normal_(self.token_embedding, std=.02)
+ trunc_normal_(self.token_embedding.weight, std=.02)
+ self.apply(self._init_weights)
+
+ @property
+ def dim_out(self):
+ return self.width
+
+ def build_attention_mask(self):
+ # lazily create causal attention mask, with full attention between the vision tokens
+ # pytorch uses additive attention mask; fill with -inf
+ mask = torch.empty(self.context_length, self.context_length)
+ mask.fill_(float("-inf"))
+ mask.triu_(1) # zero out the lower diagonal
+ return mask
+
+ def _init_weights(self, m):
+ if isinstance(m, (nn.Linear, nn.Conv2d)):
+ if is_main_process():
+ logger.info('=> init weight of Linear/Conv2d from trunc norm')
+ trunc_normal_(m.weight, std=0.02)
+ if m.bias is not None:
+ if is_main_process():
+ logger.info('=> init bias of Linear/Conv2d to zeros')
+ nn.init.constant_(m.bias, 0)
+ elif isinstance(m, (nn.LayerNorm, nn.BatchNorm2d)):
+ nn.init.constant_(m.bias, 0)
+
+ def load_pretrained(self, pretrained='', pretrained_layers=[], verbose=True):
+ if os.path.isfile(pretrained):
+ pretrained_dict = torch.load(pretrained, map_location='cpu')
+ logging.info(f'=> loading pretrained model {pretrained}')
+ model_dict = self.state_dict()
+ stripped_key = lambda x: x[13:] if x.startswith('lang_encoder.') else x
+ pretrained_dict = {
+ stripped_key(k): v for k, v in pretrained_dict.items()
+ if stripped_key(k) in model_dict.keys()
+ }
+ need_init_state_dict = {}
+ for k, v in pretrained_dict.items():
+ need_init = (
+ k.split('.')[0] in pretrained_layers
+ or pretrained_layers[0] == '*'
+ )
+ if need_init:
+ if verbose:
+ logger.info(f'=> init {k} from {pretrained}')
+
+ if 'positional_embedding' in k and v.size() != model_dict[k].size():
+ positional_embedding_pretrained = v
+ positional_embedding_current = model_dict[k]
+ L1, nH1 = positional_embedding_pretrained.size()
+ L2, nH2 = positional_embedding_current.size()
+ if nH1 != nH2:
+ logger.info(f"Error in loading {k}, passing")
+ else:
+ if L1 != L2:
+ logger.info(
+ '=> load_pretrained: resized variant: {} to {}'
+ .format((L1, nH1), (L2, nH2))
+ )
+
+ posemb = positional_embedding_pretrained.float()
+ posemb_grid = posemb.unsqueeze(dim=0).permute(0, 2, 1)
+ posemb_grid = torch.nn.functional.interpolate(posemb_grid, size=L2, mode='linear')
+ posemb_grid = posemb_grid.permute(0, 2, 1).squeeze(dim=0)
+ v = posemb_grid
+
+ need_init_state_dict[k] = v
+
+ self.load_state_dict(need_init_state_dict, strict=False)
+
+
+ @torch.jit.ignore
+ def no_weight_decay(self):
+ return {
+ 'positional_embedding',
+ 'token_embedding',
+ }
+
+ def forward(self, input_ids, attention_mask=None):
+ key_padding_mask = (attention_mask == 0) if (not self.autogressive and attention_mask is not None) else None
+ # key_padding_mask = (input_ids == 0) if not self.autogressive else None
+ x = self.token_embedding(input_ids) # [batch_size, n_ctx, d_model]
+ x = x + self.positional_embedding
+ x = x.permute(1, 0, 2) # NLD -> LND
+ for block in self.resblocks:
+ x = block(x, key_padding_mask)
+ x = x.permute(1, 0, 2) # LND -> NLD
+
+ x = self.ln_final(x)
+
+ return {'last_hidden_state': x}
+
+
+@register_lang_encoder
+def lang_encoder(config_encoder, tokenizer, verbose, **kwargs):
+ transformer = Transformer(
+ context_length=config_encoder['CONTEXT_LENGTH'],
+ vocab_size=tokenizer.vocab_size,
+ width=config_encoder['WIDTH'],
+ layers=config_encoder['LAYERS'],
+ heads=config_encoder['HEADS'],
+ autogressive=config_encoder.get('AUTOGRESSIVE', True)
+ )
+
+ if config_encoder.get('LOAD_PRETRAINED', False):
+ transformer.load_pretrained(config_encoder['PRETRAINED'], config_encoder.get('PRETRAINED_LAYERS', ['*']))
+ return transformer
diff --git a/xdecoder/language/__init__.py b/xdecoder/language/__init__.py
new file mode 100755
index 0000000000000000000000000000000000000000..4118dc74282568a13fab564428a19a7b1c30b414
--- /dev/null
+++ b/xdecoder/language/__init__.py
@@ -0,0 +1,3 @@
+from .fixvlpencoder import *
+from .vlpencoder import *
+from .build import build_language_encoder
\ No newline at end of file
diff --git a/xdecoder/language/build.py b/xdecoder/language/build.py
new file mode 100755
index 0000000000000000000000000000000000000000..8d9acdf9766e3bc1184c4200ef4dace3437617e4
--- /dev/null
+++ b/xdecoder/language/build.py
@@ -0,0 +1,11 @@
+from .registry import model_entrypoints
+from .registry import is_model
+
+
+def build_language_encoder(config, **kwargs):
+ model_name = config['MODEL']['TEXT']['ARCH']
+
+ if not is_model(model_name):
+ raise ValueError(f'Unkown model: {model_name}')
+
+ return model_entrypoints(model_name)(config, **kwargs)
\ No newline at end of file
diff --git a/xdecoder/language/fixvlpencoder.py b/xdecoder/language/fixvlpencoder.py
new file mode 100755
index 0000000000000000000000000000000000000000..dd91faf136b4e479dba03cc81b21ed5f3b47e1e0
--- /dev/null
+++ b/xdecoder/language/fixvlpencoder.py
@@ -0,0 +1,35 @@
+from importlib.metadata import requires
+import torch
+import torch.nn as nn
+
+from .registry import register_model
+from .vlpencoder import LanguageEncoder
+
+class FixLanguageEncoder(LanguageEncoder):
+
+ def __init__(
+ self,
+ *args, **kwargs):
+ super(FixLanguageEncoder, self).__init__(*args, **kwargs)
+ self.logit_scale = nn.Parameter(torch.ones([]), requires_grad=False)
+
+ @torch.no_grad()
+ def get_text_embeddings(self, *args, **kwargs):
+ return super().get_text_embeddings(*args, **kwargs)
+
+ @torch.no_grad()
+ def get_text_token_embeddings(self, *args, **kwargs):
+ return super().get_text_token_embeddings(*args, **kwargs)
+
+ @torch.no_grad()
+ def forward_language(self, *args, **kwargs):
+ return super().forward_language(*args, **kwargs)
+
+ @torch.no_grad()
+ def forward_language_token(self, *args, **kwargs):
+ return super().forward_language_token(*args, **kwargs)
+
+
+@register_model
+def get_language_model(cfg, **kwargs):
+ return FixLanguageEncoder(cfg)
\ No newline at end of file
diff --git a/xdecoder/language/loss.py b/xdecoder/language/loss.py
new file mode 100755
index 0000000000000000000000000000000000000000..fe7ecd566bbf7f7e5a9981c7789c16c537ecb6b5
--- /dev/null
+++ b/xdecoder/language/loss.py
@@ -0,0 +1,225 @@
+import pickle
+from distutils import log
+
+import torch
+import torch.nn.functional as F
+import torch.distributed as dist
+
+from einops import rearrange, repeat
+from timm.loss import SoftTargetCrossEntropy
+
+soft_cross_entropy = SoftTargetCrossEntropy()
+
+def is_dist_initialized():
+ return torch.distributed.is_initialized()
+
+def get_world_size():
+ if is_dist_initialized():
+ return torch.distributed.get_world_size()
+ return 1
+
+def get_rank():
+ if is_dist_initialized():
+ return dist.get_rank()
+ return 0
+
+def all_gather_grad(x):
+ if get_world_size() > 1:
+ all_x = [torch.zeros_like(x) for _ in range(get_world_size())]
+ torch.distributed.all_gather(all_x, x)
+ all_x[torch.distributed.get_rank()] = x
+ x = torch.cat(all_x, dim=0)
+ return x
+
+def vl_multilabel_contrastive_loss(image_feat, text_feat, temperature=1):
+ """
+ Args:
+ image_feat (torch.Tensor): shape [B, L1, C] # B: batch_size, L1: 1, C: 256
+ text_feat (torch.Tensor): shape [B, L2, C] # B:batch_size, L2: number of selected nouns, C: 256
+
+ Returns:
+ """
+ # [B, L1, C], L1 = 1
+ # image_feat = F.normalize(image_feat, dim=-1)
+ # [B, L2, C]
+ # text_feat = F.normalize(text_feat, dim=-1)
+ # HACK: normalize outside
+
+ # [B, L1, L2]
+ dist_per_img = image_feat @ rearrange(text_feat, 'b l c -> b c l')
+ # [B, L2, L1]
+ dist_per_text = text_feat @ rearrange(image_feat, 'b l c -> b c l')
+
+ batch = image_feat.shape[0]
+ img_len = image_feat.shape[1]
+ text_len = text_feat.shape[1]
+ # [B, L1, L2]
+ pos_labels_batch_img = rearrange(torch.ones_like(dist_per_text) / dist_per_text.size(1), 'b l2 l1 -> b l1 l2')
+ # [B, L2, L1]
+ pos_labels_batch_text = rearrange(torch.ones_like(dist_per_img) / dist_per_img.size(1), 'b l1 l2 -> b l2 l1')
+
+ image_x = rearrange(image_feat, 'b l c -> (b l) c')
+ text_x = rearrange(text_feat, 'b l c -> (b l) c')
+
+ logits_per_img = image_x @ all_gather_grad(text_x).t()
+ logits_per_text = text_x @ all_gather_grad(image_x).t()
+
+ # get label globally
+ # [B, L1, B, L2, W]
+ labels_per_img = F.one_hot(
+ torch.ones(batch, img_len, batch, text_len, dtype=torch.long, device=image_x.device) * get_rank(),
+ num_classes=get_world_size()).to(image_x.dtype)
+ labels_per_img *= rearrange(pos_labels_batch_img, 'b l1 l2 -> b l1 1 l2 1') * repeat(
+ torch.eye(batch, dtype=image_x.dtype, device=image_x.device), 'b1 b2 -> b1 1 b2 1 1')
+ # [BxL1, WxBxL2]
+ labels_per_img = rearrange(labels_per_img, 'b1 l1 b2 l2 w -> (b1 l1) (w b2 l2)')
+ # [B, L2, B, L1, W]
+ labels_per_text = F.one_hot(
+ torch.ones(batch, text_len, batch, img_len, dtype=torch.long, device=text_x.device) * get_rank(),
+ num_classes=get_world_size()).to(text_x.dtype)
+ labels_per_text *= rearrange(pos_labels_batch_text, 'b l2 l1 -> b l2 1 l1 1') * repeat(
+ torch.eye(batch, dtype=text_x.dtype, device=image_x.device), 'b2 b1 -> b2 1 b1 1 1')
+ # [BxL2, WxBxL1]
+ labels_per_text = rearrange(labels_per_text, 'b2 l2 b1 l1 w -> (b2 l2) (w b1 l1)')
+
+ logit_scale = temperature.exp().clamp(max=100)
+
+ loss_img = soft_cross_entropy(logit_scale * logits_per_img, labels_per_img)
+ loss_text = soft_cross_entropy(logit_scale * logits_per_text, labels_per_text)
+
+ loss = 0.5 * (loss_img + loss_text)
+ return loss
+
+def vl_contrastive_loss(image_feat, text_feat, temperature=1):
+ # if image_id or text_id is None, it should be None across all GPUs
+ # image_feat = F.normalize(image_feat, dim=1)
+ # text_feat = F.normalize(text_feat, dim=1)
+ # handle normalization outside
+
+ # add the following 4 lines
+ image_feat = all_gather_grad(image_feat)
+ text_feat = all_gather_grad(text_feat)
+
+ logits = torch.matmul(image_feat, text_feat.t())
+ logit_scale = temperature.exp().clamp(max=100)
+
+ gt = torch.arange(logits.shape[0], device=logits.device)
+ loss1 = F.cross_entropy(logit_scale * logits, gt)
+ loss2 = F.cross_entropy(logit_scale * logits.t(), gt)
+ return (loss1 + loss2) / 2 # scale it up by the number of GPUs
+
+
+def all_gather_pickle(data, device):
+ """
+ Run all_gather on arbitrary picklable data (not necessarily tensors)
+ Args:
+ data: any picklable object
+ Returns:
+ list[data]: list of data gathered from each rank
+ """
+ world_size = get_world_size()
+ if world_size == 1:
+ return [data]
+
+ # serialized to a Tensor
+ buffer = pickle.dumps(data)
+ storage = torch.ByteStorage.from_buffer(buffer)
+ tensor = torch.ByteTensor(storage).to(device)
+
+ # obtain Tensor size of each rank
+ local_size = torch.LongTensor([tensor.numel()]).cuda()
+ size_list = [torch.LongTensor([0]).cuda() for _ in range(world_size)]
+ dist.all_gather(size_list, local_size)
+ size_list = [int(size.item()) for size in size_list]
+ max_size = max(size_list)
+
+ # receiving Tensor from all ranks
+ # we pad the tensor because torch all_gather does not support
+ # gathering tensors of different shapes
+ tensor_list = []
+ for _ in size_list:
+ tensor_list.append(torch.ByteTensor(size=(max_size,)).cuda())
+ if local_size != max_size:
+ padding = torch.ByteTensor(size=(max_size - local_size,)).cuda()
+ tensor = torch.cat((tensor, padding), dim=0)
+ dist.all_gather(tensor_list, tensor)
+
+ data_list = []
+ for size, tensor in zip(size_list, tensor_list):
+ buffer = tensor.cpu().numpy().tobytes()[:size]
+ data_list.append(pickle.loads(buffer))
+
+ return data_list
+
+def all_gather_arbitary_tensor(tensor):
+ if get_world_size() > 1:
+ device = tensor.device
+ tensor_batch = all_gather_pickle(tensor.cpu(), device)
+ tensor_batch = [x.to(device) for x in tensor_batch]
+ tensor_batch[torch.distributed.get_rank()] = tensor
+ tensor_batch = torch.cat(tensor_batch, dim=0)
+ else:
+ tensor_batch = tensor
+ return tensor_batch
+
+def ql_contrastive_loss(image_feat, text_feat, temperature=1):
+ # add the following 4 lines
+ image_feat = all_gather_arbitary_tensor(image_feat)
+ text_feat = all_gather_arbitary_tensor(text_feat)
+
+ logits = torch.matmul(image_feat, text_feat.t())
+ logit_scale = temperature.exp().clamp(max=100)
+
+ gt = torch.arange(logits.shape[0], device=logits.device)
+ loss1 = F.cross_entropy(logit_scale * logits, gt)
+ loss2 = F.cross_entropy(logit_scale * logits.t(), gt)
+ return (loss1 + loss2) / 2 # scale it up by the number of GPUs
+
+def vl_similarity(image_feat, text_feat, temperature=1):
+ # Only support single GPU for now.
+ logits = torch.matmul(image_feat, text_feat.t())
+ logits = temperature.exp().clamp(max=100) * logits
+ return logits
+
+def ql_multi_contrastive_loss(image_feat, text_feat, text_hash, temperature=1):
+ # add the following 4 lines
+ image_feat = all_gather_arbitary_tensor(image_feat)
+ text_feat = all_gather_arbitary_tensor(text_feat)
+
+ text_hash_batch = all_gather_pickle(text_hash, text_feat.device)
+ text_hash_all = torch.cat(text_hash_batch)
+
+ text_hash_all_unique = torch.unique(text_hash_all).tolist()
+ gt = torch.zeros((image_feat.shape[0], len(text_hash_all_unique)), device=text_feat.device)
+ text_hash_all = text_hash_all.tolist()
+ text_feat_unique = torch.stack([text_feat[text_hash_all.index(txt)] for txt in text_hash_all_unique])
+
+ for idx, txt in enumerate(text_hash_all):
+ gt[idx][text_hash_all_unique.index(txt)] = 1
+
+ logits = torch.matmul(image_feat, text_feat_unique.t())
+ logits = logits*temperature.exp().clamp(max=100)
+
+ loss_img = soft_cross_entropy(logits, gt)
+ loss_text = soft_cross_entropy(logits.t(), gt.t() / gt.t().sum(-1, keepdim=True))
+
+ loss = 0.7 * loss_img + 0.3 * loss_text
+ return loss
+
+def image_text_contrastive_loss_queue(image_feat_inp, text_feat_inp, lang_enc, training):
+ # add the following 4 lines
+ image_feat = all_gather_grad(image_feat_inp.contiguous())
+ text_feat = all_gather_grad(text_feat_inp.contiguous())
+
+ image_feat = image_feat / (image_feat.norm(dim=-1, keepdim=True) + 1e-7)
+ text_feat = text_feat / (text_feat.norm(dim=-1, keepdim=True) + 1e-7)
+
+ temperature = lang_enc.logit_scale
+ logits = torch.matmul(image_feat, text_feat.t())
+ logit_scale = temperature.exp().clamp(max=100)
+
+ gt = torch.arange(logits.shape[0], device=logits.device)
+ loss1 = F.cross_entropy(logit_scale * logits, gt)
+ loss2 = F.cross_entropy(logit_scale * logits.t(), gt)
+
+ return (loss1 + loss2) / 2 # scale it up by the number of GPUs
\ No newline at end of file
diff --git a/xdecoder/language/misc.py b/xdecoder/language/misc.py
new file mode 100755
index 0000000000000000000000000000000000000000..faf172fbb8a90ed49ca0de9a9ca1d875f2f96215
--- /dev/null
+++ b/xdecoder/language/misc.py
@@ -0,0 +1,64 @@
+import random
+
+import nltk
+nltk.data.path.append('/mnt/data/nltk_data')
+import numpy as np
+
+from utils.constants import IMAGENET_DEFAULT_TEMPLATES
+
+
+def get_tag(tokenized, tags):
+ if not isinstance(tags, (list, tuple)):
+ tags = [tags]
+ ret = []
+ for (word, pos) in nltk.pos_tag(tokenized):
+ for tag in tags:
+ if pos == tag:
+ ret.append(word)
+ return ret
+
+def get_noun_phrase(tokenized):
+ # Taken from Su Nam Kim Paper...
+ grammar = r"""
+ NBAR:
+ {*} # Nouns and Adjectives, terminated with Nouns
+
+ NP:
+ {}
+ {} # Above, connected with in/of/etc...
+ """
+ chunker = nltk.RegexpParser(grammar)
+
+ chunked = chunker.parse(nltk.pos_tag(tokenized))
+ continuous_chunk = []
+ current_chunk = []
+
+ for subtree in chunked:
+ if isinstance(subtree, nltk.Tree):
+ current_chunk.append(' '.join([token for token, pos in subtree.leaves()]))
+ elif current_chunk:
+ named_entity = ' '.join(current_chunk)
+ if named_entity not in continuous_chunk:
+ continuous_chunk.append(named_entity)
+ current_chunk = []
+ else:
+ continue
+
+ return continuous_chunk
+
+def text_noun_with_prompt_all(text, phrase_prob=0.0, append_text=True):
+ tokenized = nltk.word_tokenize(text)
+
+ if random.random() >= phrase_prob:
+ nouns = get_tag(tokenized, ['NN', 'NNS', 'NNP'])
+ else:
+ nouns = get_noun_phrase(tokenized)
+
+
+ prompt_texts = [np.random.choice(IMAGENET_DEFAULT_TEMPLATES).format(noun) for noun in nouns]
+
+ if append_text:
+ prompt_texts += [text]
+ nouns += [text]
+
+ return prompt_texts, nouns
\ No newline at end of file
diff --git a/xdecoder/language/registry.py b/xdecoder/language/registry.py
new file mode 100755
index 0000000000000000000000000000000000000000..940e4560f7d052aed4915187410266ab5a4cb4d0
--- /dev/null
+++ b/xdecoder/language/registry.py
@@ -0,0 +1,13 @@
+_model_entrypoints = {}
+
+def register_model(fn):
+ module_name_split = fn.__module__.split('.')
+ model_name = module_name_split[-1]
+ _model_entrypoints[model_name] = fn
+ return fn
+
+def model_entrypoints(model_name):
+ return _model_entrypoints[model_name]
+
+def is_model(model_name):
+ return model_name in _model_entrypoints
\ No newline at end of file
diff --git a/xdecoder/language/vlpencoder.py b/xdecoder/language/vlpencoder.py
new file mode 100755
index 0000000000000000000000000000000000000000..ce6fd4709255e8869749d7401babb373b187d697
--- /dev/null
+++ b/xdecoder/language/vlpencoder.py
@@ -0,0 +1,168 @@
+
+import torch
+from torch import nn
+from torch.nn import functional as F
+
+from timm.models.layers import trunc_normal_
+
+from .registry import register_model
+from ..utils import configurable
+from .LangEncoder import build_tokenizer, build_lang_encoder
+from utils.misc import prompt_engineering, get_prompt_templates
+
+
+class LanguageEncoder(nn.Module):
+
+ @configurable
+ def __init__(
+ self,
+ tokenizer,
+ tokenizer_type,
+ lang_encoder,
+ lang_projection,
+ max_token_num,
+ ):
+ super().__init__()
+ self.tokenizer = tokenizer
+ self.tokenizer_type = tokenizer_type
+ self.lang_encoder = lang_encoder
+ self.lang_proj = lang_projection
+ self.max_token_num = max_token_num
+ self.logit_scale = nn.Parameter(torch.ones([]))
+
+ @classmethod
+ def from_config(cls, cfg):
+ tokenizer = build_tokenizer(cfg['MODEL']['TEXT'])
+ tokenizer_type = cfg['MODEL']['TEXT']['TOKENIZER']
+ lang_encoder = build_lang_encoder(cfg['MODEL']['TEXT'], tokenizer, cfg['VERBOSE'])
+ max_token_num = cfg['MODEL']['TEXT']['CONTEXT_LENGTH']
+
+ dim_lang = cfg['MODEL']['TEXT']['WIDTH']
+ dim_projection = cfg['MODEL']['DIM_PROJ']
+ lang_projection = nn.Parameter(torch.empty(dim_lang, dim_projection))
+ trunc_normal_(lang_projection, std=.02)
+
+ return {
+ "tokenizer": tokenizer,
+ "tokenizer_type": tokenizer_type,
+ "lang_encoder": lang_encoder,
+ "lang_projection": lang_projection,
+ "max_token_num": max_token_num,
+ }
+
+ def get_text_embeddings(self, class_names, name='default', is_eval=False, add_bgd=False, prompt=True, norm=True):
+ if not is_eval:
+ if prompt:
+ # randomly sample one template
+ arbitary_concepts = [
+ prompt_engineering(class_names[label].replace('-other','').replace('-merged','').replace('-stuff',''), topk=10000, suffix='.') \
+ for label in range(len(class_names))
+ ]
+ if add_bgd:
+ arbitary_concepts.append("A background in coco.")
+ else:
+ arbitary_concepts = class_names
+
+ input_ids = []
+ attention_masks = []
+ for txt in arbitary_concepts:
+ tokens = self.tokenizer(
+ txt, padding='max_length', truncation=True, max_length=self.max_token_num, return_tensors='pt'
+ )
+ tokens['input_ids'].squeeze_()
+ tokens['attention_mask'].squeeze_()
+
+ input_ids.append(tokens['input_ids'])
+ attention_masks.append(tokens['attention_mask'])
+
+ arbitary_tokens = torch.stack(input_ids)
+ arbitary_attention_masks = torch.stack(attention_masks)
+
+ text_emb = self.forward_language((arbitary_tokens.cuda(), arbitary_attention_masks.cuda()), norm=norm)
+ setattr(self, '{}_text_embeddings'.format(name), text_emb)
+ else:
+ with torch.no_grad():
+ def extract_mean_emb(txts):
+ tokens = self.tokenizer(
+ txts, padding='max_length', truncation=True, max_length=self.max_token_num, return_tensors='pt'
+ )
+ clss_embedding = self.forward_language((tokens['input_ids'].cuda(), tokens['attention_mask'].cuda()), norm=norm)
+ clss_embedding = clss_embedding.mean(dim=0)
+ clss_embedding /= clss_embedding.norm()
+ return clss_embedding
+
+ templates = get_prompt_templates()
+ clss_embeddings = []
+ if prompt:
+ for clss in class_names:
+ txts = [template.format(clss.replace('-other','').replace('-merged','').replace('-stuff','')) for template in templates]
+ clss_embeddings.append(extract_mean_emb(txts))
+ else:
+ clss_embeddings.append(extract_mean_emb(class_names))
+
+ if add_bgd:
+ txts = ["A background in coco."]
+ clss_embeddings.append(extract_mean_emb(txts))
+
+ text_emb = torch.stack(clss_embeddings, dim=0)
+ setattr(self, '{}_text_embeddings'.format(name), text_emb)
+
+ def get_text_token_embeddings(self, txts, name='default', token=False, norm=False):
+ if not token:
+ tokens = self.tokenizer(
+ txts, padding='max_length', truncation=True, max_length=self.max_token_num, return_tensors='pt'
+ )
+ tokens = {key: value.cuda() for key, value in tokens.items()}
+ else:
+ tokens = txts
+ token_emb, class_emb = self.forward_language_token((tokens['input_ids'], tokens['attention_mask']), norm=norm)
+ ret = {"tokens": tokens,
+ "token_emb": token_emb,
+ "class_emb": class_emb,}
+ setattr(self, '{}_token_embeddings'.format(name), ret)
+ return ret
+
+ def forward_language(self, texts, norm=True):
+ x = self.lang_encoder(*texts)
+ x = x['last_hidden_state']
+
+ if self.tokenizer_type == 'clip':
+ x = x[torch.arange(x.size(0)), texts[0].argmax(dim=-1)]
+ else:
+ x = x[:, 0]
+
+ x = x @ self.lang_proj
+ if norm:
+ x = x / (x.norm(dim=-1, keepdim=True) + 1e-7)
+ return x
+
+ def forward_language_token(self, texts, norm=False):
+ x = self.lang_encoder(*texts)
+ token_x = x['last_hidden_state']
+
+ if self.tokenizer_type == 'clip':
+ class_x = token_x[torch.arange(token_x.size(0)), texts[0].argmax(dim=-1)]
+ else:
+ class_x = token_x[:, 0]
+
+ class_x = class_x @ self.lang_proj
+ token_x = token_x @ self.lang_proj
+
+ if norm:
+ class_x = class_x / (class_x.norm(dim=-1, keepdim=True) + 1e-7)
+ token_x = token_x / (token_x.norm(dim=-1, keepdim=True) + 1e-7)
+
+ return token_x, class_x
+
+ def compute_similarity(self, v_emb, name='default', fake=False):
+ if fake:
+ return None
+ v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7)
+ t_emb = getattr(self, '{}_text_embeddings'.format(name))
+ output = self.logit_scale.exp() * v_emb @ t_emb.unsqueeze(0).transpose(1, 2)
+ return output
+
+
+@register_model
+def get_language_model(cfg, **kwargs):
+ return LanguageEncoder(cfg)
\ No newline at end of file
diff --git a/xdecoder/modules/__init__.py b/xdecoder/modules/__init__.py
new file mode 100755
index 0000000000000000000000000000000000000000..6bbbff85221d3e15d34b52f69706896896c47ef3
--- /dev/null
+++ b/xdecoder/modules/__init__.py
@@ -0,0 +1,3 @@
+from .position_encoding import *
+from .attention import *
+from .postprocessing import *
\ No newline at end of file
diff --git a/xdecoder/modules/attention.py b/xdecoder/modules/attention.py
new file mode 100755
index 0000000000000000000000000000000000000000..a0eadeee1454cfbea58a96595af7c9e552088c6a
--- /dev/null
+++ b/xdecoder/modules/attention.py
@@ -0,0 +1,489 @@
+# Code copy from PyTorch, modified by Xueyan Zou
+
+import warnings
+from typing import Optional, Tuple
+
+import torch
+import torch.nn as nn
+from torch import Tensor
+from torch.nn.init import constant_, xavier_normal_, xavier_uniform_
+from torch.nn.parameter import Parameter
+from torch.overrides import has_torch_function, handle_torch_function
+from torch.nn.functional import pad, linear, softmax, dropout
+
+
+def multi_head_attention_forward(
+ query: Tensor,
+ key: Tensor,
+ value: Tensor,
+ embed_dim_to_check: int,
+ num_heads: int,
+ in_proj_weight: Tensor,
+ in_proj_bias: Tensor,
+ bias_k: Optional[Tensor],
+ bias_v: Optional[Tensor],
+ add_zero_attn: bool,
+ dropout_p: float,
+ out_proj_weight: Tensor,
+ out_proj_bias: Tensor,
+ training: bool = True,
+ key_padding_mask: Optional[Tensor] = None,
+ need_weights: bool = True,
+ attn_mask: Optional[Tensor] = None,
+ use_separate_proj_weight: bool = False,
+ q_proj_weight: Optional[Tensor] = None,
+ k_proj_weight: Optional[Tensor] = None,
+ v_proj_weight: Optional[Tensor] = None,
+ static_k: Optional[Tensor] = None,
+ static_v: Optional[Tensor] = None,
+) -> Tuple[Tensor, Optional[Tensor]]:
+ r"""
+ Args:
+ query, key, value: map a query and a set of key-value pairs to an output.
+ See "Attention Is All You Need" for more details.
+ embed_dim_to_check: total dimension of the model.
+ num_heads: parallel attention heads.
+ in_proj_weight, in_proj_bias: input projection weight and bias.
+ bias_k, bias_v: bias of the key and value sequences to be added at dim=0.
+ add_zero_attn: add a new batch of zeros to the key and
+ value sequences at dim=1.
+ dropout_p: probability of an element to be zeroed.
+ out_proj_weight, out_proj_bias: the output projection weight and bias.
+ training: apply dropout if is ``True``.
+ key_padding_mask: if provided, specified padding elements in the key will
+ be ignored by the attention. This is an binary mask. When the value is True,
+ the corresponding value on the attention layer will be filled with -inf.
+ need_weights: output attn_output_weights.
+ attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
+ the batches while a 3D mask allows to specify a different mask for the entries of each batch.
+ use_separate_proj_weight: the function accept the proj. weights for query, key,
+ and value in different forms. If false, in_proj_weight will be used, which is
+ a combination of q_proj_weight, k_proj_weight, v_proj_weight.
+ q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias.
+ static_k, static_v: static key and value used for attention operators.
+
+
+ Shape:
+ Inputs:
+ - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
+ the embedding dimension.
+ - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
+ the embedding dimension.
+ - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
+ the embedding dimension.
+ - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
+ If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions
+ will be unchanged. If a BoolTensor is provided, the positions with the
+ value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
+ - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
+ 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
+ S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
+ positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
+ while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
+ are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
+ is provided, it will be added to the attention weight.
+ - static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
+ N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
+ - static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
+ N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
+
+ Outputs:
+ - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
+ E is the embedding dimension.
+ - attn_output_weights: :math:`(N, L, S)` where N is the batch size,
+ L is the target sequence length, S is the source sequence length.
+ """
+ tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v, out_proj_weight, out_proj_bias)
+ if has_torch_function(tens_ops):
+ return handle_torch_function(
+ multi_head_attention_forward,
+ tens_ops,
+ query,
+ key,
+ value,
+ embed_dim_to_check,
+ num_heads,
+ in_proj_weight,
+ in_proj_bias,
+ bias_k,
+ bias_v,
+ add_zero_attn,
+ dropout_p,
+ out_proj_weight,
+ out_proj_bias,
+ training=training,
+ key_padding_mask=key_padding_mask,
+ need_weights=need_weights,
+ attn_mask=attn_mask,
+ use_separate_proj_weight=use_separate_proj_weight,
+ q_proj_weight=q_proj_weight,
+ k_proj_weight=k_proj_weight,
+ v_proj_weight=v_proj_weight,
+ static_k=static_k,
+ static_v=static_v,
+ )
+ tgt_len, bsz, embed_dim = query.size()
+ assert embed_dim == embed_dim_to_check
+ # allow MHA to have different sizes for the feature dimension
+ assert key.size(0) == value.size(0) and key.size(1) == value.size(1)
+
+ head_dim = embed_dim // num_heads
+ assert head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads"
+ scaling = float(head_dim) ** -0.5
+
+ if not use_separate_proj_weight:
+ if (query is key or torch.equal(query, key)) and (key is value or torch.equal(key, value)):
+ # self-attention
+ q, k, v = linear(query, in_proj_weight, in_proj_bias).chunk(3, dim=-1)
+
+ elif key is value or torch.equal(key, value):
+ # encoder-decoder attention
+ # This is inline in_proj function with in_proj_weight and in_proj_bias
+ _b = in_proj_bias
+ _start = 0
+ _end = embed_dim
+ _w = in_proj_weight[_start:_end, :]
+ if _b is not None:
+ _b = _b[_start:_end]
+ q = linear(query, _w, _b)
+
+ if key is None:
+ assert value is None
+ k = None
+ v = None
+ else:
+
+ # This is inline in_proj function with in_proj_weight and in_proj_bias
+ _b = in_proj_bias
+ _start = embed_dim
+ _end = None
+ _w = in_proj_weight[_start:, :]
+ if _b is not None:
+ _b = _b[_start:]
+ k, v = linear(key, _w, _b).chunk(2, dim=-1)
+
+ else:
+ # This is inline in_proj function with in_proj_weight and in_proj_bias
+ _b = in_proj_bias
+ _start = 0
+ _end = embed_dim
+ _w = in_proj_weight[_start:_end, :]
+ if _b is not None:
+ _b = _b[_start:_end]
+ q = linear(query, _w, _b)
+
+ # This is inline in_proj function with in_proj_weight and in_proj_bias
+ _b = in_proj_bias
+ _start = embed_dim
+ _end = embed_dim * 2
+ _w = in_proj_weight[_start:_end, :]
+ if _b is not None:
+ _b = _b[_start:_end]
+ k = linear(key, _w, _b)
+
+ # This is inline in_proj function with in_proj_weight and in_proj_bias
+ _b = in_proj_bias
+ _start = embed_dim * 2
+ _end = None
+ _w = in_proj_weight[_start:, :]
+ if _b is not None:
+ _b = _b[_start:]
+ v = linear(value, _w, _b)
+ else:
+ q_proj_weight_non_opt = torch.jit._unwrap_optional(q_proj_weight)
+ len1, len2 = q_proj_weight_non_opt.size()
+ assert len1 == embed_dim and len2 == query.size(-1)
+
+ k_proj_weight_non_opt = torch.jit._unwrap_optional(k_proj_weight)
+ len1, len2 = k_proj_weight_non_opt.size()
+ assert len1 == embed_dim and len2 == key.size(-1)
+
+ v_proj_weight_non_opt = torch.jit._unwrap_optional(v_proj_weight)
+ len1, len2 = v_proj_weight_non_opt.size()
+ assert len1 == embed_dim and len2 == value.size(-1)
+
+ if in_proj_bias is not None:
+ q = linear(query, q_proj_weight_non_opt, in_proj_bias[0:embed_dim])
+ k = linear(key, k_proj_weight_non_opt, in_proj_bias[embed_dim : (embed_dim * 2)])
+ v = linear(value, v_proj_weight_non_opt, in_proj_bias[(embed_dim * 2) :])
+ else:
+ q = linear(query, q_proj_weight_non_opt, in_proj_bias)
+ k = linear(key, k_proj_weight_non_opt, in_proj_bias)
+ v = linear(value, v_proj_weight_non_opt, in_proj_bias)
+ q = q * scaling
+
+ if attn_mask is not None:
+ assert (
+ attn_mask.dtype == torch.float32
+ or attn_mask.dtype == torch.float64
+ or attn_mask.dtype == torch.float16
+ or attn_mask.dtype == torch.uint8
+ or attn_mask.dtype == torch.bool
+ ), "Only float, byte, and bool types are supported for attn_mask, not {}".format(attn_mask.dtype)
+ if attn_mask.dtype == torch.uint8:
+ warnings.warn("Byte tensor for attn_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.")
+ attn_mask = attn_mask.to(torch.bool)
+
+ if attn_mask.dim() == 2:
+ attn_mask = attn_mask.unsqueeze(0)
+ if list(attn_mask.size()) != [1, query.size(0), key.size(0)]:
+ raise RuntimeError("The size of the 2D attn_mask is not correct.")
+ elif attn_mask.dim() == 3:
+ if list(attn_mask.size()) != [bsz * num_heads, query.size(0), key.size(0)]:
+ raise RuntimeError("The size of the 3D attn_mask is not correct.")
+ else:
+ raise RuntimeError("attn_mask's dimension {} is not supported".format(attn_mask.dim()))
+ # attn_mask's dim is 3 now.
+
+ # convert ByteTensor key_padding_mask to bool
+ if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8:
+ warnings.warn(
+ "Byte tensor for key_padding_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead."
+ )
+ key_padding_mask = key_padding_mask.to(torch.bool)
+
+ if bias_k is not None and bias_v is not None:
+ if static_k is None and static_v is None:
+ k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
+ v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
+ if attn_mask is not None:
+ attn_mask = pad(attn_mask, (0, 1))
+ if key_padding_mask is not None:
+ key_padding_mask = pad(key_padding_mask, (0, 1))
+ else:
+ assert static_k is None, "bias cannot be added to static key."
+ assert static_v is None, "bias cannot be added to static value."
+ else:
+ assert bias_k is None
+ assert bias_v is None
+
+ q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
+ if k is not None:
+ k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
+ if v is not None:
+ v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
+
+ if static_k is not None:
+ assert static_k.size(0) == bsz * num_heads
+ assert static_k.size(2) == head_dim
+ k = static_k
+
+ if static_v is not None:
+ assert static_v.size(0) == bsz * num_heads
+ assert static_v.size(2) == head_dim
+ v = static_v
+
+ src_len = k.size(1)
+
+ if key_padding_mask is not None:
+ # assert key_padding_mask.size(0) == bsz
+ assert key_padding_mask.size(1) == src_len
+
+ if add_zero_attn:
+ src_len += 1
+ k = torch.cat([k, torch.zeros((k.size(0), 1) + k.size()[2:], dtype=k.dtype, device=k.device)], dim=1)
+ v = torch.cat([v, torch.zeros((v.size(0), 1) + v.size()[2:], dtype=v.dtype, device=v.device)], dim=1)
+ if attn_mask is not None:
+ attn_mask = pad(attn_mask, (0, 1))
+ if key_padding_mask is not None:
+ key_padding_mask = pad(key_padding_mask, (0, 1))
+
+ attn_output_weights = torch.bmm(q, k.transpose(1, 2))
+ assert list(attn_output_weights.size()) == [bsz * num_heads, tgt_len, src_len]
+
+ if attn_mask is not None:
+ if attn_mask.dtype == torch.bool:
+ attn_output_weights.masked_fill_(attn_mask, float("-inf"))
+ else:
+ attn_output_weights += attn_mask
+
+ if key_padding_mask is not None:
+ attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
+ attn_output_weights = attn_output_weights.masked_fill(
+ key_padding_mask.unsqueeze(1),
+ float("-inf"),
+ )
+ attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, src_len)
+
+ attn_output_weights = softmax(attn_output_weights, dim=-1)
+ attn_output_weights = dropout(attn_output_weights, p=dropout_p, training=training)
+
+ attn_output = torch.bmm(attn_output_weights, v)
+ assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim]
+ attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
+ attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
+
+ if need_weights:
+ # average attention weights over heads
+ attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
+ return attn_output, attn_output_weights.sum(dim=1) / num_heads
+ else:
+ return attn_output, None
+
+
+# This class exists solely for Transformer; it has an annotation stating
+# that bias is never None, which appeases TorchScript
+class _LinearWithBias(nn.Linear):
+ bias: Tensor # type: ignore
+
+ def __init__(self, in_features: int, out_features: int) -> None:
+ super().__init__(in_features, out_features, bias=True) # type: ignore
+
+
+class MultiheadAttention(nn.Module):
+ r"""Allows the model to jointly attend to information
+ from different representation subspaces.
+ See `Attention Is All You Need `_
+
+ .. math::
+ \text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
+
+ where :math:`head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)`.
+
+ Args:
+ embed_dim: total dimension of the model.
+ num_heads: parallel attention heads.
+ dropout: a Dropout layer on attn_output_weights. Default: 0.0.
+ bias: add bias as module parameter. Default: True.
+ add_bias_kv: add bias to the key and value sequences at dim=0.
+ add_zero_attn: add a new batch of zeros to the key and
+ value sequences at dim=1.
+ kdim: total number of features in key. Default: None.
+ vdim: total number of features in value. Default: None.
+
+ Note that if :attr:`kdim` and :attr:`vdim` are None, they will be set
+ to :attr:`embed_dim` such that query, key, and value have the same
+ number of features.
+
+ Examples::
+
+ >>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
+ >>> attn_output, attn_output_weights = multihead_attn(query, key, value)
+ """
+ bias_k: Optional[torch.Tensor]
+ bias_v: Optional[torch.Tensor]
+
+ def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None):
+ super(MultiheadAttention, self).__init__()
+ self.embed_dim = embed_dim
+ self.kdim = kdim if kdim is not None else embed_dim
+ self.vdim = vdim if vdim is not None else embed_dim
+ self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
+
+ self.num_heads = num_heads
+ self.dropout = dropout
+ self.head_dim = embed_dim // num_heads
+ assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
+
+ if self._qkv_same_embed_dim is False:
+ self.q_proj_weight = Parameter(torch.Tensor(embed_dim, embed_dim))
+ self.k_proj_weight = Parameter(torch.Tensor(embed_dim, self.kdim))
+ self.v_proj_weight = Parameter(torch.Tensor(embed_dim, self.vdim))
+ self.register_parameter('in_proj_weight', None)
+ else:
+ self.in_proj_weight = Parameter(torch.empty(3 * embed_dim, embed_dim))
+ self.register_parameter('q_proj_weight', None)
+ self.register_parameter('k_proj_weight', None)
+ self.register_parameter('v_proj_weight', None)
+
+ if bias:
+ self.in_proj_bias = Parameter(torch.empty(3 * embed_dim))
+ else:
+ self.register_parameter('in_proj_bias', None)
+ self.out_proj = _LinearWithBias(embed_dim, embed_dim)
+
+ if add_bias_kv:
+ self.bias_k = Parameter(torch.empty(1, 1, embed_dim))
+ self.bias_v = Parameter(torch.empty(1, 1, embed_dim))
+ else:
+ self.bias_k = self.bias_v = None
+
+ self.add_zero_attn = add_zero_attn
+
+ self._reset_parameters()
+
+ def _reset_parameters(self):
+ if self._qkv_same_embed_dim:
+ xavier_uniform_(self.in_proj_weight)
+ else:
+ xavier_uniform_(self.q_proj_weight)
+ xavier_uniform_(self.k_proj_weight)
+ xavier_uniform_(self.v_proj_weight)
+
+ if self.in_proj_bias is not None:
+ constant_(self.in_proj_bias, 0.)
+ constant_(self.out_proj.bias, 0.)
+ if self.bias_k is not None:
+ xavier_normal_(self.bias_k)
+ if self.bias_v is not None:
+ xavier_normal_(self.bias_v)
+
+ def __setstate__(self, state):
+ # Support loading old MultiheadAttention checkpoints generated by v1.1.0
+ if '_qkv_same_embed_dim' not in state:
+ state['_qkv_same_embed_dim'] = True
+
+ super(MultiheadAttention, self).__setstate__(state)
+
+ def forward(self, query: Tensor, key: Tensor, value: Tensor, key_padding_mask: Optional[Tensor] = None,
+ need_weights: bool = True, attn_mask: Optional[Tensor] = None) -> Tuple[Tensor, Optional[Tensor]]:
+ r"""
+ Args:
+ query, key, value: map a query and a set of key-value pairs to an output.
+ See "Attention Is All You Need" for more details.
+ key_padding_mask: if provided, specified padding elements in the key will
+ be ignored by the attention. When given a binary mask and a value is True,
+ the corresponding value on the attention layer will be ignored. When given
+ a byte mask and a value is non-zero, the corresponding value on the attention
+ layer will be ignored
+ need_weights: output attn_output_weights.
+ attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
+ the batches while a 3D mask allows to specify a different mask for the entries of each batch.
+
+ Shapes for inputs:
+ - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
+ the embedding dimension.
+ - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
+ the embedding dimension.
+ - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
+ the embedding dimension.
+ - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
+ If a ByteTensor is provided, the non-zero positions will be ignored while the position
+ with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the
+ value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
+ - attn_mask: if a 2D mask: :math:`(L, S)` where L is the target sequence length, S is the
+ source sequence length.
+
+ If a 3D mask: :math:`(N\cdot\text{num\_heads}, L, S)` where N is the batch size, L is the target sequence
+ length, S is the source sequence length. ``attn_mask`` ensure that position i is allowed to attend
+ the unmasked positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
+ while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
+ is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
+ is provided, it will be added to the attention weight.
+
+ Shapes for outputs:
+ - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
+ E is the embedding dimension.
+ - attn_output_weights: :math:`(N, L, S)` where N is the batch size,
+ L is the target sequence length, S is the source sequence length.
+ """
+ if not self._qkv_same_embed_dim:
+ return multi_head_attention_forward(
+ query, key, value, self.embed_dim, self.num_heads,
+ self.in_proj_weight, self.in_proj_bias,
+ self.bias_k, self.bias_v, self.add_zero_attn,
+ self.dropout, self.out_proj.weight, self.out_proj.bias,
+ training=self.training,
+ key_padding_mask=key_padding_mask, need_weights=need_weights,
+ attn_mask=attn_mask, use_separate_proj_weight=True,
+ q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight,
+ v_proj_weight=self.v_proj_weight)
+ else:
+ return multi_head_attention_forward(
+ query, key, value, self.embed_dim, self.num_heads,
+ self.in_proj_weight, self.in_proj_bias,
+ self.bias_k, self.bias_v, self.add_zero_attn,
+ self.dropout, self.out_proj.weight, self.out_proj.bias,
+ training=self.training,
+ key_padding_mask=key_padding_mask, need_weights=need_weights,
+ attn_mask=attn_mask)
\ No newline at end of file
diff --git a/xdecoder/modules/position_encoding.py b/xdecoder/modules/position_encoding.py
new file mode 100755
index 0000000000000000000000000000000000000000..09faa117bcd04b9c3f70301347630c4ace39cac2
--- /dev/null
+++ b/xdecoder/modules/position_encoding.py
@@ -0,0 +1,64 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+## Modified by Bowen Cheng from: https://github.com/facebookresearch/detr/blob/master/models/position_encoding.py
+"""
+Various positional encodings for the transformer.
+"""
+import math
+
+import torch
+from torch import nn
+
+
+class PositionEmbeddingSine(nn.Module):
+ """
+ This is a more standard version of the position embedding, very similar to the one
+ used by the Attention is all you need paper, generalized to work on images.
+ """
+
+ def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
+ super().__init__()
+ self.num_pos_feats = num_pos_feats
+ self.temperature = temperature
+ self.normalize = normalize
+ if scale is not None and normalize is False:
+ raise ValueError("normalize should be True if scale is passed")
+ if scale is None:
+ scale = 2 * math.pi
+ self.scale = scale
+
+ def forward(self, x, mask=None):
+ if mask is None:
+ mask = torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool)
+ not_mask = ~mask
+ y_embed = not_mask.cumsum(1, dtype=x.dtype)
+ x_embed = not_mask.cumsum(2, dtype=x.dtype)
+ if self.normalize:
+ eps = 1e-6
+ y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
+ x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
+
+ dim_t = torch.arange(self.num_pos_feats, dtype=x.dtype, device=x.device)
+ dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
+
+ pos_x = x_embed[:, :, :, None] / dim_t
+ pos_y = y_embed[:, :, :, None] / dim_t
+ pos_x = torch.stack(
+ (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
+ ).flatten(3)
+ pos_y = torch.stack(
+ (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
+ ).flatten(3)
+ pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
+ return pos
+
+ def __repr__(self, _repr_indent=4):
+ head = "Positional encoding " + self.__class__.__name__
+ body = [
+ "num_pos_feats: {}".format(self.num_pos_feats),
+ "temperature: {}".format(self.temperature),
+ "normalize: {}".format(self.normalize),
+ "scale: {}".format(self.scale),
+ ]
+ # _repr_indent = 4
+ lines = [head] + [" " * _repr_indent + line for line in body]
+ return "\n".join(lines)
diff --git a/xdecoder/modules/postprocessing.py b/xdecoder/modules/postprocessing.py
new file mode 100644
index 0000000000000000000000000000000000000000..eef2047589674fda092bebc310bd394a3db57074
--- /dev/null
+++ b/xdecoder/modules/postprocessing.py
@@ -0,0 +1,122 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+import torch
+from torch.nn import functional as F
+
+from detectron2.structures import Instances, ROIMasks
+
+
+# perhaps should rename to "resize_instance"
+def detector_postprocess(
+ results: Instances, output_height: int, output_width: int, mask_threshold: float = 0.5
+):
+ """
+ Resize the output instances.
+ The input images are often resized when entering an object detector.
+ As a result, we often need the outputs of the detector in a different
+ resolution from its inputs.
+
+ This function will resize the raw outputs of an R-CNN detector
+ to produce outputs according to the desired output resolution.
+
+ Args:
+ results (Instances): the raw outputs from the detector.
+ `results.image_size` contains the input image resolution the detector sees.
+ This object might be modified in-place.
+ output_height, output_width: the desired output resolution.
+
+ Returns:
+ Instances: the resized output from the model, based on the output resolution
+ """
+ if isinstance(output_width, torch.Tensor):
+ # This shape might (but not necessarily) be tensors during tracing.
+ # Converts integer tensors to float temporaries to ensure true
+ # division is performed when computing scale_x and scale_y.
+ output_width_tmp = output_width.float()
+ output_height_tmp = output_height.float()
+ new_size = torch.stack([output_height, output_width])
+ else:
+ new_size = (output_height, output_width)
+ output_width_tmp = output_width
+ output_height_tmp = output_height
+
+ scale_x, scale_y = (
+ output_width_tmp / results.image_size[1],
+ output_height_tmp / results.image_size[0],
+ )
+ results = Instances(new_size, **results.get_fields())
+
+ if results.has("pred_boxes"):
+ output_boxes = results.pred_boxes
+ elif results.has("proposal_boxes"):
+ output_boxes = results.proposal_boxes
+ else:
+ output_boxes = None
+ assert output_boxes is not None, "Predictions must contain boxes!"
+
+ output_boxes.scale(scale_x, scale_y)
+ output_boxes.clip(results.image_size)
+
+ results = results[output_boxes.nonempty()]
+
+ if results.has("pred_masks"):
+ if isinstance(results.pred_masks, ROIMasks):
+ roi_masks = results.pred_masks
+ else:
+ # pred_masks is a tensor of shape (N, 1, M, M)
+ roi_masks = ROIMasks(results.pred_masks[:, 0, :, :])
+ results.pred_masks = roi_masks.to_bitmasks(
+ results.pred_boxes, output_height, output_width, mask_threshold
+ ).tensor # TODO return ROIMasks/BitMask object in the future
+
+ if results.has("pred_keypoints"):
+ results.pred_keypoints[:, :, 0] *= scale_x
+ results.pred_keypoints[:, :, 1] *= scale_y
+
+ return results
+
+def bbox_postprocess(result, input_size, img_size, output_height, output_width):
+ """
+ result: [xc,yc,w,h] range [0,1] to [x1,y1,x2,y2] range [0,w], [0,h]
+ """
+ if result is None:
+ return None
+
+ scale = torch.tensor([input_size[1], input_size[0], input_size[1], input_size[0]])[None,:].to(result.device)
+ result = result.sigmoid() * scale
+ x1,y1,x2,y2 = result[:,0] - result[:,2]/2, result[:,1] - result[:,3]/2, result[:,0] + result[:,2]/2, result[:,1] + result[:,3]/2
+ h,w = img_size
+
+ x1 = x1.clamp(min=0, max=w)
+ y1 = y1.clamp(min=0, max=h)
+ x2 = x2.clamp(min=0, max=w)
+ y2 = y2.clamp(min=0, max=h)
+
+ box = torch.stack([x1,y1,x2,y2]).permute(1,0)
+ scale = torch.tensor([output_width/w, output_height/h, output_width/w, output_height/h])[None,:].to(result.device)
+ box = box*scale
+ return box
+
+def sem_seg_postprocess(result, img_size, output_height, output_width):
+ """
+ Return semantic segmentation predictions in the original resolution.
+
+ The input images are often resized when entering semantic segmentor. Moreover, in same
+ cases, they also padded inside segmentor to be divisible by maximum network stride.
+ As a result, we often need the predictions of the segmentor in a different
+ resolution from its inputs.
+
+ Args:
+ result (Tensor): semantic segmentation prediction logits. A tensor of shape (C, H, W),
+ where C is the number of classes, and H, W are the height and width of the prediction.
+ img_size (tuple): image size that segmentor is taking as input.
+ output_height, output_width: the desired output resolution.
+
+ Returns:
+ semantic segmentation prediction (Tensor): A tensor of the shape
+ (C, output_height, output_width) that contains per-pixel soft predictions.
+ """
+ result = result[:, : img_size[0], : img_size[1]].expand(1, -1, -1, -1)
+ result = F.interpolate(
+ result, size=(output_height, output_width), mode="bilinear", align_corners=False
+ )[0]
+ return result
diff --git a/xdecoder/utils/__init__.py b/xdecoder/utils/__init__.py
new file mode 100755
index 0000000000000000000000000000000000000000..4ca95fb0709a0af80e45d7fc35aa3eb31bac9f13
--- /dev/null
+++ b/xdecoder/utils/__init__.py
@@ -0,0 +1,4 @@
+from .config import *
+from .misc import *
+from .box_ops import *
+from .it_contrastive import *
\ No newline at end of file
diff --git a/xdecoder/utils/box_ops.py b/xdecoder/utils/box_ops.py
new file mode 100755
index 0000000000000000000000000000000000000000..42f93d5d48e25657e9f46ccef1a17064b8c192f7
--- /dev/null
+++ b/xdecoder/utils/box_ops.py
@@ -0,0 +1,93 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+"""
+Utilities for bounding box manipulation and GIoU.
+"""
+import torch
+from torchvision.ops.boxes import box_area
+
+
+def box_cxcywh_to_xyxy(x):
+ x_c, y_c, w, h = x.unbind(-1)
+ b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
+ (x_c + 0.5 * w), (y_c + 0.5 * h)]
+ return torch.stack(b, dim=-1)
+
+
+def box_xyxy_to_cxcywh(x):
+ x0, y0, x1, y1 = x.unbind(-1)
+ b = [(x0 + x1) / 2, (y0 + y1) / 2,
+ (x1 - x0), (y1 - y0)]
+ return torch.stack(b, dim=-1)
+
+def box_xywh_to_xyxy(x):
+ x0, y0, x1, y1 = x.unbind(-1)
+ b = [x0, y0, (x0 + x1), (y0 + y1)]
+ return torch.stack(b, dim=-1)
+
+
+# modified from torchvision to also return the union
+def box_iou(boxes1, boxes2):
+ area1 = box_area(boxes1)
+ area2 = box_area(boxes2)
+
+ lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2]
+ rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2]
+
+ wh = (rb - lt).clamp(min=0) # [N,M,2]
+ inter = wh[:, :, 0] * wh[:, :, 1] # [N,M]
+
+ union = area1[:, None] + area2 - inter
+
+ iou = inter / union
+ return iou, union
+
+
+def generalized_box_iou(boxes1, boxes2):
+ """
+ Generalized IoU from https://giou.stanford.edu/
+
+ The boxes should be in [x0, y0, x1, y1] format
+
+ Returns a [N, M] pairwise matrix, where N = len(boxes1)
+ and M = len(boxes2)
+ """
+ # degenerate boxes gives inf / nan results
+ # so do an early check
+ assert (boxes1[:, 2:] >= boxes1[:, :2]).all()
+ assert (boxes2[:, 2:] >= boxes2[:, :2]).all()
+ iou, union = box_iou(boxes1, boxes2)
+
+ lt = torch.min(boxes1[:, None, :2], boxes2[:, :2])
+ rb = torch.max(boxes1[:, None, 2:], boxes2[:, 2:])
+
+ wh = (rb - lt).clamp(min=0) # [N,M,2]
+ area = wh[:, :, 0] * wh[:, :, 1]
+
+ return iou - (area - union) / area
+
+
+def masks_to_boxes(masks):
+ """Compute the bounding boxes around the provided masks
+
+ The masks should be in format [N, H, W] where N is the number of masks, (H, W) are the spatial dimensions.
+
+ Returns a [N, 4] tensors, with the boxes in xyxy format
+ """
+ if masks.numel() == 0:
+ return torch.zeros((0, 4), device=masks.device)
+
+ h, w = masks.shape[-2:]
+
+ y = torch.arange(0, h, dtype=torch.float)
+ x = torch.arange(0, w, dtype=torch.float)
+ y, x = torch.meshgrid(y, x)
+
+ x_mask = (masks * x.unsqueeze(0))
+ x_max = x_mask.flatten(1).max(-1)[0]
+ x_min = x_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0]
+
+ y_mask = (masks * y.unsqueeze(0))
+ y_max = y_mask.flatten(1).max(-1)[0]
+ y_min = y_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0]
+
+ return torch.stack([x_min, y_min, x_max, y_max], 1)
\ No newline at end of file
diff --git a/xdecoder/utils/config.py b/xdecoder/utils/config.py
new file mode 100755
index 0000000000000000000000000000000000000000..766bb386498f0f034485a19027d5b30b0b6d20ff
--- /dev/null
+++ b/xdecoder/utils/config.py
@@ -0,0 +1,140 @@
+# -*- coding: utf-8 -*-
+# Copyright (c) Facebook, Inc. and its affiliates.
+
+import functools
+import inspect
+
+def configurable(init_func=None, *, from_config=None):
+ """
+ Decorate a function or a class's __init__ method so that it can be called
+ with a :class:`CfgNode` object using a :func:`from_config` function that translates
+ :class:`CfgNode` to arguments.
+
+ Examples:
+ ::
+ # Usage 1: Decorator on __init__:
+ class A:
+ @configurable
+ def __init__(self, a, b=2, c=3):
+ pass
+
+ @classmethod
+ def from_config(cls, cfg): # 'cfg' must be the first argument
+ # Returns kwargs to be passed to __init__
+ return {"a": cfg.A, "b": cfg.B}
+
+ a1 = A(a=1, b=2) # regular construction
+ a2 = A(cfg) # construct with a cfg
+ a3 = A(cfg, b=3, c=4) # construct with extra overwrite
+
+ # Usage 2: Decorator on any function. Needs an extra from_config argument:
+ @configurable(from_config=lambda cfg: {"a: cfg.A, "b": cfg.B})
+ def a_func(a, b=2, c=3):
+ pass
+
+ a1 = a_func(a=1, b=2) # regular call
+ a2 = a_func(cfg) # call with a cfg
+ a3 = a_func(cfg, b=3, c=4) # call with extra overwrite
+
+ Args:
+ init_func (callable): a class's ``__init__`` method in usage 1. The
+ class must have a ``from_config`` classmethod which takes `cfg` as
+ the first argument.
+ from_config (callable): the from_config function in usage 2. It must take `cfg`
+ as its first argument.
+ """
+
+ if init_func is not None:
+ assert (
+ inspect.isfunction(init_func)
+ and from_config is None
+ and init_func.__name__ == "__init__"
+ ), "Incorrect use of @configurable. Check API documentation for examples."
+
+ @functools.wraps(init_func)
+ def wrapped(self, *args, **kwargs):
+ try:
+ from_config_func = type(self).from_config
+ except AttributeError as e:
+ raise AttributeError(
+ "Class with @configurable must have a 'from_config' classmethod."
+ ) from e
+ if not inspect.ismethod(from_config_func):
+ raise TypeError("Class with @configurable must have a 'from_config' classmethod.")
+
+ if _called_with_cfg(*args, **kwargs):
+ explicit_args = _get_args_from_config(from_config_func, *args, **kwargs)
+ init_func(self, **explicit_args)
+ else:
+ init_func(self, *args, **kwargs)
+
+ return wrapped
+
+ else:
+ if from_config is None:
+ return configurable # @configurable() is made equivalent to @configurable
+ assert inspect.isfunction(
+ from_config
+ ), "from_config argument of configurable must be a function!"
+
+ def wrapper(orig_func):
+ @functools.wraps(orig_func)
+ def wrapped(*args, **kwargs):
+ if _called_with_cfg(*args, **kwargs):
+ explicit_args = _get_args_from_config(from_config, *args, **kwargs)
+ return orig_func(**explicit_args)
+ else:
+ return orig_func(*args, **kwargs)
+
+ wrapped.from_config = from_config
+ return wrapped
+
+ return wrapper
+
+def _called_with_cfg(*args, **kwargs):
+ """
+ Returns:
+ bool: whether the arguments contain CfgNode and should be considered
+ forwarded to from_config.
+ """
+ from omegaconf import DictConfig
+
+ if len(args) and isinstance(args[0], (dict)):
+ return True
+ if isinstance(kwargs.pop("cfg", None), (dict)):
+ return True
+ # `from_config`'s first argument is forced to be "cfg".
+ # So the above check covers all cases.
+ return False
+
+def _get_args_from_config(from_config_func, *args, **kwargs):
+ """
+ Use `from_config` to obtain explicit arguments.
+
+ Returns:
+ dict: arguments to be used for cls.__init__
+ """
+ signature = inspect.signature(from_config_func)
+ if list(signature.parameters.keys())[0] != "cfg":
+ if inspect.isfunction(from_config_func):
+ name = from_config_func.__name__
+ else:
+ name = f"{from_config_func.__self__}.from_config"
+ raise TypeError(f"{name} must take 'cfg' as the first argument!")
+ support_var_arg = any(
+ param.kind in [param.VAR_POSITIONAL, param.VAR_KEYWORD]
+ for param in signature.parameters.values()
+ )
+ if support_var_arg: # forward all arguments to from_config, if from_config accepts them
+ ret = from_config_func(*args, **kwargs)
+ else:
+ # forward supported arguments to from_config
+ supported_arg_names = set(signature.parameters.keys())
+ extra_kwargs = {}
+ for name in list(kwargs.keys()):
+ if name not in supported_arg_names:
+ extra_kwargs[name] = kwargs.pop(name)
+ ret = from_config_func(*args, **kwargs)
+ # forward the other arguments to __init__
+ ret.update(extra_kwargs)
+ return ret
\ No newline at end of file
diff --git a/xdecoder/utils/it_contrastive.py b/xdecoder/utils/it_contrastive.py
new file mode 100755
index 0000000000000000000000000000000000000000..b30fd2dae6221c2c244e5b48109e282a6e2e1533
--- /dev/null
+++ b/xdecoder/utils/it_contrastive.py
@@ -0,0 +1,59 @@
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+def is_dist_initialized():
+ return torch.distributed.is_initialized()
+
+def get_world_size():
+ if is_dist_initialized():
+ return torch.distributed.get_world_size()
+ return 1
+
+def all_gather_grad(x):
+ if get_world_size() > 1:
+ all_x = [torch.zeros_like(x) for _ in range(get_world_size())]
+ torch.distributed.all_gather(all_x, x)
+ all_x[torch.distributed.get_rank()] = x
+ x = torch.cat(all_x, dim=0)
+ return x
+
+@torch.no_grad()
+def all_gather_nograd(tensor):
+ # from albef
+ """
+ Performs all_gather operation on the provided tensors.
+ *** Warning ***: torch.distributed.all_gather has no gradient.
+ """
+ if get_world_size() > 1:
+ tensors_gather = [torch.ones_like(tensor)
+ for _ in range(torch.distributed.get_world_size())]
+ torch.distributed.all_gather(tensors_gather, tensor, async_op=False)
+
+ tensor = torch.cat(tensors_gather, dim=0)
+ return tensor
+
+def image_text_contrastive_loss(image_feat, text_feat, temperature, image_id=None, text_id=None):
+ # add the following 4 lines
+ image_feat = all_gather_grad(image_feat)
+ text_feat = all_gather_grad(text_feat)
+
+ logits = torch.matmul(image_feat, text_feat.t())
+ logits /= temperature
+
+ if image_id is None and text_id is None:
+ gt = torch.arange(logits.shape[0], device=logits.device)
+ loss1 = F.cross_entropy(logits, gt)
+ loss2 = F.cross_entropy(logits.t(), gt)
+ else:
+ image_id = all_gather_grad(image_id)
+ text_id = all_gather_grad(text_id)
+
+ gt_image = image_id.reshape((-1, 1)) == image_id.reshape((1, -1))
+ gt_text = text_id.reshape((-1, 1)) == text_id.reshape((1, -1))
+ gt = torch.logical_or(gt_image, gt_text)
+
+ loss1 = -torch.sum(gt * F.log_softmax(logits, dim=1)) / gt.sum()
+ loss2 = -torch.sum(gt.t() * F.log_softmax(logits.t(), dim=1)) / gt.sum()
+
+ return (loss1 + loss2) / 2 * get_world_size() # scale it up by the number of GPUs
diff --git a/xdecoder/utils/misc.py b/xdecoder/utils/misc.py
new file mode 100755
index 0000000000000000000000000000000000000000..e7bfa08060344fedcb1d5017b932a3c16fc5bc86
--- /dev/null
+++ b/xdecoder/utils/misc.py
@@ -0,0 +1,157 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+# Modified by Bowen Cheng from https://github.com/facebookresearch/detr/blob/master/util/misc.py
+# Modified by Xueyan Zou
+"""
+Misc functions, including distributed helpers.
+
+Mostly copy-paste from torchvision references.
+"""
+from typing import List, Optional
+
+import torch
+import torch.distributed as dist
+import torchvision
+from torch import Tensor
+
+def _max_by_axis(the_list):
+ # type: (List[List[int]]) -> List[int]
+ maxes = the_list[0]
+ for sublist in the_list[1:]:
+ for index, item in enumerate(sublist):
+ maxes[index] = max(maxes[index], item)
+ return maxes
+
+class NestedTensor(object):
+ def __init__(self, tensors, mask: Optional[Tensor]):
+ self.tensors = tensors
+ self.mask = mask
+
+ def to(self, device):
+ # type: (Device) -> NestedTensor # noqa
+ cast_tensor = self.tensors.to(device)
+ mask = self.mask
+ if mask is not None:
+ assert mask is not None
+ cast_mask = mask.to(device)
+ else:
+ cast_mask = None
+ return NestedTensor(cast_tensor, cast_mask)
+
+ def decompose(self):
+ return self.tensors, self.mask
+
+ def __repr__(self):
+ return str(self.tensors)
+
+def nested_tensor_from_tensor_list(tensor_list: List[Tensor]):
+ # TODO make this more general
+ if tensor_list[0].ndim == 3:
+ if torchvision._is_tracing():
+ # nested_tensor_from_tensor_list() does not export well to ONNX
+ # call _onnx_nested_tensor_from_tensor_list() instead
+ return _onnx_nested_tensor_from_tensor_list(tensor_list)
+
+ # TODO make it support different-sized images
+ max_size = _max_by_axis([list(img.shape) for img in tensor_list])
+ # min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list]))
+ batch_shape = [len(tensor_list)] + max_size
+ b, c, h, w = batch_shape
+ dtype = tensor_list[0].dtype
+ device = tensor_list[0].device
+ tensor = torch.zeros(batch_shape, dtype=dtype, device=device)
+ mask = torch.ones((b, h, w), dtype=torch.bool, device=device)
+ for img, pad_img, m in zip(tensor_list, tensor, mask):
+ pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
+ m[: img.shape[1], : img.shape[2]] = False
+ elif tensor_list[0].ndim == 2:
+ if torchvision._is_tracing():
+ # nested_tensor_from_tensor_list() does not export well to ONNX
+ # call _onnx_nested_tensor_from_tensor_list() instead
+ return _onnx_nested_tensor_from_tensor_list(tensor_list)
+
+ # TODO make it support different-sized images
+ max_size = _max_by_axis([list(txt.shape) for txt in tensor_list])
+ # min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list]))
+ batch_shape = [len(tensor_list)] + max_size
+ b, c, l = batch_shape
+ dtype = tensor_list[0].dtype
+ device = tensor_list[0].device
+ tensor = torch.zeros(batch_shape, dtype=dtype, device=device)
+ mask = torch.ones((b, l), dtype=torch.bool, device=device)
+ for txt, pad_txt, m in zip(tensor_list, tensor, mask):
+ pad_txt[: txt.shape[0], : txt.shape[1]] = txt
+ m[: txt.shape[1]] = False
+ else:
+ raise ValueError("not supported")
+ return NestedTensor(tensor, mask)
+
+def _collate_and_pad_divisibility(tensor_list: list, div=32):
+ max_size = []
+ for i in range(tensor_list[0].dim()):
+ max_size_i = torch.max(
+ torch.tensor([img.shape[i] for img in tensor_list]).to(torch.float32)
+ ).to(torch.int64)
+ max_size.append(max_size_i)
+ max_size = tuple(max_size)
+
+ c,h,w = max_size
+ pad_h = (div - h % div) if h % div != 0 else 0
+ pad_w = (div - w % div) if w % div != 0 else 0
+ max_size = (c,h+pad_h,w+pad_w)
+
+ # work around for
+ # pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
+ # m[: img.shape[1], :img.shape[2]] = False
+ # which is not yet supported in onnx
+ padded_imgs = []
+ padded_masks = []
+ for img in tensor_list:
+ padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape))]
+ padded_img = torch.nn.functional.pad(img, (0, padding[2], 0, padding[1], 0, padding[0]))
+ padded_imgs.append(padded_img)
+
+ m = torch.zeros_like(img[0], dtype=torch.int, device=img.device)
+ padded_mask = torch.nn.functional.pad(m, (0, padding[2], 0, padding[1]), "constant", 1)
+ padded_masks.append(padded_mask.to(torch.bool))
+
+ return padded_imgs
+
+# _onnx_nested_tensor_from_tensor_list() is an implementation of
+# nested_tensor_from_tensor_list() that is supported by ONNX tracing.
+@torch.jit.unused
+def _onnx_nested_tensor_from_tensor_list(tensor_list: List[Tensor]) -> NestedTensor:
+ max_size = []
+ for i in range(tensor_list[0].dim()):
+ max_size_i = torch.max(
+ torch.stack([img.shape[i] for img in tensor_list]).to(torch.float32)
+ ).to(torch.int64)
+ max_size.append(max_size_i)
+ max_size = tuple(max_size)
+
+ # work around for
+ # pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
+ # m[: img.shape[1], :img.shape[2]] = False
+ # which is not yet supported in onnx
+ padded_imgs = []
+ padded_masks = []
+ for img in tensor_list:
+ padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape))]
+ padded_img = torch.nn.functional.pad(img, (0, padding[2], 0, padding[1], 0, padding[0]))
+ padded_imgs.append(padded_img)
+
+ m = torch.zeros_like(img[0], dtype=torch.int, device=img.device)
+ padded_mask = torch.nn.functional.pad(m, (0, padding[2], 0, padding[1]), "constant", 1)
+ padded_masks.append(padded_mask.to(torch.bool))
+
+ tensor = torch.stack(padded_imgs)
+ mask = torch.stack(padded_masks)
+
+ return NestedTensor(tensor, mask=mask)
+
+
+def is_dist_avail_and_initialized():
+ if not dist.is_available():
+ return False
+ if not dist.is_initialized():
+ return False
+ return True
\ No newline at end of file
diff --git a/xdecoder_focalt_last.pt b/xdecoder_focalt_last.pt
new file mode 100644
index 0000000000000000000000000000000000000000..9cbf4b0274c0eb16d1921a687ab84618e70c3630
--- /dev/null
+++ b/xdecoder_focalt_last.pt
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:9ddc9672a1fb8c0e463b4bc0c0e788739d08899b89c5cb901e581e3bbda6fb6d
+size 658330805
diff --git a/xdecoder_focalt_last_novg.pt b/xdecoder_focalt_last_novg.pt
new file mode 100644
index 0000000000000000000000000000000000000000..81f3b4720da031198269851fc5288a3599416819
--- /dev/null
+++ b/xdecoder_focalt_last_novg.pt
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:d9d18e951784e9d6d84897cd1d87849b0c69333dafe8e5b358b284f4282990d0
+size 658330805