Spaces:
Build error
Build error
import sys | |
import cv2 | |
import torch | |
import numpy as np | |
import gradio as gr | |
from PIL import Image | |
from omegaconf import OmegaConf | |
from einops import repeat | |
from imwatermark import WatermarkEncoder | |
from pathlib import Path | |
from .ddim import DDIMSampler | |
from .util import instantiate_from_config | |
torch.set_grad_enabled(False) | |
def put_watermark(img, wm_encoder=None): | |
if wm_encoder is not None: | |
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) | |
img = wm_encoder.encode(img, 'dwtDct') | |
img = Image.fromarray(img[:, :, ::-1]) | |
return img | |
def initialize_model(config, ckpt): | |
config = OmegaConf.load(config) | |
model = instantiate_from_config(config.model) | |
model.load_state_dict(torch.load(ckpt)["state_dict"], strict=False) | |
device = torch.device( | |
"cuda") if torch.cuda.is_available() else torch.device("cpu") | |
model = model.to(device) | |
sampler = DDIMSampler(model) | |
return sampler | |
def make_batch_sd( | |
image, | |
mask, | |
txt, | |
device, | |
num_samples=1): | |
image = np.array(image.convert("RGB")) | |
image = image[None].transpose(0, 3, 1, 2) | |
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 | |
mask = np.array(mask.convert("L")) | |
mask = mask.astype(np.float32) / 255.0 | |
mask = mask[None, None] | |
mask[mask < 0.5] = 0 | |
mask[mask >= 0.5] = 1 | |
mask = torch.from_numpy(mask) | |
masked_image = image * (mask < 0.5) | |
batch = { | |
"image": repeat(image.to(device=device), "1 ... -> n ...", n=num_samples), | |
"txt": num_samples * [txt], | |
"mask": repeat(mask.to(device=device), "1 ... -> n ...", n=num_samples), | |
"masked_image": repeat(masked_image.to(device=device), "1 ... -> n ...", n=num_samples), | |
} | |
return batch | |
def inpaint(sampler, image, mask, prompt, seed, scale, ddim_steps, num_samples=1, w=512, h=512): | |
device = torch.device( | |
"cuda") if torch.cuda.is_available() else torch.device("cpu") | |
model = sampler.model | |
print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...") | |
wm = "SDV2" | |
wm_encoder = WatermarkEncoder() | |
wm_encoder.set_watermark('bytes', wm.encode('utf-8')) | |
prng = np.random.RandomState(seed) | |
start_code = prng.randn(num_samples, 4, h // 8, w // 8) | |
start_code = torch.from_numpy(start_code).to( | |
device=device, dtype=torch.float32) | |
with torch.no_grad(), \ | |
torch.autocast("cuda"): | |
batch = make_batch_sd(image, mask, txt=prompt, | |
device=device, num_samples=num_samples) | |
c = model.cond_stage_model.encode(batch["txt"]) | |
c_cat = list() | |
for ck in model.concat_keys: | |
cc = batch[ck].float() | |
if ck != model.masked_image_key: | |
bchw = [num_samples, 4, h // 8, w // 8] | |
cc = torch.nn.functional.interpolate(cc, size=bchw[-2:]) | |
else: | |
cc = model.get_first_stage_encoding( | |
model.encode_first_stage(cc)) | |
c_cat.append(cc) | |
c_cat = torch.cat(c_cat, dim=1) | |
# cond | |
cond = {"c_concat": [c_cat], "c_crossattn": [c]} | |
# uncond cond | |
uc_cross = model.get_unconditional_conditioning(num_samples, "") | |
uc_full = {"c_concat": [c_cat], "c_crossattn": [uc_cross]} | |
shape = [model.channels, h // 8, w // 8] | |
samples_cfg, intermediates = sampler.sample( | |
ddim_steps, | |
num_samples, | |
shape, | |
cond, | |
verbose=False, | |
eta=1.0, | |
unconditional_guidance_scale=scale, | |
unconditional_conditioning=uc_full, | |
x_T=start_code, | |
) | |
x_samples_ddim = model.decode_first_stage(samples_cfg) | |
result = torch.clamp((x_samples_ddim + 1.0) / 2.0, | |
min=0.0, max=1.0) | |
result = result.cpu().numpy().transpose(0, 2, 3, 1) * 255 | |
return [put_watermark(Image.fromarray(img.astype(np.uint8)), wm_encoder) for img in result] | |
def pad_image(input_image): | |
pad_w, pad_h = np.max(((2, 2), np.ceil( | |
np.array(input_image.size) / 64).astype(int)), axis=0) * 64 - input_image.size | |
im_padded = Image.fromarray( | |
np.pad(np.array(input_image), ((0, pad_h), (0, pad_w), (0, 0)), mode='edge')) | |
return im_padded | |
def crop_image(input_image): | |
crop_w, crop_h = np.floor(np.array(input_image.size) / 64).astype(int) * 64 | |
im_cropped = Image.fromarray(np.array(input_image)[:crop_h, :crop_w]) | |
return im_cropped | |
# sampler = initialize_model(sys.argv[1], sys.argv[2]) | |
def predict(model, input_image, prompt, ddim_steps, num_samples, scale, seed): | |
"""_summary_ | |
Args: | |
input_image (_type_): dict | |
- image: PIL.Image. Input image. | |
- mask: PIL.Image. Mask image. | |
prompt (_type_): string to be used as prompt. | |
ddim_steps (_type_): typical 45 | |
num_samples (_type_): typical 4 | |
scale (_type_): typical 10.0 Guidance Scale. | |
seed (_type_): typical 1529160519 | |
""" | |
init_image = input_image["image"].convert("RGB") | |
init_mask = input_image["mask"].convert("RGB") | |
image = pad_image(init_image) # resize to integer multiple of 32 | |
mask = pad_image(init_mask) # resize to integer multiple of 32 | |
width, height = image.size | |
print("Inpainting...", width, height) | |
result = inpaint( | |
sampler=model, | |
image=image, | |
mask=mask, | |
prompt=prompt, | |
seed=seed, | |
scale=scale, | |
ddim_steps=ddim_steps, | |
num_samples=num_samples, | |
h=height, w=width | |
) | |
return result |