Spaces:
Runtime error
Runtime error
import re | |
import gradio as gr | |
import torch | |
from transformers import AutoFeatureExtractor, AutoModelForImageClassification | |
extractor = AutoFeatureExtractor.from_pretrained("DunnBC22/dit-base-Business_Documents_Classified_v2") | |
model = AutoModelForImageClassification.from_pretrained("DunnBC22/dit-base-Business_Documents_Classified_v2") | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model.to(device) | |
def classify_documents(image): | |
# input_image = image.convert("RGB") | |
inputs = extractor(images=image, return_tensor='pt') | |
tensors = torch.from_numpy(inputs.pixel_values[0]).unsqueeze(0) | |
model_output = model(tensors).logits | |
max_index = torch.argmax(model_output) | |
document_class = model.config.id2label[max_index.item()] | |
return { | |
"result" : str(document_class) | |
} | |
article = "<p style='text-align: center'><a href='https://www.xelpmoc.in/' target='_blank'>Made by Xelpmoc</a></p>" | |
demo = gr.Interface( | |
fn=classify_documents, | |
inputs="image", | |
outputs="json", | |
title="Document Classification", | |
article=article, | |
enable_queue=True, | |
examples=[ | |
["./test_images/email_image_2.jpg"], | |
["./test_images/form_image_3.jpg"] | |
], | |
cache_examples=False) | |
demo.launch() |