test / app.py
john
learn how to training
730ad9d
raw
history blame
1.53 kB
import gradio as gr
from transformers import pipeline
from transformers import AutoTokenizer
from datasets import load_dataset
from transformers import DataCollatorWithPadding
raw_datasets = load_dataset("glue", "sst2")
raw_datasets
checkpoint = "bert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
def tokenize_function(example):
return tokenizer(example["sentence"], truncation=True)
tokenized_datasets = raw_datasets.map(tokenize_function, batched=True,remove_columns=['idx','sentence'])
tokenized_datasets
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
from transformers import TrainingArguments
from transformers import AutoModelForSequenceClassification
from datasets import load_metric
from transformers import Trainer
import numpy as np
training_args = TrainingArguments("test-trainer", evaluation_strategy="epoch")# ѵ����Ҫ�IJ�����Ĭ�ϵ�
model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)
def compute_metrics(eval_preds):
metric = load_metric("glue", "sst2")
logits, labels = eval_preds
predictions = np.argmax(logits, axis=-1)
return metric.compute(predictions=predictions, references=labels)
trainer = Trainer(
model,
training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["validation"],
data_collator=data_collator,
tokenizer=tokenizer,
compute_metrics=compute_metrics,
)
gr.Interface(
fn=trainer.train,
NONE,
NONE,
title="test",
).launch()