Spaces:
Build error
Build error
File size: 21,551 Bytes
47af768 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
import os
import csv
import numpy as np
from scipy.optimize import linear_sum_assignment
from ._base_dataset import _BaseDataset
from .. import utils
from ..utils import TrackEvalException
from .. import _timing
class Kitti2DBox(_BaseDataset):
"""Dataset class for KITTI 2D bounding box tracking"""
@staticmethod
def get_default_dataset_config():
"""Default class config values"""
code_path = utils.get_code_path()
default_config = {
'GT_FOLDER': os.path.join(code_path, 'data/gt/kitti/kitti_2d_box_train'), # Location of GT data
'TRACKERS_FOLDER': os.path.join(code_path, 'data/trackers/kitti/kitti_2d_box_train/'), # Trackers location
'OUTPUT_FOLDER': None, # Where to save eval results (if None, same as TRACKERS_FOLDER)
'TRACKERS_TO_EVAL': None, # Filenames of trackers to eval (if None, all in folder)
'CLASSES_TO_EVAL': ['car', 'pedestrian'], # Valid: ['car', 'pedestrian']
'SPLIT_TO_EVAL': 'training', # Valid: 'training', 'val', 'training_minus_val', 'test'
'INPUT_AS_ZIP': False, # Whether tracker input files are zipped
'PRINT_CONFIG': True, # Whether to print current config
'TRACKER_SUB_FOLDER': 'data', # Tracker files are in TRACKER_FOLDER/tracker_name/TRACKER_SUB_FOLDER
'OUTPUT_SUB_FOLDER': '', # Output files are saved in OUTPUT_FOLDER/tracker_name/OUTPUT_SUB_FOLDER
'TRACKER_DISPLAY_NAMES': None, # Names of trackers to display, if None: TRACKERS_TO_EVAL
}
return default_config
def __init__(self, config=None):
"""Initialise dataset, checking that all required files are present"""
super().__init__()
# Fill non-given config values with defaults
self.config = utils.init_config(config, self.get_default_dataset_config(), self.get_name())
self.gt_fol = self.config['GT_FOLDER']
self.tracker_fol = self.config['TRACKERS_FOLDER']
self.should_classes_combine = False
self.use_super_categories = False
self.data_is_zipped = self.config['INPUT_AS_ZIP']
self.output_fol = self.config['OUTPUT_FOLDER']
if self.output_fol is None:
self.output_fol = self.tracker_fol
self.tracker_sub_fol = self.config['TRACKER_SUB_FOLDER']
self.output_sub_fol = self.config['OUTPUT_SUB_FOLDER']
self.max_occlusion = 2
self.max_truncation = 0
self.min_height = 25
# Get classes to eval
self.valid_classes = ['car', 'pedestrian']
self.class_list = [cls.lower() if cls.lower() in self.valid_classes else None
for cls in self.config['CLASSES_TO_EVAL']]
if not all(self.class_list):
raise TrackEvalException('Attempted to evaluate an invalid class. Only classes [car, pedestrian] are valid.')
self.class_name_to_class_id = {'car': 1, 'van': 2, 'truck': 3, 'pedestrian': 4, 'person': 5, # person sitting
'cyclist': 6, 'tram': 7, 'misc': 8, 'dontcare': 9, 'car_2': 1}
# Get sequences to eval and check gt files exist
self.seq_list = []
self.seq_lengths = {}
seqmap_name = 'evaluate_tracking.seqmap.' + self.config['SPLIT_TO_EVAL']
seqmap_file = os.path.join(self.gt_fol, seqmap_name)
if not os.path.isfile(seqmap_file):
raise TrackEvalException('no seqmap found: ' + os.path.basename(seqmap_file))
with open(seqmap_file) as fp:
dialect = csv.Sniffer().sniff(fp.read(1024))
fp.seek(0)
reader = csv.reader(fp, dialect)
for row in reader:
if len(row) >= 4:
seq = row[0]
self.seq_list.append(seq)
self.seq_lengths[seq] = int(row[3])
if not self.data_is_zipped:
curr_file = os.path.join(self.gt_fol, 'label_02', seq + '.txt')
if not os.path.isfile(curr_file):
raise TrackEvalException('GT file not found: ' + os.path.basename(curr_file))
if self.data_is_zipped:
curr_file = os.path.join(self.gt_fol, 'data.zip')
if not os.path.isfile(curr_file):
raise TrackEvalException('GT file not found: ' + os.path.basename(curr_file))
# Get trackers to eval
if self.config['TRACKERS_TO_EVAL'] is None:
self.tracker_list = os.listdir(self.tracker_fol)
else:
self.tracker_list = self.config['TRACKERS_TO_EVAL']
if self.config['TRACKER_DISPLAY_NAMES'] is None:
self.tracker_to_disp = dict(zip(self.tracker_list, self.tracker_list))
elif (self.config['TRACKERS_TO_EVAL'] is not None) and (
len(self.config['TRACKER_DISPLAY_NAMES']) == len(self.tracker_list)):
self.tracker_to_disp = dict(zip(self.tracker_list, self.config['TRACKER_DISPLAY_NAMES']))
else:
raise TrackEvalException('List of tracker files and tracker display names do not match.')
for tracker in self.tracker_list:
if self.data_is_zipped:
curr_file = os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol + '.zip')
if not os.path.isfile(curr_file):
raise TrackEvalException('Tracker file not found: ' + tracker + '/' + os.path.basename(curr_file))
else:
for seq in self.seq_list:
curr_file = os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol, seq + '.txt')
if not os.path.isfile(curr_file):
raise TrackEvalException(
'Tracker file not found: ' + tracker + '/' + self.tracker_sub_fol + '/' + os.path.basename(
curr_file))
def get_display_name(self, tracker):
return self.tracker_to_disp[tracker]
def _load_raw_file(self, tracker, seq, is_gt):
"""Load a file (gt or tracker) in the kitti 2D box format
If is_gt, this returns a dict which contains the fields:
[gt_ids, gt_classes] : list (for each timestep) of 1D NDArrays (for each det).
[gt_dets, gt_crowd_ignore_regions]: list (for each timestep) of lists of detections.
[gt_extras] : list (for each timestep) of dicts (for each extra) of 1D NDArrays (for each det).
if not is_gt, this returns a dict which contains the fields:
[tracker_ids, tracker_classes, tracker_confidences] : list (for each timestep) of 1D NDArrays (for each det).
[tracker_dets]: list (for each timestep) of lists of detections.
"""
# File location
if self.data_is_zipped:
if is_gt:
zip_file = os.path.join(self.gt_fol, 'data.zip')
else:
zip_file = os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol + '.zip')
file = seq + '.txt'
else:
zip_file = None
if is_gt:
file = os.path.join(self.gt_fol, 'label_02', seq + '.txt')
else:
file = os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol, seq + '.txt')
# Ignore regions
if is_gt:
crowd_ignore_filter = {2: ['dontcare']}
else:
crowd_ignore_filter = None
# Valid classes
valid_filter = {2: [x for x in self.class_list]}
if is_gt:
if 'car' in self.class_list:
valid_filter[2].append('van')
if 'pedestrian' in self.class_list:
valid_filter[2] += ['person']
# Convert kitti class strings to class ids
convert_filter = {2: self.class_name_to_class_id}
# Load raw data from text file
read_data, ignore_data = self._load_simple_text_file(file, time_col=0, id_col=1, remove_negative_ids=True,
valid_filter=valid_filter,
crowd_ignore_filter=crowd_ignore_filter,
convert_filter=convert_filter,
is_zipped=self.data_is_zipped, zip_file=zip_file)
# Convert data to required format
num_timesteps = self.seq_lengths[seq]
data_keys = ['ids', 'classes', 'dets']
if is_gt:
data_keys += ['gt_crowd_ignore_regions', 'gt_extras']
else:
data_keys += ['tracker_confidences']
raw_data = {key: [None] * num_timesteps for key in data_keys}
# Check for any extra time keys
current_time_keys = [str(t) for t in range(num_timesteps)]
extra_time_keys = [x for x in read_data.keys() if x not in current_time_keys]
if len(extra_time_keys) > 0:
if is_gt:
text = 'Ground-truth'
else:
text = 'Tracking'
raise TrackEvalException(
text + ' data contains the following invalid timesteps in seq %s: ' % seq + ', '.join(
[str(x) + ', ' for x in extra_time_keys]))
for t in range(num_timesteps):
time_key = str(t)
if time_key in read_data.keys():
time_data = np.asarray(read_data[time_key], dtype=np.float)
raw_data['dets'][t] = np.atleast_2d(time_data[:, 6:10])
raw_data['ids'][t] = np.atleast_1d(time_data[:, 1]).astype(int)
raw_data['classes'][t] = np.atleast_1d(time_data[:, 2]).astype(int)
if is_gt:
gt_extras_dict = {'truncation': np.atleast_1d(time_data[:, 3].astype(int)),
'occlusion': np.atleast_1d(time_data[:, 4].astype(int))}
raw_data['gt_extras'][t] = gt_extras_dict
else:
if time_data.shape[1] > 17:
raw_data['tracker_confidences'][t] = np.atleast_1d(time_data[:, 17])
else:
raw_data['tracker_confidences'][t] = np.ones(time_data.shape[0])
else:
raw_data['dets'][t] = np.empty((0, 4))
raw_data['ids'][t] = np.empty(0).astype(int)
raw_data['classes'][t] = np.empty(0).astype(int)
if is_gt:
gt_extras_dict = {'truncation': np.empty(0),
'occlusion': np.empty(0)}
raw_data['gt_extras'][t] = gt_extras_dict
else:
raw_data['tracker_confidences'][t] = np.empty(0)
if is_gt:
if time_key in ignore_data.keys():
time_ignore = np.asarray(ignore_data[time_key], dtype=np.float)
raw_data['gt_crowd_ignore_regions'][t] = np.atleast_2d(time_ignore[:, 6:10])
else:
raw_data['gt_crowd_ignore_regions'][t] = np.empty((0, 4))
if is_gt:
key_map = {'ids': 'gt_ids',
'classes': 'gt_classes',
'dets': 'gt_dets'}
else:
key_map = {'ids': 'tracker_ids',
'classes': 'tracker_classes',
'dets': 'tracker_dets'}
for k, v in key_map.items():
raw_data[v] = raw_data.pop(k)
raw_data['num_timesteps'] = num_timesteps
raw_data['seq'] = seq
return raw_data
@_timing.time
def get_preprocessed_seq_data(self, raw_data, cls):
""" Preprocess data for a single sequence for a single class ready for evaluation.
Inputs:
- raw_data is a dict containing the data for the sequence already read in by get_raw_seq_data().
- cls is the class to be evaluated.
Outputs:
- data is a dict containing all of the information that metrics need to perform evaluation.
It contains the following fields:
[num_timesteps, num_gt_ids, num_tracker_ids, num_gt_dets, num_tracker_dets] : integers.
[gt_ids, tracker_ids, tracker_confidences]: list (for each timestep) of 1D NDArrays (for each det).
[gt_dets, tracker_dets]: list (for each timestep) of lists of detections.
[similarity_scores]: list (for each timestep) of 2D NDArrays.
Notes:
General preprocessing (preproc) occurs in 4 steps. Some datasets may not use all of these steps.
1) Extract only detections relevant for the class to be evaluated (including distractor detections).
2) Match gt dets and tracker dets. Remove tracker dets that are matched to a gt det that is of a
distractor class, or otherwise marked as to be removed.
3) Remove unmatched tracker dets if they fall within a crowd ignore region or don't meet a certain
other criteria (e.g. are too small).
4) Remove gt dets that were only useful for preprocessing and not for actual evaluation.
After the above preprocessing steps, this function also calculates the number of gt and tracker detections
and unique track ids. It also relabels gt and tracker ids to be contiguous and checks that ids are
unique within each timestep.
KITTI:
In KITTI, the 4 preproc steps are as follow:
1) There are two classes (pedestrian and car) which are evaluated separately.
2) For the pedestrian class, the 'person' class is distractor objects (people sitting).
For the car class, the 'van' class are distractor objects.
GT boxes marked as having occlusion level > 2 or truncation level > 0 are also treated as
distractors.
3) Crowd ignore regions are used to remove unmatched detections. Also unmatched detections with
height <= 25 pixels are removed.
4) Distractor gt dets (including truncated and occluded) are removed.
"""
if cls == 'pedestrian':
distractor_classes = [self.class_name_to_class_id['person']]
elif cls == 'car':
distractor_classes = [self.class_name_to_class_id['van']]
else:
raise (TrackEvalException('Class %s is not evaluatable' % cls))
cls_id = self.class_name_to_class_id[cls]
data_keys = ['gt_ids', 'tracker_ids', 'gt_dets', 'tracker_dets', 'tracker_confidences', 'similarity_scores']
data = {key: [None] * raw_data['num_timesteps'] for key in data_keys}
unique_gt_ids = []
unique_tracker_ids = []
num_gt_dets = 0
num_tracker_dets = 0
for t in range(raw_data['num_timesteps']):
# Only extract relevant dets for this class for preproc and eval (cls + distractor classes)
gt_class_mask = np.sum([raw_data['gt_classes'][t] == c for c in [cls_id] + distractor_classes], axis=0)
gt_class_mask = gt_class_mask.astype(np.bool)
gt_ids = raw_data['gt_ids'][t][gt_class_mask]
gt_dets = raw_data['gt_dets'][t][gt_class_mask]
gt_classes = raw_data['gt_classes'][t][gt_class_mask]
gt_occlusion = raw_data['gt_extras'][t]['occlusion'][gt_class_mask]
gt_truncation = raw_data['gt_extras'][t]['truncation'][gt_class_mask]
tracker_class_mask = np.atleast_1d(raw_data['tracker_classes'][t] == cls_id)
tracker_class_mask = tracker_class_mask.astype(np.bool)
tracker_ids = raw_data['tracker_ids'][t][tracker_class_mask]
tracker_dets = raw_data['tracker_dets'][t][tracker_class_mask]
tracker_confidences = raw_data['tracker_confidences'][t][tracker_class_mask]
similarity_scores = raw_data['similarity_scores'][t][gt_class_mask, :][:, tracker_class_mask]
# Match tracker and gt dets (with hungarian algorithm) and remove tracker dets which match with gt dets
# which are labeled as truncated, occluded, or belonging to a distractor class.
to_remove_matched = np.array([], np.int)
unmatched_indices = np.arange(tracker_ids.shape[0])
if gt_ids.shape[0] > 0 and tracker_ids.shape[0] > 0:
matching_scores = similarity_scores.copy()
matching_scores[matching_scores < 0.5 - np.finfo('float').eps] = 0
match_rows, match_cols = linear_sum_assignment(-matching_scores)
actually_matched_mask = matching_scores[match_rows, match_cols] > 0 + np.finfo('float').eps
match_rows = match_rows[actually_matched_mask]
match_cols = match_cols[actually_matched_mask]
is_distractor_class = np.isin(gt_classes[match_rows], distractor_classes)
is_occluded_or_truncated = np.logical_or(
gt_occlusion[match_rows] > self.max_occlusion + np.finfo('float').eps,
gt_truncation[match_rows] > self.max_truncation + np.finfo('float').eps)
to_remove_matched = np.logical_or(is_distractor_class, is_occluded_or_truncated)
to_remove_matched = match_cols[to_remove_matched]
unmatched_indices = np.delete(unmatched_indices, match_cols, axis=0)
# For unmatched tracker dets, also remove those smaller than a minimum height.
unmatched_tracker_dets = tracker_dets[unmatched_indices, :]
unmatched_heights = unmatched_tracker_dets[:, 3] - unmatched_tracker_dets[:, 1]
is_too_small = unmatched_heights <= self.min_height + np.finfo('float').eps
# For unmatched tracker dets, also remove those that are greater than 50% within a crowd ignore region.
crowd_ignore_regions = raw_data['gt_crowd_ignore_regions'][t]
intersection_with_ignore_region = self._calculate_box_ious(unmatched_tracker_dets, crowd_ignore_regions,
box_format='x0y0x1y1', do_ioa=True)
is_within_crowd_ignore_region = np.any(intersection_with_ignore_region > 0.5 + np.finfo('float').eps, axis=1)
# Apply preprocessing to remove all unwanted tracker dets.
to_remove_unmatched = unmatched_indices[np.logical_or(is_too_small, is_within_crowd_ignore_region)]
to_remove_tracker = np.concatenate((to_remove_matched, to_remove_unmatched), axis=0)
data['tracker_ids'][t] = np.delete(tracker_ids, to_remove_tracker, axis=0)
data['tracker_dets'][t] = np.delete(tracker_dets, to_remove_tracker, axis=0)
data['tracker_confidences'][t] = np.delete(tracker_confidences, to_remove_tracker, axis=0)
similarity_scores = np.delete(similarity_scores, to_remove_tracker, axis=1)
# Also remove gt dets that were only useful for preprocessing and are not needed for evaluation.
# These are those that are occluded, truncated and from distractor objects.
gt_to_keep_mask = (np.less_equal(gt_occlusion, self.max_occlusion)) & \
(np.less_equal(gt_truncation, self.max_truncation)) & \
(np.equal(gt_classes, cls_id))
data['gt_ids'][t] = gt_ids[gt_to_keep_mask]
data['gt_dets'][t] = gt_dets[gt_to_keep_mask, :]
data['similarity_scores'][t] = similarity_scores[gt_to_keep_mask]
unique_gt_ids += list(np.unique(data['gt_ids'][t]))
unique_tracker_ids += list(np.unique(data['tracker_ids'][t]))
num_tracker_dets += len(data['tracker_ids'][t])
num_gt_dets += len(data['gt_ids'][t])
# Re-label IDs such that there are no empty IDs
if len(unique_gt_ids) > 0:
unique_gt_ids = np.unique(unique_gt_ids)
gt_id_map = np.nan * np.ones((np.max(unique_gt_ids) + 1))
gt_id_map[unique_gt_ids] = np.arange(len(unique_gt_ids))
for t in range(raw_data['num_timesteps']):
if len(data['gt_ids'][t]) > 0:
data['gt_ids'][t] = gt_id_map[data['gt_ids'][t]].astype(np.int)
if len(unique_tracker_ids) > 0:
unique_tracker_ids = np.unique(unique_tracker_ids)
tracker_id_map = np.nan * np.ones((np.max(unique_tracker_ids) + 1))
tracker_id_map[unique_tracker_ids] = np.arange(len(unique_tracker_ids))
for t in range(raw_data['num_timesteps']):
if len(data['tracker_ids'][t]) > 0:
data['tracker_ids'][t] = tracker_id_map[data['tracker_ids'][t]].astype(np.int)
# Record overview statistics.
data['num_tracker_dets'] = num_tracker_dets
data['num_gt_dets'] = num_gt_dets
data['num_tracker_ids'] = len(unique_tracker_ids)
data['num_gt_ids'] = len(unique_gt_ids)
data['num_timesteps'] = raw_data['num_timesteps']
data['seq'] = raw_data['seq']
# Ensure that ids are unique per timestep.
self._check_unique_ids(data)
return data
def _calculate_similarities(self, gt_dets_t, tracker_dets_t):
similarity_scores = self._calculate_box_ious(gt_dets_t, tracker_dets_t, box_format='x0y0x1y1')
return similarity_scores
|