Spaces:
Build error
Build error
File size: 13,842 Bytes
47af768 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
import argparse
import os
# limit the number of cpus used by high performance libraries
os.environ["OMP_NUM_THREADS"] = "1"
os.environ["OPENBLAS_NUM_THREADS"] = "1"
os.environ["MKL_NUM_THREADS"] = "1"
os.environ["VECLIB_MAXIMUM_THREADS"] = "1"
os.environ["NUMEXPR_NUM_THREADS"] = "1"
import sys
import numpy as np
from pathlib import Path
import torch
import time
import platform
import pandas as pd
import subprocess
import torch.backends.cudnn as cudnn
from torch.utils.mobile_optimizer import optimize_for_mobile
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # yolov5 strongsort root directory
WEIGHTS = ROOT / 'weights'
print(ROOT)
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
if str(ROOT / 'yolov5') not in sys.path:
sys.path.append(str(ROOT / 'yolov5')) # add yolov5 ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
import logging
from yolov5.utils.torch_utils import select_device
from yolov5.models.common import DetectMultiBackend
from yolov5.utils.general import LOGGER, colorstr, check_requirements, check_version
from trackers.strong_sort.deep.models import build_model
from trackers.strong_sort.deep.reid_model_factory import get_model_name, load_pretrained_weights
def file_size(path):
# Return file/dir size (MB)
path = Path(path)
if path.is_file():
return path.stat().st_size / 1E6
elif path.is_dir():
return sum(f.stat().st_size for f in path.glob('**/*') if f.is_file()) / 1E6
else:
return 0.0
def export_formats():
# YOLOv5 export formats
x = [
['PyTorch', '-', '.pt', True, True],
['TorchScript', 'torchscript', '.torchscript', True, True],
['ONNX', 'onnx', '.onnx', True, True],
['OpenVINO', 'openvino', '_openvino_model', True, False],
['TensorRT', 'engine', '.engine', False, True],
['TensorFlow Lite', 'tflite', '.tflite', True, False],
]
return pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU'])
def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')):
# YOLOv5 TorchScript model export
try:
LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...')
f = file.with_suffix('.torchscript')
ts = torch.jit.trace(model, im, strict=False)
if optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html
optimize_for_mobile(ts)._save_for_lite_interpreter(str(f))
else:
ts.save(str(f))
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
return f
except Exception as e:
LOGGER.info(f'{prefix} export failure: {e}')
def export_onnx(model, im, file, opset, dynamic, simplify, prefix=colorstr('ONNX:')):
# ONNX export
try:
check_requirements(('onnx',))
import onnx
f = file.with_suffix('.onnx')
LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...')
if dynamic:
dynamic = {'images': {0: 'batch'}} # shape(1,3,640,640)
dynamic['output'] = {0: 'batch'} # shape(1,25200,85)
torch.onnx.export(
model.cpu() if dynamic else model, # --dynamic only compatible with cpu
im.cpu() if dynamic else im,
f,
verbose=False,
opset_version=opset,
do_constant_folding=True,
input_names=['images'],
output_names=['output'],
dynamic_axes=dynamic or None
)
# Checks
model_onnx = onnx.load(f) # load onnx model
onnx.checker.check_model(model_onnx) # check onnx model
onnx.save(model_onnx, f)
# Simplify
if simplify:
try:
cuda = torch.cuda.is_available()
check_requirements(('onnxruntime-gpu' if cuda else 'onnxruntime', 'onnx-simplifier>=0.4.1'))
import onnxsim
LOGGER.info(f'simplifying with onnx-simplifier {onnxsim.__version__}...')
model_onnx, check = onnxsim.simplify(model_onnx)
assert check, 'assert check failed'
onnx.save(model_onnx, f)
except Exception as e:
LOGGER.info(f'simplifier failure: {e}')
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
return f
except Exception as e:
LOGGER.info(f'export failure: {e}')
def export_openvino(file, half, prefix=colorstr('OpenVINO:')):
# YOLOv5 OpenVINO export
check_requirements(('openvino-dev',)) # requires openvino-dev: https://pypi.org/project/openvino-dev/
import openvino.inference_engine as ie
try:
LOGGER.info(f'\n{prefix} starting export with openvino {ie.__version__}...')
f = str(file).replace('.pt', f'_openvino_model{os.sep}')
cmd = f"mo --input_model {file.with_suffix('.onnx')} --output_dir {f} --data_type {'FP16' if half else 'FP32'}"
subprocess.check_output(cmd.split()) # export
except Exception as e:
LOGGER.info(f'export failure: {e}')
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
return f
def export_tflite(file, half, prefix=colorstr('TFLite:')):
# YOLOv5 OpenVINO export
try:
check_requirements(('openvino2tensorflow', 'tensorflow', 'tensorflow_datasets')) # requires openvino-dev: https://pypi.org/project/openvino-dev/
import openvino.inference_engine as ie
LOGGER.info(f'\n{prefix} starting export with openvino {ie.__version__}...')
output = Path(str(file).replace(f'_openvino_model{os.sep}', f'_tflite_model{os.sep}'))
modelxml = list(Path(file).glob('*.xml'))[0]
cmd = f"openvino2tensorflow \
--model_path {modelxml} \
--model_output_path {output} \
--output_pb \
--output_saved_model \
--output_no_quant_float32_tflite \
--output_dynamic_range_quant_tflite"
subprocess.check_output(cmd.split()) # export
LOGGER.info(f'{prefix} export success, results saved in {output} ({file_size(f):.1f} MB)')
return f
except Exception as e:
LOGGER.info(f'\n{prefix} export failure: {e}')
def export_engine(model, im, file, half, dynamic, simplify, workspace=4, verbose=False, prefix=colorstr('TensorRT:')):
# YOLOv5 TensorRT export https://developer.nvidia.com/tensorrt
try:
assert im.device.type != 'cpu', 'export running on CPU but must be on GPU, i.e. `python export.py --device 0`'
try:
import tensorrt as trt
except Exception:
if platform.system() == 'Linux':
check_requirements(('nvidia-tensorrt',), cmds=('-U --index-url https://pypi.ngc.nvidia.com',))
import tensorrt as trt
if trt.__version__[0] == '7': # TensorRT 7 handling https://github.com/ultralytics/yolov5/issues/6012
grid = model.model[-1].anchor_grid
model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid]
export_onnx(model, im, file, 12, dynamic, simplify) # opset 12
model.model[-1].anchor_grid = grid
else: # TensorRT >= 8
check_version(trt.__version__, '8.0.0', hard=True) # require tensorrt>=8.0.0
export_onnx(model, im, file, 12, dynamic, simplify) # opset 13
onnx = file.with_suffix('.onnx')
LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...')
assert onnx.exists(), f'failed to export ONNX file: {onnx}'
f = file.with_suffix('.engine') # TensorRT engine file
logger = trt.Logger(trt.Logger.INFO)
if verbose:
logger.min_severity = trt.Logger.Severity.VERBOSE
builder = trt.Builder(logger)
config = builder.create_builder_config()
config.max_workspace_size = workspace * 1 << 30
# config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30) # fix TRT 8.4 deprecation notice
flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
network = builder.create_network(flag)
parser = trt.OnnxParser(network, logger)
if not parser.parse_from_file(str(onnx)):
raise RuntimeError(f'failed to load ONNX file: {onnx}')
inputs = [network.get_input(i) for i in range(network.num_inputs)]
outputs = [network.get_output(i) for i in range(network.num_outputs)]
LOGGER.info(f'{prefix} Network Description:')
for inp in inputs:
LOGGER.info(f'{prefix}\tinput "{inp.name}" with shape {inp.shape} and dtype {inp.dtype}')
for out in outputs:
LOGGER.info(f'{prefix}\toutput "{out.name}" with shape {out.shape} and dtype {out.dtype}')
if dynamic:
if im.shape[0] <= 1:
LOGGER.warning(f"{prefix}WARNING: --dynamic model requires maximum --batch-size argument")
profile = builder.create_optimization_profile()
for inp in inputs:
profile.set_shape(inp.name, (1, *im.shape[1:]), (max(1, im.shape[0] // 2), *im.shape[1:]), im.shape)
config.add_optimization_profile(profile)
LOGGER.info(f'{prefix} building FP{16 if builder.platform_has_fast_fp16 and half else 32} engine in {f}')
if builder.platform_has_fast_fp16 and half:
config.set_flag(trt.BuilderFlag.FP16)
with builder.build_engine(network, config) as engine, open(f, 'wb') as t:
t.write(engine.serialize())
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
return f
except Exception as e:
LOGGER.info(f'\n{prefix} export failure: {e}')
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="ReID export")
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[256, 128], help='image (h, w)')
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile')
parser.add_argument('--dynamic', action='store_true', help='ONNX/TF/TensorRT: dynamic axes')
parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model')
parser.add_argument('--opset', type=int, default=12, help='ONNX: opset version')
parser.add_argument('--workspace', type=int, default=4, help='TensorRT: workspace size (GB)')
parser.add_argument('--verbose', action='store_true', help='TensorRT: verbose log')
parser.add_argument('--weights', nargs='+', type=str, default=WEIGHTS / 'osnet_x0_25_msmt17.pt', help='model.pt path(s)')
parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
parser.add_argument('--include',
nargs='+',
default=['torchscript'],
help='torchscript, onnx, openvino, engine')
args = parser.parse_args()
t = time.time()
include = [x.lower() for x in args.include] # to lowercase
fmts = tuple(export_formats()['Argument'][1:]) # --include arguments
flags = [x in include for x in fmts]
assert sum(flags) == len(include), f'ERROR: Invalid --include {include}, valid --include arguments are {fmts}'
jit, onnx, openvino, engine, tflite = flags # export booleans
args.device = select_device(args.device)
if args.half:
assert args.device.type != 'cpu', '--half only compatible with GPU export, i.e. use --device 0'
assert not args.dynamic, '--half not compatible with --dynamic, i.e. use either --half or --dynamic but not both'
if type(args.weights) is list:
args.weights = Path(args.weights[0])
model = build_model(
get_model_name(args.weights),
num_classes=1,
pretrained=not (args.weights and args.weights.is_file() and args.weights.suffix == '.pt'),
use_gpu=args.device
).to(args.device)
load_pretrained_weights(model, args.weights)
model.eval()
if args.optimize:
assert device.type == 'cpu', '--optimize not compatible with cuda devices, i.e. use --device cpu'
im = torch.zeros(args.batch_size, 3, args.imgsz[0], args.imgsz[1]).to(args.device) # image size(1,3,640,480) BCHW iDetection
for _ in range(2):
y = model(im) # dry runs
if args.half:
im, model = im.half(), model.half() # to FP16
shape = tuple((y[0] if isinstance(y, tuple) else y).shape) # model output shape
LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {args.weights} with output shape {shape} ({file_size(args.weights):.1f} MB)")
# Exports
f = [''] * len(fmts) # exported filenames
if jit:
f[0] = export_torchscript(model, im, args.weights, args.optimize) # opset 12
if engine: # TensorRT required before ONNX
f[1] = export_engine(model, im, args.weights, args.half, args.dynamic, args.simplify, args.workspace, args.verbose)
if onnx: # OpenVINO requires ONNX
f[2] = export_onnx(model, im, args.weights, args.opset, args.dynamic, args.simplify) # opset 12
if openvino:
f[3] = export_openvino(args.weights, args.half)
if tflite:
export_tflite(f, False)
# Finish
f = [str(x) for x in f if x] # filter out '' and None
if any(f):
LOGGER.info(f'\nExport complete ({time.time() - t:.1f}s)'
f"\nResults saved to {colorstr('bold', args.weights.parent.resolve())}"
f"\nVisualize: https://netron.app")
|