File size: 8,553 Bytes
47af768
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import os
import sys
import torch
import logging
import subprocess
from subprocess import Popen
import argparse
import git
from git import Repo
import zipfile
from pathlib import Path
import shutil
import threading

FILE = Path(__file__).resolve()
ROOT = FILE.parents[0]  # yolov5 strongsort root directory
WEIGHTS = ROOT / 'weights'

if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
if str(ROOT / 'yolov5') not in sys.path:
    sys.path.append(str(ROOT / 'yolov5'))  # add yolov5 ROOT to PATH
if str(ROOT / 'strong_sort') not in sys.path:
    sys.path.append(str(ROOT / 'strong_sort'))  # add strong_sort ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative

from yolov5.utils.general import LOGGER, check_requirements, print_args, increment_path
from yolov5.utils.torch_utils import select_device
from track import run


def download_official_mot_eval_tool(dst_val_tools_folder):
    # source: https://github.com/JonathonLuiten/TrackEval#official-evaluation-code
    val_tools_url = "https://github.com/JonathonLuiten/TrackEval"
    try:
        Repo.clone_from(val_tools_url, dst_val_tools_folder)
        LOGGER.info('Official MOT evaluation repo downloaded')
    except git.exc.GitError as err:
        LOGGER.info('Eval repo already downloaded')
        
def download_mot_dataset(dst_val_tools_folder, benchmark):
    gt_data_url = 'https://omnomnom.vision.rwth-aachen.de/data/TrackEval/data.zip'
    subprocess.run(["wget", "-nc", gt_data_url, "-O", dst_val_tools_folder / 'data.zip']) # python module has no -nc nor -N flag
    if not (dst_val_tools_folder / 'data').is_dir():
        with zipfile.ZipFile(dst_val_tools_folder / 'data.zip', 'r') as zip_ref:
            zip_ref.extractall(dst_val_tools_folder)
        LOGGER.info('MOTs ground truth downloaded')
    else:
        LOGGER.info('gt already downloaded')

    mot_gt_data_url = 'https://motchallenge.net/data/' + benchmark + '.zip'
    subprocess.run(["wget", "-nc", mot_gt_data_url, "-O", dst_val_tools_folder / (benchmark + '.zip')]) # python module has no -nc nor -N flag
    if not (dst_val_tools_folder / 'data' / benchmark).is_dir():
        with zipfile.ZipFile(dst_val_tools_folder / (benchmark + '.zip'), 'r') as zip_ref:
            if opt.benchmark == 'MOT16':
                zip_ref.extractall(dst_val_tools_folder / 'data' / 'MOT16')
            else:
                zip_ref.extractall(dst_val_tools_folder / 'data')
        LOGGER.info(f'{benchmark} images downloaded')
    else:
        LOGGER.info(f'{benchmark} data already downloaded')
        
    
def parse_opt():
    parser = argparse.ArgumentParser()
    parser.add_argument('--yolo-weights', type=str, default= 'weights/best1.pt', help='model.pt path(s)')
    parser.add_argument('--reid-weights', type=str, default=WEIGHTS / 'osnet_x1_0_dukemtmcreid.pt')
    parser.add_argument('--tracking-method', type=str, default='strongsort', help='strongsort, ocsort')
    parser.add_argument('--name', default='val', help='save results to project/name')
    parser.add_argument('--project', default=ROOT / 'runs/track', help='save results to project/name')
    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
    parser.add_argument('--benchmark', type=str,  default='MOT17', help='MOT16, MOT17, MOT20')
    parser.add_argument('--split', type=str,  default='train', help='existing project/name ok, do not increment')
    parser.add_argument('--eval-existing', type=str, default='', help='evaluate existing tracker results under mot_callenge/MOTXX-YY/...')
    parser.add_argument('--conf-thres', type=float, default=0.45, help='confidence threshold')
    parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[1280], help='inference size h,w')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')

    
    opt = parser.parse_args()
    device = []
    
    for a in opt.device.split(','):
        try:
            a = int(a)
        except ValueError:
            pass
        device.append(a)
    opt.device = device
        
    print_args(vars(opt))
    return opt


def main(opt):
    check_requirements(requirements=ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
    
    # download eval files
    dst_val_tools_folder = ROOT / 'val_utils'
    download_official_mot_eval_tool(dst_val_tools_folder)
    
    if any(opt.benchmark is s for s in ['MOT16', 'MOT17', 'MOT20']):
        download_mot_dataset(dst_val_tools_folder, opt.benchmark)
    
    # set paths
    mot_seqs_path = dst_val_tools_folder / 'data' / opt.benchmark / opt.split
    
    if opt.benchmark == 'MOT17':
        # each sequences is present 3 times, one for each detector
        # (DPM, FRCNN, SDP). Keep only sequences from  one of them
        seq_paths = sorted([str(p / 'img1') for p in Path(mot_seqs_path).iterdir() if Path(p).is_dir()])
        seq_paths = [Path(p) for p in seq_paths if 'FRCNN' in p]
        with open(dst_val_tools_folder / "data/gt/mot_challenge/seqmaps/MOT17-train.txt", "r") as f:  # 
            lines = f.readlines()
        # overwrite MOT17 evaluation sequences to evaluate so that they are not duplicated
        with open(dst_val_tools_folder / "data/gt/mot_challenge/seqmaps/MOT17-train.txt", "w") as f:
            for line in seq_paths:
                f.write(str(line.parent.stem) + '\n')
    else:
        # this is not the case for MOT16, MOT20 or your custom dataset
        seq_paths = [p / 'img1' for p in Path(mot_seqs_path).iterdir() if Path(p).is_dir()]
    
    save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)  # increment run
    MOT_results_folder = dst_val_tools_folder / 'data' / 'trackers' / 'mot_challenge' / Path(str(opt.benchmark) + '-' + str(opt.split)) / save_dir.name / 'data'
    (MOT_results_folder).mkdir(parents=True, exist_ok=True)  # make

    # extend devices to as many sequences are available
    if any(isinstance(i,int) for i in opt.device) and len(opt.device) > 1:
        devices = opt.device
        for a in range(0, len(opt.device) % len(seq_paths)):
            opt.device.extend(devices)
        opt.device = opt.device[:len(seq_paths)]
 
    if not opt.eval_existing:
        processes = []
        for i, seq_path in enumerate(seq_paths):
            # spawn one subprocess per GPU in increasing order.
            # When max devices are reached start at 0 again
            tracking_subprocess_device = opt.device[i] if len(opt.device) > 1 else opt.device[0]
        
            dst_seq_path = seq_path.parent / seq_path.parent.name
            if not dst_seq_path.is_dir():
                src_seq_path = seq_path
                shutil.move(str(src_seq_path), str(dst_seq_path))   
            
            p = subprocess.Popen([
                "python", "track.py", \
                "--yolo-weights", opt.yolo_weights, \
                "--reid-weights",  opt.reid_weights, \
                "--tracking-method", opt.tracking_method, \
                "--conf-thres", str(opt.conf_thres), \
                "--imgsz", str(opt.imgsz[0]), \
                "--classes", str(0), \
                "--name", save_dir.name, \
                "--project", opt.project, \
                "--device", str(tracking_subprocess_device), \
                "--source", dst_seq_path, \
                "--exist-ok", \
                "--save-txt", \
            ])
            processes.append(p)
        
        for p in processes:
            p.wait()

    results = (save_dir.parent / opt.eval_existing / 'tracks' if opt.eval_existing else save_dir / 'tracks').glob('*.txt')
    for src in results:
        if opt.eval_existing:
            dst = MOT_results_folder.parent.parent / opt.eval_existing / 'data' / Path(src.stem + '.txt')
        else:  
            dst = MOT_results_folder / Path(src.stem + '.txt')
        dst.parent.mkdir(parents=True, exist_ok=True)  # make
        shutil.copyfile(src, dst)

    # run the evaluation on the generated txts
    subprocess.run([
        "python",  dst_val_tools_folder / "scripts/run_mot_challenge.py",\
        "--BENCHMARK", opt.benchmark,\
        "--TRACKERS_TO_EVAL",  opt.eval_existing if opt.eval_existing else MOT_results_folder.parent.name,\
        "--SPLIT_TO_EVAL", "train",\
        "--METRICS", "HOTA", "CLEAR", "Identity",\
        "--USE_PARALLEL", "True",\
        "--NUM_PARALLEL_CORES", "4"\
    ])
    

if __name__ == "__main__":
    opt = parse_opt()
    main(opt)