Spaces:
Build error
Build error
File size: 14,167 Bytes
47af768 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import os
import csv
import numpy as np
from ._base_dataset import _BaseDataset
from ..utils import TrackEvalException
from .. import utils
from .. import _timing
class DAVIS(_BaseDataset):
"""Dataset class for DAVIS tracking"""
@staticmethod
def get_default_dataset_config():
"""Default class config values"""
code_path = utils.get_code_path()
default_config = {
'GT_FOLDER': os.path.join(code_path, 'data/gt/davis/davis_unsupervised_val/'), # Location of GT data
'TRACKERS_FOLDER': os.path.join(code_path, 'data/trackers/davis/davis_unsupervised_val/'), # Trackers location
'OUTPUT_FOLDER': None, # Where to save eval results (if None, same as TRACKERS_FOLDER)
'TRACKERS_TO_EVAL': None, # Filenames of trackers to eval (if None, all in folder)
'SPLIT_TO_EVAL': 'val', # Valid: 'val', 'train'
'CLASSES_TO_EVAL': ['general'],
'PRINT_CONFIG': True, # Whether to print current config
'TRACKER_SUB_FOLDER': 'data', # Tracker files are in TRACKER_FOLDER/tracker_name/TRACKER_SUB_FOLDER
'OUTPUT_SUB_FOLDER': '', # Output files are saved in OUTPUT_FOLDER/tracker_name/OUTPUT_SUB_FOLDER
'TRACKER_DISPLAY_NAMES': None, # Names of trackers to display, if None: TRACKERS_TO_EVAL
'SEQMAP_FILE': None, # Specify seqmap file
'SEQ_INFO': None, # If not None, directly specify sequences to eval and their number of timesteps
# '{gt_folder}/Annotations_unsupervised/480p/{seq}'
'MAX_DETECTIONS': 0 # Maximum number of allowed detections per sequence (0 for no threshold)
}
return default_config
def __init__(self, config=None):
"""Initialise dataset, checking that all required files are present"""
super().__init__()
# Fill non-given config values with defaults
self.config = utils.init_config(config, self.get_default_dataset_config(), self.get_name())
# defining a default class since there are no classes in DAVIS
self.should_classes_combine = False
self.use_super_categories = False
self.gt_fol = self.config['GT_FOLDER']
self.tracker_fol = self.config['TRACKERS_FOLDER']
self.output_sub_fol = self.config['OUTPUT_SUB_FOLDER']
self.tracker_sub_fol = self.config['TRACKER_SUB_FOLDER']
self.output_fol = self.config['OUTPUT_FOLDER']
if self.output_fol is None:
self.output_fol = self.config['TRACKERS_FOLDER']
self.max_det = self.config['MAX_DETECTIONS']
# Get classes to eval
self.valid_classes = ['general']
self.class_list = [cls.lower() if cls.lower() in self.valid_classes else None
for cls in self.config['CLASSES_TO_EVAL']]
if not all(self.class_list):
raise TrackEvalException('Attempted to evaluate an invalid class. Only general class is valid.')
# Get sequences to eval
if self.config["SEQ_INFO"]:
self.seq_list = list(self.config["SEQ_INFO"].keys())
self.seq_lengths = self.config["SEQ_INFO"]
elif self.config["SEQMAP_FILE"]:
self.seq_list = []
seqmap_file = self.config["SEQMAP_FILE"]
if not os.path.isfile(seqmap_file):
raise TrackEvalException('no seqmap found: ' + os.path.basename(seqmap_file))
with open(seqmap_file) as fp:
reader = csv.reader(fp)
for i, row in enumerate(reader):
if row[0] == '':
continue
seq = row[0]
self.seq_list.append(seq)
else:
self.seq_list = os.listdir(self.gt_fol)
self.seq_lengths = {seq: len(os.listdir(os.path.join(self.gt_fol, seq))) for seq in self.seq_list}
# Get trackers to eval
if self.config['TRACKERS_TO_EVAL'] is None:
self.tracker_list = os.listdir(self.tracker_fol)
else:
self.tracker_list = self.config['TRACKERS_TO_EVAL']
for tracker in self.tracker_list:
for seq in self.seq_list:
curr_dir = os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol, seq)
if not os.path.isdir(curr_dir):
print('Tracker directory not found: ' + curr_dir)
raise TrackEvalException('Tracker directory not found: ' +
os.path.join(tracker, self.tracker_sub_fol, seq))
tr_timesteps = len(os.listdir(curr_dir))
if self.seq_lengths[seq] != tr_timesteps:
raise TrackEvalException('GT folder and tracker folder have a different number'
'timesteps for tracker %s and sequence %s' % (tracker, seq))
if self.config['TRACKER_DISPLAY_NAMES'] is None:
self.tracker_to_disp = dict(zip(self.tracker_list, self.tracker_list))
elif (self.config['TRACKERS_TO_EVAL'] is not None) and (
len(self.config['TRACKER_DISPLAY_NAMES']) == len(self.tracker_list)):
self.tracker_to_disp = dict(zip(self.tracker_list, self.config['TRACKER_DISPLAY_NAMES']))
else:
raise TrackEvalException('List of tracker files and tracker display names do not match.')
def _load_raw_file(self, tracker, seq, is_gt):
"""Load a file (gt or tracker) in the DAVIS format
If is_gt, this returns a dict which contains the fields:
[gt_ids] : list (for each timestep) of 1D NDArrays (for each det).
[gt_dets]: list (for each timestep) of lists of detections.
[masks_void]: list of masks with void pixels (pixels to be ignored during evaluation)
if not is_gt, this returns a dict which contains the fields:
[tracker_ids] : list (for each timestep) of 1D NDArrays (for each det).
[tracker_dets]: list (for each timestep) of lists of detections.
"""
# Only loaded when run to reduce minimum requirements
from pycocotools import mask as mask_utils
from PIL import Image
# File location
if is_gt:
seq_dir = os.path.join(self.gt_fol, seq)
else:
seq_dir = os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol, seq)
num_timesteps = self.seq_lengths[seq]
data_keys = ['ids', 'dets', 'masks_void']
raw_data = {key: [None] * num_timesteps for key in data_keys}
# read frames
frames = [os.path.join(seq_dir, im_name) for im_name in sorted(os.listdir(seq_dir))]
id_list = []
for t in range(num_timesteps):
frame = np.array(Image.open(frames[t]))
if is_gt:
void = frame == 255
frame[void] = 0
raw_data['masks_void'][t] = mask_utils.encode(np.asfortranarray(void.astype(np.uint8)))
id_values = np.unique(frame)
id_values = id_values[id_values != 0]
id_list += list(id_values)
tmp = np.ones((len(id_values), *frame.shape))
tmp = tmp * id_values[:, None, None]
masks = np.array(tmp == frame[None, ...]).astype(np.uint8)
raw_data['dets'][t] = mask_utils.encode(np.array(np.transpose(masks, (1, 2, 0)), order='F'))
raw_data['ids'][t] = id_values.astype(int)
num_objects = len(np.unique(id_list))
if not is_gt and num_objects > self.max_det > 0:
raise Exception('Number of proposals (%i) for sequence %s exceeds number of maximum allowed proposals (%i).'
% (num_objects, seq, self.max_det))
if is_gt:
key_map = {'ids': 'gt_ids',
'dets': 'gt_dets'}
else:
key_map = {'ids': 'tracker_ids',
'dets': 'tracker_dets'}
for k, v in key_map.items():
raw_data[v] = raw_data.pop(k)
raw_data["num_timesteps"] = num_timesteps
raw_data['mask_shape'] = np.array(Image.open(frames[0])).shape
if is_gt:
raw_data['num_gt_ids'] = num_objects
else:
raw_data['num_tracker_ids'] = num_objects
return raw_data
@_timing.time
def get_preprocessed_seq_data(self, raw_data, cls):
""" Preprocess data for a single sequence for a single class ready for evaluation.
Inputs:
- raw_data is a dict containing the data for the sequence already read in by get_raw_seq_data().
- cls is the class to be evaluated.
Outputs:
- data is a dict containing all of the information that metrics need to perform evaluation.
It contains the following fields:
[num_timesteps, num_gt_ids, num_tracker_ids, num_gt_dets, num_tracker_dets] : integers.
[gt_ids, tracker_ids]: list (for each timestep) of 1D NDArrays (for each det).
[gt_dets, tracker_dets]: list (for each timestep) of lists of detection masks.
[similarity_scores]: list (for each timestep) of 2D NDArrays.
Notes:
General preprocessing (preproc) occurs in 4 steps. Some datasets may not use all of these steps.
1) Extract only detections relevant for the class to be evaluated (including distractor detections).
2) Match gt dets and tracker dets. Remove tracker dets that are matched to a gt det that is of a
distractor class, or otherwise marked as to be removed.
3) Remove unmatched tracker dets if they fall within a crowd ignore region or don't meet a certain
other criteria (e.g. are too small).
4) Remove gt dets that were only useful for preprocessing and not for actual evaluation.
After the above preprocessing steps, this function also calculates the number of gt and tracker detections
and unique track ids. It also relabels gt and tracker ids to be contiguous and checks that ids are
unique within each timestep.
DAVIS:
In DAVIS, the 4 preproc steps are as follow:
1) There are no classes, all detections are evaluated jointly
2) No matched tracker detections are removed.
3) No unmatched tracker detections are removed.
4) There are no ground truth detections (e.g. those of distractor classes) to be removed.
Preprocessing special to DAVIS: Pixels which are marked as void in the ground truth are set to zero in the
tracker detections since they are not considered during evaluation.
"""
# Only loaded when run to reduce minimum requirements
from pycocotools import mask as mask_utils
data_keys = ['gt_ids', 'tracker_ids', 'gt_dets', 'tracker_dets', 'similarity_scores']
data = {key: [None] * raw_data['num_timesteps'] for key in data_keys}
num_gt_dets = 0
num_tracker_dets = 0
unique_gt_ids = []
unique_tracker_ids = []
num_timesteps = raw_data['num_timesteps']
# count detections
for t in range(num_timesteps):
num_gt_dets += len(raw_data['gt_dets'][t])
num_tracker_dets += len(raw_data['tracker_dets'][t])
unique_gt_ids += list(np.unique(raw_data['gt_ids'][t]))
unique_tracker_ids += list(np.unique(raw_data['tracker_ids'][t]))
data['gt_ids'] = raw_data['gt_ids']
data['gt_dets'] = raw_data['gt_dets']
data['similarity_scores'] = raw_data['similarity_scores']
data['tracker_ids'] = raw_data['tracker_ids']
# set void pixels in tracker detections to zero
for t in range(num_timesteps):
void_mask = raw_data['masks_void'][t]
if mask_utils.area(void_mask) > 0:
void_mask_ious = np.atleast_1d(mask_utils.iou(raw_data['tracker_dets'][t], [void_mask], [False]))
if void_mask_ious.any():
rows, columns = np.where(void_mask_ious > 0)
for r in rows:
det = mask_utils.decode(raw_data['tracker_dets'][t][r])
void = mask_utils.decode(void_mask).astype(np.bool)
det[void] = 0
det = mask_utils.encode(np.array(det, order='F').astype(np.uint8))
raw_data['tracker_dets'][t][r] = det
data['tracker_dets'] = raw_data['tracker_dets']
# Re-label IDs such that there are no empty IDs
if len(unique_gt_ids) > 0:
unique_gt_ids = np.unique(unique_gt_ids)
gt_id_map = np.nan * np.ones((np.max(unique_gt_ids) + 1))
gt_id_map[unique_gt_ids] = np.arange(len(unique_gt_ids))
for t in range(raw_data['num_timesteps']):
if len(data['gt_ids'][t]) > 0:
data['gt_ids'][t] = gt_id_map[data['gt_ids'][t]].astype(np.int)
if len(unique_tracker_ids) > 0:
unique_tracker_ids = np.unique(unique_tracker_ids)
tracker_id_map = np.nan * np.ones((np.max(unique_tracker_ids) + 1))
tracker_id_map[unique_tracker_ids] = np.arange(len(unique_tracker_ids))
for t in range(raw_data['num_timesteps']):
if len(data['tracker_ids'][t]) > 0:
data['tracker_ids'][t] = tracker_id_map[data['tracker_ids'][t]].astype(np.int)
# Record overview statistics.
data['num_tracker_dets'] = num_tracker_dets
data['num_gt_dets'] = num_gt_dets
data['num_tracker_ids'] = raw_data['num_tracker_ids']
data['num_gt_ids'] = raw_data['num_gt_ids']
data['mask_shape'] = raw_data['mask_shape']
data['num_timesteps'] = num_timesteps
return data
def _calculate_similarities(self, gt_dets_t, tracker_dets_t):
similarity_scores = self._calculate_mask_ious(gt_dets_t, tracker_dets_t, is_encoded=True, do_ioa=False)
return similarity_scores
|