Spaces:
Build error
Build error
File size: 22,380 Bytes
47af768 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 |
import os
import csv
import numpy as np
from scipy.optimize import linear_sum_assignment
from ._base_dataset import _BaseDataset
from .. import utils
from .. import _timing
from ..utils import TrackEvalException
class KittiMOTS(_BaseDataset):
"""Dataset class for KITTI MOTS tracking"""
@staticmethod
def get_default_dataset_config():
"""Default class config values"""
code_path = utils.get_code_path()
default_config = {
'GT_FOLDER': os.path.join(code_path, 'data/gt/kitti/kitti_mots_val'), # Location of GT data
'TRACKERS_FOLDER': os.path.join(code_path, 'data/trackers/kitti/kitti_mots_val'), # Trackers location
'OUTPUT_FOLDER': None, # Where to save eval results (if None, same as TRACKERS_FOLDER)
'TRACKERS_TO_EVAL': None, # Filenames of trackers to eval (if None, all in folder)
'CLASSES_TO_EVAL': ['car', 'pedestrian'], # Valid: ['car', 'pedestrian']
'SPLIT_TO_EVAL': 'val', # Valid: 'training', 'val'
'INPUT_AS_ZIP': False, # Whether tracker input files are zipped
'PRINT_CONFIG': True, # Whether to print current config
'TRACKER_SUB_FOLDER': 'data', # Tracker files are in TRACKER_FOLDER/tracker_name/TRACKER_SUB_FOLDER
'OUTPUT_SUB_FOLDER': '', # Output files are saved in OUTPUT_FOLDER/tracker_name/OUTPUT_SUB_FOLDER
'TRACKER_DISPLAY_NAMES': None, # Names of trackers to display, if None: TRACKERS_TO_EVAL
'SEQMAP_FOLDER': None, # Where seqmaps are found (if None, GT_FOLDER)
'SEQMAP_FILE': None, # Directly specify seqmap file (if none use seqmap_folder/split_to_eval.seqmap)
'SEQ_INFO': None, # If not None, directly specify sequences to eval and their number of timesteps
'GT_LOC_FORMAT': '{gt_folder}/label_02/{seq}.txt', # format of gt localization
}
return default_config
def __init__(self, config=None):
"""Initialise dataset, checking that all required files are present"""
super().__init__()
# Fill non-given config values with defaults
self.config = utils.init_config(config, self.get_default_dataset_config(), self.get_name())
self.gt_fol = self.config['GT_FOLDER']
self.tracker_fol = self.config['TRACKERS_FOLDER']
self.split_to_eval = self.config['SPLIT_TO_EVAL']
self.should_classes_combine = False
self.use_super_categories = False
self.data_is_zipped = self.config['INPUT_AS_ZIP']
self.output_fol = self.config['OUTPUT_FOLDER']
if self.output_fol is None:
self.output_fol = self.tracker_fol
self.tracker_sub_fol = self.config['TRACKER_SUB_FOLDER']
self.output_sub_fol = self.config['OUTPUT_SUB_FOLDER']
# Get classes to eval
self.valid_classes = ['car', 'pedestrian']
self.class_list = [cls.lower() if cls.lower() in self.valid_classes else None
for cls in self.config['CLASSES_TO_EVAL']]
if not all(self.class_list):
raise TrackEvalException('Attempted to evaluate an invalid class. '
'Only classes [car, pedestrian] are valid.')
self.class_name_to_class_id = {'car': '1', 'pedestrian': '2', 'ignore': '10'}
# Get sequences to eval and check gt files exist
self.seq_list, self.seq_lengths = self._get_seq_info()
if len(self.seq_list) < 1:
raise TrackEvalException('No sequences are selected to be evaluated.')
# Check gt files exist
for seq in self.seq_list:
if not self.data_is_zipped:
curr_file = self.config["GT_LOC_FORMAT"].format(gt_folder=self.gt_fol, seq=seq)
if not os.path.isfile(curr_file):
print('GT file not found ' + curr_file)
raise TrackEvalException('GT file not found for sequence: ' + seq)
if self.data_is_zipped:
curr_file = os.path.join(self.gt_fol, 'data.zip')
if not os.path.isfile(curr_file):
raise TrackEvalException('GT file not found: ' + os.path.basename(curr_file))
# Get trackers to eval
if self.config['TRACKERS_TO_EVAL'] is None:
self.tracker_list = os.listdir(self.tracker_fol)
else:
self.tracker_list = self.config['TRACKERS_TO_EVAL']
if self.config['TRACKER_DISPLAY_NAMES'] is None:
self.tracker_to_disp = dict(zip(self.tracker_list, self.tracker_list))
elif (self.config['TRACKERS_TO_EVAL'] is not None) and (
len(self.config['TRACKER_DISPLAY_NAMES']) == len(self.tracker_list)):
self.tracker_to_disp = dict(zip(self.tracker_list, self.config['TRACKER_DISPLAY_NAMES']))
else:
raise TrackEvalException('List of tracker files and tracker display names do not match.')
for tracker in self.tracker_list:
if self.data_is_zipped:
curr_file = os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol + '.zip')
if not os.path.isfile(curr_file):
print('Tracker file not found: ' + curr_file)
raise TrackEvalException('Tracker file not found: ' + tracker + '/' + os.path.basename(curr_file))
else:
for seq in self.seq_list:
curr_file = os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol, seq + '.txt')
if not os.path.isfile(curr_file):
print('Tracker file not found: ' + curr_file)
raise TrackEvalException(
'Tracker file not found: ' + tracker + '/' + self.tracker_sub_fol + '/' + os.path.basename(
curr_file))
def get_display_name(self, tracker):
return self.tracker_to_disp[tracker]
def _get_seq_info(self):
seq_list = []
seq_lengths = {}
seqmap_name = 'evaluate_mots.seqmap.' + self.config['SPLIT_TO_EVAL']
if self.config["SEQ_INFO"]:
seq_list = list(self.config["SEQ_INFO"].keys())
seq_lengths = self.config["SEQ_INFO"]
else:
if self.config["SEQMAP_FILE"]:
seqmap_file = self.config["SEQMAP_FILE"]
else:
if self.config["SEQMAP_FOLDER"] is None:
seqmap_file = os.path.join(self.config['GT_FOLDER'], seqmap_name)
else:
seqmap_file = os.path.join(self.config["SEQMAP_FOLDER"], seqmap_name)
if not os.path.isfile(seqmap_file):
print('no seqmap found: ' + seqmap_file)
raise TrackEvalException('no seqmap found: ' + os.path.basename(seqmap_file))
with open(seqmap_file) as fp:
reader = csv.reader(fp)
for i, _ in enumerate(reader):
dialect = csv.Sniffer().sniff(fp.read(1024))
fp.seek(0)
reader = csv.reader(fp, dialect)
for row in reader:
if len(row) >= 4:
seq = "%04d" % int(row[0])
seq_list.append(seq)
seq_lengths[seq] = int(row[3]) + 1
return seq_list, seq_lengths
def _load_raw_file(self, tracker, seq, is_gt):
"""Load a file (gt or tracker) in the KITTI MOTS format
If is_gt, this returns a dict which contains the fields:
[gt_ids, gt_classes] : list (for each timestep) of 1D NDArrays (for each det).
[gt_dets]: list (for each timestep) of lists of detections.
[gt_ignore_region]: list (for each timestep) of masks for the ignore regions
if not is_gt, this returns a dict which contains the fields:
[tracker_ids, tracker_classes] : list (for each timestep) of 1D NDArrays (for each det).
[tracker_dets]: list (for each timestep) of lists of detections.
"""
# Only loaded when run to reduce minimum requirements
from pycocotools import mask as mask_utils
# File location
if self.data_is_zipped:
if is_gt:
zip_file = os.path.join(self.gt_fol, 'data.zip')
else:
zip_file = os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol + '.zip')
file = seq + '.txt'
else:
zip_file = None
if is_gt:
file = self.config["GT_LOC_FORMAT"].format(gt_folder=self.gt_fol, seq=seq)
else:
file = os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol, seq + '.txt')
# Ignore regions
if is_gt:
crowd_ignore_filter = {2: ['10']}
else:
crowd_ignore_filter = None
# Load raw data from text file
read_data, ignore_data = self._load_simple_text_file(file, crowd_ignore_filter=crowd_ignore_filter,
is_zipped=self.data_is_zipped, zip_file=zip_file,
force_delimiters=' ')
# Convert data to required format
num_timesteps = self.seq_lengths[seq]
data_keys = ['ids', 'classes', 'dets']
if is_gt:
data_keys += ['gt_ignore_region']
raw_data = {key: [None] * num_timesteps for key in data_keys}
# Check for any extra time keys
current_time_keys = [str(t) for t in range(num_timesteps)]
extra_time_keys = [x for x in read_data.keys() if x not in current_time_keys]
if len(extra_time_keys) > 0:
if is_gt:
text = 'Ground-truth'
else:
text = 'Tracking'
raise TrackEvalException(
text + ' data contains the following invalid timesteps in seq %s: ' % seq + ', '.join(
[str(x) + ', ' for x in extra_time_keys]))
for t in range(num_timesteps):
time_key = str(t)
# list to collect all masks of a timestep to check for overlapping areas
all_masks = []
if time_key in read_data.keys():
try:
raw_data['dets'][t] = [{'size': [int(region[3]), int(region[4])],
'counts': region[5].encode(encoding='UTF-8')}
for region in read_data[time_key]]
raw_data['ids'][t] = np.atleast_1d([region[1] for region in read_data[time_key]]).astype(int)
raw_data['classes'][t] = np.atleast_1d([region[2] for region in read_data[time_key]]).astype(int)
all_masks += raw_data['dets'][t]
except IndexError:
self._raise_index_error(is_gt, tracker, seq)
except ValueError:
self._raise_value_error(is_gt, tracker, seq)
else:
raw_data['dets'][t] = []
raw_data['ids'][t] = np.empty(0).astype(int)
raw_data['classes'][t] = np.empty(0).astype(int)
if is_gt:
if time_key in ignore_data.keys():
try:
time_ignore = [{'size': [int(region[3]), int(region[4])],
'counts': region[5].encode(encoding='UTF-8')}
for region in ignore_data[time_key]]
raw_data['gt_ignore_region'][t] = mask_utils.merge([mask for mask in time_ignore],
intersect=False)
all_masks += [raw_data['gt_ignore_region'][t]]
except IndexError:
self._raise_index_error(is_gt, tracker, seq)
except ValueError:
self._raise_value_error(is_gt, tracker, seq)
else:
raw_data['gt_ignore_region'][t] = mask_utils.merge([], intersect=False)
# check for overlapping masks
if all_masks:
masks_merged = all_masks[0]
for mask in all_masks[1:]:
if mask_utils.area(mask_utils.merge([masks_merged, mask], intersect=True)) != 0.0:
raise TrackEvalException(
'Tracker has overlapping masks. Tracker: ' + tracker + ' Seq: ' + seq + ' Timestep: ' + str(
t))
masks_merged = mask_utils.merge([masks_merged, mask], intersect=False)
if is_gt:
key_map = {'ids': 'gt_ids',
'classes': 'gt_classes',
'dets': 'gt_dets'}
else:
key_map = {'ids': 'tracker_ids',
'classes': 'tracker_classes',
'dets': 'tracker_dets'}
for k, v in key_map.items():
raw_data[v] = raw_data.pop(k)
raw_data["num_timesteps"] = num_timesteps
raw_data['seq'] = seq
return raw_data
@_timing.time
def get_preprocessed_seq_data(self, raw_data, cls):
""" Preprocess data for a single sequence for a single class ready for evaluation.
Inputs:
- raw_data is a dict containing the data for the sequence already read in by get_raw_seq_data().
- cls is the class to be evaluated.
Outputs:
- data is a dict containing all of the information that metrics need to perform evaluation.
It contains the following fields:
[num_timesteps, num_gt_ids, num_tracker_ids, num_gt_dets, num_tracker_dets] : integers.
[gt_ids, tracker_ids]: list (for each timestep) of 1D NDArrays (for each det).
[gt_dets, tracker_dets]: list (for each timestep) of lists of detection masks.
[similarity_scores]: list (for each timestep) of 2D NDArrays.
Notes:
General preprocessing (preproc) occurs in 4 steps. Some datasets may not use all of these steps.
1) Extract only detections relevant for the class to be evaluated (including distractor detections).
2) Match gt dets and tracker dets. Remove tracker dets that are matched to a gt det that is of a
distractor class, or otherwise marked as to be removed.
3) Remove unmatched tracker dets if they fall within a crowd ignore region or don't meet a certain
other criteria (e.g. are too small).
4) Remove gt dets that were only useful for preprocessing and not for actual evaluation.
After the above preprocessing steps, this function also calculates the number of gt and tracker detections
and unique track ids. It also relabels gt and tracker ids to be contiguous and checks that ids are
unique within each timestep.
KITTI MOTS:
In KITTI MOTS, the 4 preproc steps are as follow:
1) There are two classes (car and pedestrian) which are evaluated separately.
2) There are no ground truth detections marked as to be removed/distractor classes.
Therefore also no matched tracker detections are removed.
3) Ignore regions are used to remove unmatched detections (at least 50% overlap with ignore region).
4) There are no ground truth detections (e.g. those of distractor classes) to be removed.
"""
# Check that input data has unique ids
self._check_unique_ids(raw_data)
cls_id = int(self.class_name_to_class_id[cls])
data_keys = ['gt_ids', 'tracker_ids', 'gt_dets', 'tracker_dets', 'similarity_scores']
data = {key: [None] * raw_data['num_timesteps'] for key in data_keys}
unique_gt_ids = []
unique_tracker_ids = []
num_gt_dets = 0
num_tracker_dets = 0
for t in range(raw_data['num_timesteps']):
# Only extract relevant dets for this class for preproc and eval (cls)
gt_class_mask = np.atleast_1d(raw_data['gt_classes'][t] == cls_id)
gt_class_mask = gt_class_mask.astype(np.bool)
gt_ids = raw_data['gt_ids'][t][gt_class_mask]
gt_dets = [raw_data['gt_dets'][t][ind] for ind in range(len(gt_class_mask)) if gt_class_mask[ind]]
tracker_class_mask = np.atleast_1d(raw_data['tracker_classes'][t] == cls_id)
tracker_class_mask = tracker_class_mask.astype(np.bool)
tracker_ids = raw_data['tracker_ids'][t][tracker_class_mask]
tracker_dets = [raw_data['tracker_dets'][t][ind] for ind in range(len(tracker_class_mask)) if
tracker_class_mask[ind]]
similarity_scores = raw_data['similarity_scores'][t][gt_class_mask, :][:, tracker_class_mask]
# Match tracker and gt dets (with hungarian algorithm)
unmatched_indices = np.arange(tracker_ids.shape[0])
if gt_ids.shape[0] > 0 and tracker_ids.shape[0] > 0:
matching_scores = similarity_scores.copy()
matching_scores[matching_scores < 0.5 - np.finfo('float').eps] = -10000
match_rows, match_cols = linear_sum_assignment(-matching_scores)
actually_matched_mask = matching_scores[match_rows, match_cols] > 0 + np.finfo('float').eps
match_cols = match_cols[actually_matched_mask]
unmatched_indices = np.delete(unmatched_indices, match_cols, axis=0)
# For unmatched tracker dets, remove those that are greater than 50% within a crowd ignore region.
unmatched_tracker_dets = [tracker_dets[i] for i in range(len(tracker_dets)) if i in unmatched_indices]
ignore_region = raw_data['gt_ignore_region'][t]
intersection_with_ignore_region = self._calculate_mask_ious(unmatched_tracker_dets, [ignore_region],
is_encoded=True, do_ioa=True)
is_within_ignore_region = np.any(intersection_with_ignore_region > 0.5 + np.finfo('float').eps, axis=1)
# Apply preprocessing to remove unwanted tracker dets.
to_remove_tracker = unmatched_indices[is_within_ignore_region]
data['tracker_ids'][t] = np.delete(tracker_ids, to_remove_tracker, axis=0)
data['tracker_dets'][t] = np.delete(tracker_dets, to_remove_tracker, axis=0)
similarity_scores = np.delete(similarity_scores, to_remove_tracker, axis=1)
# Keep all ground truth detections
data['gt_ids'][t] = gt_ids
data['gt_dets'][t] = gt_dets
data['similarity_scores'][t] = similarity_scores
unique_gt_ids += list(np.unique(data['gt_ids'][t]))
unique_tracker_ids += list(np.unique(data['tracker_ids'][t]))
num_tracker_dets += len(data['tracker_ids'][t])
num_gt_dets += len(data['gt_ids'][t])
# Re-label IDs such that there are no empty IDs
if len(unique_gt_ids) > 0:
unique_gt_ids = np.unique(unique_gt_ids)
gt_id_map = np.nan * np.ones((np.max(unique_gt_ids) + 1))
gt_id_map[unique_gt_ids] = np.arange(len(unique_gt_ids))
for t in range(raw_data['num_timesteps']):
if len(data['gt_ids'][t]) > 0:
data['gt_ids'][t] = gt_id_map[data['gt_ids'][t]].astype(np.int)
if len(unique_tracker_ids) > 0:
unique_tracker_ids = np.unique(unique_tracker_ids)
tracker_id_map = np.nan * np.ones((np.max(unique_tracker_ids) + 1))
tracker_id_map[unique_tracker_ids] = np.arange(len(unique_tracker_ids))
for t in range(raw_data['num_timesteps']):
if len(data['tracker_ids'][t]) > 0:
data['tracker_ids'][t] = tracker_id_map[data['tracker_ids'][t]].astype(np.int)
# Record overview statistics.
data['num_tracker_dets'] = num_tracker_dets
data['num_gt_dets'] = num_gt_dets
data['num_tracker_ids'] = len(unique_tracker_ids)
data['num_gt_ids'] = len(unique_gt_ids)
data['num_timesteps'] = raw_data['num_timesteps']
data['seq'] = raw_data['seq']
data['cls'] = cls
# Ensure again that ids are unique per timestep after preproc.
self._check_unique_ids(data, after_preproc=True)
return data
def _calculate_similarities(self, gt_dets_t, tracker_dets_t):
similarity_scores = self._calculate_mask_ious(gt_dets_t, tracker_dets_t, is_encoded=True, do_ioa=False)
return similarity_scores
@staticmethod
def _raise_index_error(is_gt, tracker, seq):
"""
Auxiliary method to raise an evaluation error in case of an index error while reading files.
:param is_gt: whether gt or tracker data is read
:param tracker: the name of the tracker
:param seq: the name of the seq
:return: None
"""
if is_gt:
err = 'Cannot load gt data from sequence %s, because there are not enough ' \
'columns in the data.' % seq
raise TrackEvalException(err)
else:
err = 'Cannot load tracker data from tracker %s, sequence %s, because there are not enough ' \
'columns in the data.' % (tracker, seq)
raise TrackEvalException(err)
@staticmethod
def _raise_value_error(is_gt, tracker, seq):
"""
Auxiliary method to raise an evaluation error in case of an value error while reading files.
:param is_gt: whether gt or tracker data is read
:param tracker: the name of the tracker
:param seq: the name of the seq
:return: None
"""
if is_gt:
raise TrackEvalException(
'GT data for sequence %s cannot be converted to the right format. Is data corrupted?' % seq)
else:
raise TrackEvalException(
'Tracking data from tracker %s, sequence %s cannot be converted to the right format. '
'Is data corrupted?' % (tracker, seq))
|