Spaces:
Build error
Build error
File size: 33,927 Bytes
47af768 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 |
import os
import numpy as np
import json
import itertools
from collections import defaultdict
from scipy.optimize import linear_sum_assignment
from ..utils import TrackEvalException
from ._base_dataset import _BaseDataset
from .. import utils
from .. import _timing
class TAO_OW(_BaseDataset):
"""Dataset class for TAO tracking"""
@staticmethod
def get_default_dataset_config():
"""Default class config values"""
code_path = utils.get_code_path()
default_config = {
'GT_FOLDER': os.path.join(code_path, 'data/gt/tao/tao_training'), # Location of GT data
'TRACKERS_FOLDER': os.path.join(code_path, 'data/trackers/tao/tao_training'), # Trackers location
'OUTPUT_FOLDER': None, # Where to save eval results (if None, same as TRACKERS_FOLDER)
'TRACKERS_TO_EVAL': None, # Filenames of trackers to eval (if None, all in folder)
'CLASSES_TO_EVAL': None, # Classes to eval (if None, all classes)
'SPLIT_TO_EVAL': 'training', # Valid: 'training', 'val'
'PRINT_CONFIG': True, # Whether to print current config
'TRACKER_SUB_FOLDER': 'data', # Tracker files are in TRACKER_FOLDER/tracker_name/TRACKER_SUB_FOLDER
'OUTPUT_SUB_FOLDER': '', # Output files are saved in OUTPUT_FOLDER/tracker_name/OUTPUT_SUB_FOLDER
'TRACKER_DISPLAY_NAMES': None, # Names of trackers to display, if None: TRACKERS_TO_EVAL
'MAX_DETECTIONS': 300, # Number of maximal allowed detections per image (0 for unlimited)
'SUBSET': 'all'
}
return default_config
def __init__(self, config=None):
"""Initialise dataset, checking that all required files are present"""
super().__init__()
# Fill non-given config values with defaults
self.config = utils.init_config(config, self.get_default_dataset_config(), self.get_name())
self.gt_fol = self.config['GT_FOLDER']
self.tracker_fol = self.config['TRACKERS_FOLDER']
self.should_classes_combine = True
self.use_super_categories = False
self.tracker_sub_fol = self.config['TRACKER_SUB_FOLDER']
self.output_fol = self.config['OUTPUT_FOLDER']
if self.output_fol is None:
self.output_fol = self.tracker_fol
self.output_sub_fol = self.config['OUTPUT_SUB_FOLDER']
gt_dir_files = [file for file in os.listdir(self.gt_fol) if file.endswith('.json')]
if len(gt_dir_files) != 1:
raise TrackEvalException(self.gt_fol + ' does not contain exactly one json file.')
with open(os.path.join(self.gt_fol, gt_dir_files[0])) as f:
self.gt_data = json.load(f)
self.subset = self.config['SUBSET']
if self.subset != 'all':
# Split GT data into `known`, `unknown` or `distractor`
self._split_known_unknown_distractor()
self.gt_data = self._filter_gt_data(self.gt_data)
# merge categories marked with a merged tag in TAO dataset
self._merge_categories(self.gt_data['annotations'] + self.gt_data['tracks'])
# Get sequences to eval and sequence information
self.seq_list = [vid['name'].replace('/', '-') for vid in self.gt_data['videos']]
self.seq_name_to_seq_id = {vid['name'].replace('/', '-'): vid['id'] for vid in self.gt_data['videos']}
# compute mappings from videos to annotation data
self.videos_to_gt_tracks, self.videos_to_gt_images = self._compute_vid_mappings(self.gt_data['annotations'])
# compute sequence lengths
self.seq_lengths = {vid['id']: 0 for vid in self.gt_data['videos']}
for img in self.gt_data['images']:
self.seq_lengths[img['video_id']] += 1
self.seq_to_images_to_timestep = self._compute_image_to_timestep_mappings()
self.seq_to_classes = {vid['id']: {'pos_cat_ids': list({track['category_id'] for track
in self.videos_to_gt_tracks[vid['id']]}),
'neg_cat_ids': vid['neg_category_ids'],
'not_exhaustively_labeled_cat_ids': vid['not_exhaustive_category_ids']}
for vid in self.gt_data['videos']}
# Get classes to eval
considered_vid_ids = [self.seq_name_to_seq_id[vid] for vid in self.seq_list]
seen_cats = set([cat_id for vid_id in considered_vid_ids for cat_id
in self.seq_to_classes[vid_id]['pos_cat_ids']])
# only classes with ground truth are evaluated in TAO
self.valid_classes = [cls['name'] for cls in self.gt_data['categories'] if cls['id'] in seen_cats]
# cls_name_to_cls_id_map = {cls['name']: cls['id'] for cls in self.gt_data['categories']}
if self.config['CLASSES_TO_EVAL']:
# self.class_list = [cls.lower() if cls.lower() in self.valid_classes else None
# for cls in self.config['CLASSES_TO_EVAL']]
self.class_list = ["object"] # class-agnostic
if not all(self.class_list):
raise TrackEvalException('Attempted to evaluate an invalid class. Only classes ' +
', '.join(self.valid_classes) +
' are valid (classes present in ground truth data).')
else:
# self.class_list = [cls for cls in self.valid_classes]
self.class_list = ["object"] # class-agnostic
# self.class_name_to_class_id = {k: v for k, v in cls_name_to_cls_id_map.items() if k in self.class_list}
self.class_name_to_class_id = {"object": 1} # class-agnostic
# Get trackers to eval
if self.config['TRACKERS_TO_EVAL'] is None:
self.tracker_list = os.listdir(self.tracker_fol)
else:
self.tracker_list = self.config['TRACKERS_TO_EVAL']
if self.config['TRACKER_DISPLAY_NAMES'] is None:
self.tracker_to_disp = dict(zip(self.tracker_list, self.tracker_list))
elif (self.config['TRACKERS_TO_EVAL'] is not None) and (
len(self.config['TRACKER_DISPLAY_NAMES']) == len(self.tracker_list)):
self.tracker_to_disp = dict(zip(self.tracker_list, self.config['TRACKER_DISPLAY_NAMES']))
else:
raise TrackEvalException('List of tracker files and tracker display names do not match.')
self.tracker_data = {tracker: dict() for tracker in self.tracker_list}
for tracker in self.tracker_list:
tr_dir_files = [file for file in os.listdir(os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol))
if file.endswith('.json')]
if len(tr_dir_files) != 1:
raise TrackEvalException(os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol)
+ ' does not contain exactly one json file.')
with open(os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol, tr_dir_files[0])) as f:
curr_data = json.load(f)
# limit detections if MAX_DETECTIONS > 0
if self.config['MAX_DETECTIONS']:
curr_data = self._limit_dets_per_image(curr_data)
# fill missing video ids
self._fill_video_ids_inplace(curr_data)
# make track ids unique over whole evaluation set
self._make_track_ids_unique(curr_data)
# merge categories marked with a merged tag in TAO dataset
self._merge_categories(curr_data)
# get tracker sequence information
curr_videos_to_tracker_tracks, curr_videos_to_tracker_images = self._compute_vid_mappings(curr_data)
self.tracker_data[tracker]['vids_to_tracks'] = curr_videos_to_tracker_tracks
self.tracker_data[tracker]['vids_to_images'] = curr_videos_to_tracker_images
def get_display_name(self, tracker):
return self.tracker_to_disp[tracker]
def _load_raw_file(self, tracker, seq, is_gt):
"""Load a file (gt or tracker) in the TAO format
If is_gt, this returns a dict which contains the fields:
[gt_ids, gt_classes] : list (for each timestep) of 1D NDArrays (for each det).
[gt_dets]: list (for each timestep) of lists of detections.
[classes_to_gt_tracks]: dictionary with class values as keys and list of dictionaries (with frame indices as
keys and corresponding segmentations as values) for each track
[classes_to_gt_track_ids, classes_to_gt_track_areas, classes_to_gt_track_lengths]: dictionary with class values
as keys and lists (for each track) as values
if not is_gt, this returns a dict which contains the fields:
[tracker_ids, tracker_classes, tracker_confidences] : list (for each timestep) of 1D NDArrays (for each det).
[tracker_dets]: list (for each timestep) of lists of detections.
[classes_to_dt_tracks]: dictionary with class values as keys and list of dictionaries (with frame indices as
keys and corresponding segmentations as values) for each track
[classes_to_dt_track_ids, classes_to_dt_track_areas, classes_to_dt_track_lengths]: dictionary with class values
as keys and lists as values
[classes_to_dt_track_scores]: dictionary with class values as keys and 1D numpy arrays as values
"""
seq_id = self.seq_name_to_seq_id[seq]
# File location
if is_gt:
imgs = self.videos_to_gt_images[seq_id]
else:
imgs = self.tracker_data[tracker]['vids_to_images'][seq_id]
# Convert data to required format
num_timesteps = self.seq_lengths[seq_id]
img_to_timestep = self.seq_to_images_to_timestep[seq_id]
data_keys = ['ids', 'classes', 'dets']
if not is_gt:
data_keys += ['tracker_confidences']
raw_data = {key: [None] * num_timesteps for key in data_keys}
for img in imgs:
# some tracker data contains images without any ground truth information, these are ignored
try:
t = img_to_timestep[img['id']]
except KeyError:
continue
annotations = img['annotations']
raw_data['dets'][t] = np.atleast_2d([ann['bbox'] for ann in annotations]).astype(float)
raw_data['ids'][t] = np.atleast_1d([ann['track_id'] for ann in annotations]).astype(int)
raw_data['classes'][t] = np.atleast_1d([1 for _ in annotations]).astype(int) # class-agnostic
if not is_gt:
raw_data['tracker_confidences'][t] = np.atleast_1d([ann['score'] for ann in annotations]).astype(float)
for t, d in enumerate(raw_data['dets']):
if d is None:
raw_data['dets'][t] = np.empty((0, 4)).astype(float)
raw_data['ids'][t] = np.empty(0).astype(int)
raw_data['classes'][t] = np.empty(0).astype(int)
if not is_gt:
raw_data['tracker_confidences'][t] = np.empty(0)
if is_gt:
key_map = {'ids': 'gt_ids',
'classes': 'gt_classes',
'dets': 'gt_dets'}
else:
key_map = {'ids': 'tracker_ids',
'classes': 'tracker_classes',
'dets': 'tracker_dets'}
for k, v in key_map.items():
raw_data[v] = raw_data.pop(k)
# all_classes = [self.class_name_to_class_id[cls] for cls in self.class_list]
all_classes = [1] # class-agnostic
if is_gt:
classes_to_consider = all_classes
all_tracks = self.videos_to_gt_tracks[seq_id]
else:
# classes_to_consider = self.seq_to_classes[seq_id]['pos_cat_ids'] \
# + self.seq_to_classes[seq_id]['neg_cat_ids']
classes_to_consider = all_classes # class-agnostic
all_tracks = self.tracker_data[tracker]['vids_to_tracks'][seq_id]
# classes_to_tracks = {cls: [track for track in all_tracks if track['category_id'] == cls]
# if cls in classes_to_consider else [] for cls in all_classes}
classes_to_tracks = {cls: [track for track in all_tracks]
if cls in classes_to_consider else [] for cls in all_classes} # class-agnostic
# mapping from classes to track information
raw_data['classes_to_tracks'] = {cls: [{det['image_id']: np.atleast_1d(det['bbox'])
for det in track['annotations']} for track in tracks]
for cls, tracks in classes_to_tracks.items()}
raw_data['classes_to_track_ids'] = {cls: [track['id'] for track in tracks]
for cls, tracks in classes_to_tracks.items()}
raw_data['classes_to_track_areas'] = {cls: [track['area'] for track in tracks]
for cls, tracks in classes_to_tracks.items()}
raw_data['classes_to_track_lengths'] = {cls: [len(track['annotations']) for track in tracks]
for cls, tracks in classes_to_tracks.items()}
if not is_gt:
raw_data['classes_to_dt_track_scores'] = {cls: np.array([np.mean([float(x['score'])
for x in track['annotations']])
for track in tracks])
for cls, tracks in classes_to_tracks.items()}
if is_gt:
key_map = {'classes_to_tracks': 'classes_to_gt_tracks',
'classes_to_track_ids': 'classes_to_gt_track_ids',
'classes_to_track_lengths': 'classes_to_gt_track_lengths',
'classes_to_track_areas': 'classes_to_gt_track_areas'}
else:
key_map = {'classes_to_tracks': 'classes_to_dt_tracks',
'classes_to_track_ids': 'classes_to_dt_track_ids',
'classes_to_track_lengths': 'classes_to_dt_track_lengths',
'classes_to_track_areas': 'classes_to_dt_track_areas'}
for k, v in key_map.items():
raw_data[v] = raw_data.pop(k)
raw_data['num_timesteps'] = num_timesteps
raw_data['neg_cat_ids'] = self.seq_to_classes[seq_id]['neg_cat_ids']
raw_data['not_exhaustively_labeled_cls'] = self.seq_to_classes[seq_id]['not_exhaustively_labeled_cat_ids']
raw_data['seq'] = seq
return raw_data
@_timing.time
def get_preprocessed_seq_data(self, raw_data, cls):
""" Preprocess data for a single sequence for a single class ready for evaluation.
Inputs:
- raw_data is a dict containing the data for the sequence already read in by get_raw_seq_data().
- cls is the class to be evaluated.
Outputs:
- data is a dict containing all of the information that metrics need to perform evaluation.
It contains the following fields:
[num_timesteps, num_gt_ids, num_tracker_ids, num_gt_dets, num_tracker_dets] : integers.
[gt_ids, tracker_ids, tracker_confidences]: list (for each timestep) of 1D NDArrays (for each det).
[gt_dets, tracker_dets]: list (for each timestep) of lists of detections.
[similarity_scores]: list (for each timestep) of 2D NDArrays.
Notes:
General preprocessing (preproc) occurs in 4 steps. Some datasets may not use all of these steps.
1) Extract only detections relevant for the class to be evaluated (including distractor detections).
2) Match gt dets and tracker dets. Remove tracker dets that are matched to a gt det that is of a
distractor class, or otherwise marked as to be removed.
3) Remove unmatched tracker dets if they fall within a crowd ignore region or don't meet a certain
other criteria (e.g. are too small).
4) Remove gt dets that were only useful for preprocessing and not for actual evaluation.
After the above preprocessing steps, this function also calculates the number of gt and tracker detections
and unique track ids. It also relabels gt and tracker ids to be contiguous and checks that ids are
unique within each timestep.
TAO:
In TAO, the 4 preproc steps are as follow:
1) All classes present in the ground truth data are evaluated separately.
2) No matched tracker detections are removed.
3) Unmatched tracker detections are removed if there is not ground truth data and the class does not
belong to the categories marked as negative for this sequence. Additionally, unmatched tracker
detections for classes which are marked as not exhaustively labeled are removed.
4) No gt detections are removed.
Further, for TrackMAP computation track representations for the given class are accessed from a dictionary
and the tracks from the tracker data are sorted according to the tracker confidence.
"""
cls_id = self.class_name_to_class_id[cls]
is_not_exhaustively_labeled = cls_id in raw_data['not_exhaustively_labeled_cls']
is_neg_category = cls_id in raw_data['neg_cat_ids']
data_keys = ['gt_ids', 'tracker_ids', 'gt_dets', 'tracker_dets', 'tracker_confidences', 'similarity_scores']
data = {key: [None] * raw_data['num_timesteps'] for key in data_keys}
unique_gt_ids = []
unique_tracker_ids = []
num_gt_dets = 0
num_tracker_dets = 0
for t in range(raw_data['num_timesteps']):
# Only extract relevant dets for this class for preproc and eval (cls)
gt_class_mask = np.atleast_1d(raw_data['gt_classes'][t] == cls_id)
gt_class_mask = gt_class_mask.astype(np.bool)
gt_ids = raw_data['gt_ids'][t][gt_class_mask]
gt_dets = raw_data['gt_dets'][t][gt_class_mask]
tracker_class_mask = np.atleast_1d(raw_data['tracker_classes'][t] == cls_id)
tracker_class_mask = tracker_class_mask.astype(np.bool)
tracker_ids = raw_data['tracker_ids'][t][tracker_class_mask]
tracker_dets = raw_data['tracker_dets'][t][tracker_class_mask]
tracker_confidences = raw_data['tracker_confidences'][t][tracker_class_mask]
similarity_scores = raw_data['similarity_scores'][t][gt_class_mask, :][:, tracker_class_mask]
# Match tracker and gt dets (with hungarian algorithm).
unmatched_indices = np.arange(tracker_ids.shape[0])
if gt_ids.shape[0] > 0 and tracker_ids.shape[0] > 0:
matching_scores = similarity_scores.copy()
matching_scores[matching_scores < 0.5 - np.finfo('float').eps] = 0
match_rows, match_cols = linear_sum_assignment(-matching_scores)
actually_matched_mask = matching_scores[match_rows, match_cols] > 0 + np.finfo('float').eps
match_cols = match_cols[actually_matched_mask]
unmatched_indices = np.delete(unmatched_indices, match_cols, axis=0)
if gt_ids.shape[0] == 0 and not is_neg_category:
to_remove_tracker = unmatched_indices
elif is_not_exhaustively_labeled:
to_remove_tracker = unmatched_indices
else:
to_remove_tracker = np.array([], dtype=np.int)
# remove all unwanted unmatched tracker detections
data['tracker_ids'][t] = np.delete(tracker_ids, to_remove_tracker, axis=0)
data['tracker_dets'][t] = np.delete(tracker_dets, to_remove_tracker, axis=0)
data['tracker_confidences'][t] = np.delete(tracker_confidences, to_remove_tracker, axis=0)
similarity_scores = np.delete(similarity_scores, to_remove_tracker, axis=1)
data['gt_ids'][t] = gt_ids
data['gt_dets'][t] = gt_dets
data['similarity_scores'][t] = similarity_scores
unique_gt_ids += list(np.unique(data['gt_ids'][t]))
unique_tracker_ids += list(np.unique(data['tracker_ids'][t]))
num_tracker_dets += len(data['tracker_ids'][t])
num_gt_dets += len(data['gt_ids'][t])
# Re-label IDs such that there are no empty IDs
if len(unique_gt_ids) > 0:
unique_gt_ids = np.unique(unique_gt_ids)
gt_id_map = np.nan * np.ones((np.max(unique_gt_ids) + 1))
gt_id_map[unique_gt_ids] = np.arange(len(unique_gt_ids))
for t in range(raw_data['num_timesteps']):
if len(data['gt_ids'][t]) > 0:
data['gt_ids'][t] = gt_id_map[data['gt_ids'][t]].astype(np.int)
if len(unique_tracker_ids) > 0:
unique_tracker_ids = np.unique(unique_tracker_ids)
tracker_id_map = np.nan * np.ones((np.max(unique_tracker_ids) + 1))
tracker_id_map[unique_tracker_ids] = np.arange(len(unique_tracker_ids))
for t in range(raw_data['num_timesteps']):
if len(data['tracker_ids'][t]) > 0:
data['tracker_ids'][t] = tracker_id_map[data['tracker_ids'][t]].astype(np.int)
# Record overview statistics.
data['num_tracker_dets'] = num_tracker_dets
data['num_gt_dets'] = num_gt_dets
data['num_tracker_ids'] = len(unique_tracker_ids)
data['num_gt_ids'] = len(unique_gt_ids)
data['num_timesteps'] = raw_data['num_timesteps']
data['seq'] = raw_data['seq']
# get track representations
data['gt_tracks'] = raw_data['classes_to_gt_tracks'][cls_id]
data['gt_track_ids'] = raw_data['classes_to_gt_track_ids'][cls_id]
data['gt_track_lengths'] = raw_data['classes_to_gt_track_lengths'][cls_id]
data['gt_track_areas'] = raw_data['classes_to_gt_track_areas'][cls_id]
data['dt_tracks'] = raw_data['classes_to_dt_tracks'][cls_id]
data['dt_track_ids'] = raw_data['classes_to_dt_track_ids'][cls_id]
data['dt_track_lengths'] = raw_data['classes_to_dt_track_lengths'][cls_id]
data['dt_track_areas'] = raw_data['classes_to_dt_track_areas'][cls_id]
data['dt_track_scores'] = raw_data['classes_to_dt_track_scores'][cls_id]
data['not_exhaustively_labeled'] = is_not_exhaustively_labeled
data['iou_type'] = 'bbox'
# sort tracker data tracks by tracker confidence scores
if data['dt_tracks']:
idx = np.argsort([-score for score in data['dt_track_scores']], kind="mergesort")
data['dt_track_scores'] = [data['dt_track_scores'][i] for i in idx]
data['dt_tracks'] = [data['dt_tracks'][i] for i in idx]
data['dt_track_ids'] = [data['dt_track_ids'][i] for i in idx]
data['dt_track_lengths'] = [data['dt_track_lengths'][i] for i in idx]
data['dt_track_areas'] = [data['dt_track_areas'][i] for i in idx]
# Ensure that ids are unique per timestep.
self._check_unique_ids(data)
return data
def _calculate_similarities(self, gt_dets_t, tracker_dets_t):
similarity_scores = self._calculate_box_ious(gt_dets_t, tracker_dets_t)
return similarity_scores
def _merge_categories(self, annotations):
"""
Merges categories with a merged tag. Adapted from https://github.com/TAO-Dataset
:param annotations: the annotations in which the classes should be merged
:return: None
"""
merge_map = {}
for category in self.gt_data['categories']:
if 'merged' in category:
for to_merge in category['merged']:
merge_map[to_merge['id']] = category['id']
for ann in annotations:
ann['category_id'] = merge_map.get(ann['category_id'], ann['category_id'])
def _compute_vid_mappings(self, annotations):
"""
Computes mappings from Videos to corresponding tracks and images.
:param annotations: the annotations for which the mapping should be generated
:return: the video-to-track-mapping, the video-to-image-mapping
"""
vids_to_tracks = {}
vids_to_imgs = {}
vid_ids = [vid['id'] for vid in self.gt_data['videos']]
# compute an mapping from image IDs to images
images = {}
for image in self.gt_data['images']:
images[image['id']] = image
for ann in annotations:
ann["area"] = ann["bbox"][2] * ann["bbox"][3]
vid = ann["video_id"]
if ann["video_id"] not in vids_to_tracks.keys():
vids_to_tracks[ann["video_id"]] = list()
if ann["video_id"] not in vids_to_imgs.keys():
vids_to_imgs[ann["video_id"]] = list()
# Fill in vids_to_tracks
tid = ann["track_id"]
exist_tids = [track["id"] for track in vids_to_tracks[vid]]
try:
index1 = exist_tids.index(tid)
except ValueError:
index1 = -1
if tid not in exist_tids:
curr_track = {"id": tid, "category_id": ann['category_id'],
"video_id": vid, "annotations": [ann]}
vids_to_tracks[vid].append(curr_track)
else:
vids_to_tracks[vid][index1]["annotations"].append(ann)
# Fill in vids_to_imgs
img_id = ann['image_id']
exist_img_ids = [img["id"] for img in vids_to_imgs[vid]]
try:
index2 = exist_img_ids.index(img_id)
except ValueError:
index2 = -1
if index2 == -1:
curr_img = {"id": img_id, "annotations": [ann]}
vids_to_imgs[vid].append(curr_img)
else:
vids_to_imgs[vid][index2]["annotations"].append(ann)
# sort annotations by frame index and compute track area
for vid, tracks in vids_to_tracks.items():
for track in tracks:
track["annotations"] = sorted(
track['annotations'],
key=lambda x: images[x['image_id']]['frame_index'])
# Computer average area
track["area"] = (sum(x['area'] for x in track['annotations']) / len(track['annotations']))
# Ensure all videos are present
for vid_id in vid_ids:
if vid_id not in vids_to_tracks.keys():
vids_to_tracks[vid_id] = []
if vid_id not in vids_to_imgs.keys():
vids_to_imgs[vid_id] = []
return vids_to_tracks, vids_to_imgs
def _compute_image_to_timestep_mappings(self):
"""
Computes a mapping from images to the corresponding timestep in the sequence.
:return: the image-to-timestep-mapping
"""
images = {}
for image in self.gt_data['images']:
images[image['id']] = image
seq_to_imgs_to_timestep = {vid['id']: dict() for vid in self.gt_data['videos']}
for vid in seq_to_imgs_to_timestep:
curr_imgs = [img['id'] for img in self.videos_to_gt_images[vid]]
curr_imgs = sorted(curr_imgs, key=lambda x: images[x]['frame_index'])
seq_to_imgs_to_timestep[vid] = {curr_imgs[i]: i for i in range(len(curr_imgs))}
return seq_to_imgs_to_timestep
def _limit_dets_per_image(self, annotations):
"""
Limits the number of detections for each image to config['MAX_DETECTIONS']. Adapted from
https://github.com/TAO-Dataset/
:param annotations: the annotations in which the detections should be limited
:return: the annotations with limited detections
"""
max_dets = self.config['MAX_DETECTIONS']
img_ann = defaultdict(list)
for ann in annotations:
img_ann[ann["image_id"]].append(ann)
for img_id, _anns in img_ann.items():
if len(_anns) <= max_dets:
continue
_anns = sorted(_anns, key=lambda x: x["score"], reverse=True)
img_ann[img_id] = _anns[:max_dets]
return [ann for anns in img_ann.values() for ann in anns]
def _fill_video_ids_inplace(self, annotations):
"""
Fills in missing video IDs inplace. Adapted from https://github.com/TAO-Dataset/
:param annotations: the annotations for which the videos IDs should be filled inplace
:return: None
"""
missing_video_id = [x for x in annotations if 'video_id' not in x]
if missing_video_id:
image_id_to_video_id = {
x['id']: x['video_id'] for x in self.gt_data['images']
}
for x in missing_video_id:
x['video_id'] = image_id_to_video_id[x['image_id']]
@staticmethod
def _make_track_ids_unique(annotations):
"""
Makes the track IDs unqiue over the whole annotation set. Adapted from https://github.com/TAO-Dataset/
:param annotations: the annotation set
:return: the number of updated IDs
"""
track_id_videos = {}
track_ids_to_update = set()
max_track_id = 0
for ann in annotations:
t = ann['track_id']
if t not in track_id_videos:
track_id_videos[t] = ann['video_id']
if ann['video_id'] != track_id_videos[t]:
# Track id is assigned to multiple videos
track_ids_to_update.add(t)
max_track_id = max(max_track_id, t)
if track_ids_to_update:
print('true')
next_id = itertools.count(max_track_id + 1)
new_track_ids = defaultdict(lambda: next(next_id))
for ann in annotations:
t = ann['track_id']
v = ann['video_id']
if t in track_ids_to_update:
ann['track_id'] = new_track_ids[t, v]
return len(track_ids_to_update)
def _split_known_unknown_distractor(self):
all_ids = set([i for i in range(1, 2000)]) # 2000 is larger than the max category id in TAO-OW.
# `knowns` includes 78 TAO_category_ids that corresponds to 78 COCO classes.
# (The other 2 COCO classes do not have corresponding classes in TAO).
self.knowns = {4, 13, 1038, 544, 1057, 34, 35, 36, 41, 45, 58, 60, 579, 1091, 1097, 1099, 78, 79, 81, 91, 1115,
1117, 95, 1122, 99, 1132, 621, 1135, 625, 118, 1144, 126, 642, 1155, 133, 1162, 139, 154, 174, 185,
699, 1215, 714, 717, 1229, 211, 729, 221, 229, 747, 235, 237, 779, 276, 805, 299, 829, 852, 347,
371, 382, 896, 392, 926, 937, 428, 429, 961, 452, 979, 980, 982, 475, 480, 993, 1001, 502, 1018}
# `distractors` is defined as in the paper "Opening up Open-World Tracking"
self.distractors = {20, 63, 108, 180, 188, 204, 212, 247, 303, 403, 407, 415, 490, 504, 507, 513, 529, 567,
569, 588, 672, 691, 702, 708, 711, 720, 736, 737, 798, 813, 815, 827, 831, 851, 877, 883,
912, 971, 976, 1130, 1133, 1134, 1169, 1184, 1220}
self.unknowns = all_ids.difference(self.knowns.union(self.distractors))
def _filter_gt_data(self, raw_gt_data):
"""
Filter out irrelevant data in the raw_gt_data
Args:
raw_gt_data: directly loaded from json.
Returns:
filtered gt_data
"""
valid_cat_ids = list()
if self.subset == "known":
valid_cat_ids = self.knowns
elif self.subset == "distractor":
valid_cat_ids = self.distractors
elif self.subset == "unknown":
valid_cat_ids = self.unknowns
# elif self.subset == "test_only_unknowns":
# valid_cat_ids = test_only_unknowns
else:
raise Exception("The parameter `SUBSET` is incorrect")
filtered = dict()
filtered["videos"] = raw_gt_data["videos"]
# filtered["videos"] = list()
unwanted_vid = set()
# for video in raw_gt_data["videos"]:
# datasrc = video["name"].split('/')[1]
# if datasrc in data_srcs:
# filtered["videos"].append(video)
# else:
# unwanted_vid.add(video["id"])
filtered["annotations"] = list()
for ann in raw_gt_data["annotations"]:
if (ann["video_id"] not in unwanted_vid) and (ann["category_id"] in valid_cat_ids):
filtered["annotations"].append(ann)
filtered["tracks"] = list()
for track in raw_gt_data["tracks"]:
if (track["video_id"] not in unwanted_vid) and (track["category_id"] in valid_cat_ids):
filtered["tracks"].append(track)
filtered["images"] = list()
for image in raw_gt_data["images"]:
if image["video_id"] not in unwanted_vid:
filtered["images"].append(image)
filtered["categories"] = list()
for cat in raw_gt_data["categories"]:
if cat["id"] in valid_cat_ids:
filtered["categories"].append(cat)
filtered["info"] = raw_gt_data["info"]
filtered["licenses"] = raw_gt_data["licenses"]
return filtered
|