Spaces:
Build error
Build error
File size: 10,504 Bytes
47af768 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import os
import numpy as np
from scipy.optimize import linear_sum_assignment
from ._base_metric import _BaseMetric
from .. import _timing
class HOTA(_BaseMetric):
"""Class which implements the HOTA metrics.
See: https://link.springer.com/article/10.1007/s11263-020-01375-2
"""
def __init__(self, config=None):
super().__init__()
self.plottable = True
self.array_labels = np.arange(0.05, 0.99, 0.05)
self.integer_array_fields = ['HOTA_TP', 'HOTA_FN', 'HOTA_FP']
self.float_array_fields = ['HOTA', 'DetA', 'AssA', 'DetRe', 'DetPr', 'AssRe', 'AssPr', 'LocA', 'OWTA']
self.float_fields = ['HOTA(0)', 'LocA(0)', 'HOTALocA(0)']
self.fields = self.float_array_fields + self.integer_array_fields + self.float_fields
self.summary_fields = self.float_array_fields + self.float_fields
@_timing.time
def eval_sequence(self, data):
"""Calculates the HOTA metrics for one sequence"""
# Initialise results
res = {}
for field in self.float_array_fields + self.integer_array_fields:
res[field] = np.zeros((len(self.array_labels)), dtype=np.float)
for field in self.float_fields:
res[field] = 0
# Return result quickly if tracker or gt sequence is empty
if data['num_tracker_dets'] == 0:
res['HOTA_FN'] = data['num_gt_dets'] * np.ones((len(self.array_labels)), dtype=np.float)
res['LocA'] = np.ones((len(self.array_labels)), dtype=np.float)
res['LocA(0)'] = 1.0
return res
if data['num_gt_dets'] == 0:
res['HOTA_FP'] = data['num_tracker_dets'] * np.ones((len(self.array_labels)), dtype=np.float)
res['LocA'] = np.ones((len(self.array_labels)), dtype=np.float)
res['LocA(0)'] = 1.0
return res
# Variables counting global association
potential_matches_count = np.zeros((data['num_gt_ids'], data['num_tracker_ids']))
gt_id_count = np.zeros((data['num_gt_ids'], 1))
tracker_id_count = np.zeros((1, data['num_tracker_ids']))
# First loop through each timestep and accumulate global track information.
for t, (gt_ids_t, tracker_ids_t) in enumerate(zip(data['gt_ids'], data['tracker_ids'])):
# Count the potential matches between ids in each timestep
# These are normalised, weighted by the match similarity.
similarity = data['similarity_scores'][t]
sim_iou_denom = similarity.sum(0)[np.newaxis, :] + similarity.sum(1)[:, np.newaxis] - similarity
sim_iou = np.zeros_like(similarity)
sim_iou_mask = sim_iou_denom > 0 + np.finfo('float').eps
sim_iou[sim_iou_mask] = similarity[sim_iou_mask] / sim_iou_denom[sim_iou_mask]
potential_matches_count[gt_ids_t[:, np.newaxis], tracker_ids_t[np.newaxis, :]] += sim_iou
# Calculate the total number of dets for each gt_id and tracker_id.
gt_id_count[gt_ids_t] += 1
tracker_id_count[0, tracker_ids_t] += 1
# Calculate overall jaccard alignment score (before unique matching) between IDs
global_alignment_score = potential_matches_count / (gt_id_count + tracker_id_count - potential_matches_count)
matches_counts = [np.zeros_like(potential_matches_count) for _ in self.array_labels]
# Calculate scores for each timestep
for t, (gt_ids_t, tracker_ids_t) in enumerate(zip(data['gt_ids'], data['tracker_ids'])):
# Deal with the case that there are no gt_det/tracker_det in a timestep.
if len(gt_ids_t) == 0:
for a, alpha in enumerate(self.array_labels):
res['HOTA_FP'][a] += len(tracker_ids_t)
continue
if len(tracker_ids_t) == 0:
for a, alpha in enumerate(self.array_labels):
res['HOTA_FN'][a] += len(gt_ids_t)
continue
# Get matching scores between pairs of dets for optimizing HOTA
similarity = data['similarity_scores'][t]
score_mat = global_alignment_score[gt_ids_t[:, np.newaxis], tracker_ids_t[np.newaxis, :]] * similarity
# Hungarian algorithm to find best matches
match_rows, match_cols = linear_sum_assignment(-score_mat)
# Calculate and accumulate basic statistics
for a, alpha in enumerate(self.array_labels):
actually_matched_mask = similarity[match_rows, match_cols] >= alpha - np.finfo('float').eps
alpha_match_rows = match_rows[actually_matched_mask]
alpha_match_cols = match_cols[actually_matched_mask]
num_matches = len(alpha_match_rows)
res['HOTA_TP'][a] += num_matches
res['HOTA_FN'][a] += len(gt_ids_t) - num_matches
res['HOTA_FP'][a] += len(tracker_ids_t) - num_matches
if num_matches > 0:
res['LocA'][a] += sum(similarity[alpha_match_rows, alpha_match_cols])
matches_counts[a][gt_ids_t[alpha_match_rows], tracker_ids_t[alpha_match_cols]] += 1
# Calculate association scores (AssA, AssRe, AssPr) for the alpha value.
# First calculate scores per gt_id/tracker_id combo and then average over the number of detections.
for a, alpha in enumerate(self.array_labels):
matches_count = matches_counts[a]
ass_a = matches_count / np.maximum(1, gt_id_count + tracker_id_count - matches_count)
res['AssA'][a] = np.sum(matches_count * ass_a) / np.maximum(1, res['HOTA_TP'][a])
ass_re = matches_count / np.maximum(1, gt_id_count)
res['AssRe'][a] = np.sum(matches_count * ass_re) / np.maximum(1, res['HOTA_TP'][a])
ass_pr = matches_count / np.maximum(1, tracker_id_count)
res['AssPr'][a] = np.sum(matches_count * ass_pr) / np.maximum(1, res['HOTA_TP'][a])
# Calculate final scores
res['LocA'] = np.maximum(1e-10, res['LocA']) / np.maximum(1e-10, res['HOTA_TP'])
res = self._compute_final_fields(res)
return res
def combine_sequences(self, all_res):
"""Combines metrics across all sequences"""
res = {}
for field in self.integer_array_fields:
res[field] = self._combine_sum(all_res, field)
for field in ['AssRe', 'AssPr', 'AssA']:
res[field] = self._combine_weighted_av(all_res, field, res, weight_field='HOTA_TP')
loca_weighted_sum = sum([all_res[k]['LocA'] * all_res[k]['HOTA_TP'] for k in all_res.keys()])
res['LocA'] = np.maximum(1e-10, loca_weighted_sum) / np.maximum(1e-10, res['HOTA_TP'])
res = self._compute_final_fields(res)
return res
def combine_classes_class_averaged(self, all_res, ignore_empty_classes=False):
"""Combines metrics across all classes by averaging over the class values.
If 'ignore_empty_classes' is True, then it only sums over classes with at least one gt or predicted detection.
"""
res = {}
for field in self.integer_array_fields:
if ignore_empty_classes:
res[field] = self._combine_sum(
{k: v for k, v in all_res.items()
if (v['HOTA_TP'] + v['HOTA_FN'] + v['HOTA_FP'] > 0 + np.finfo('float').eps).any()}, field)
else:
res[field] = self._combine_sum({k: v for k, v in all_res.items()}, field)
for field in self.float_fields + self.float_array_fields:
if ignore_empty_classes:
res[field] = np.mean([v[field] for v in all_res.values() if
(v['HOTA_TP'] + v['HOTA_FN'] + v['HOTA_FP'] > 0 + np.finfo('float').eps).any()],
axis=0)
else:
res[field] = np.mean([v[field] for v in all_res.values()], axis=0)
return res
def combine_classes_det_averaged(self, all_res):
"""Combines metrics across all classes by averaging over the detection values"""
res = {}
for field in self.integer_array_fields:
res[field] = self._combine_sum(all_res, field)
for field in ['AssRe', 'AssPr', 'AssA']:
res[field] = self._combine_weighted_av(all_res, field, res, weight_field='HOTA_TP')
loca_weighted_sum = sum([all_res[k]['LocA'] * all_res[k]['HOTA_TP'] for k in all_res.keys()])
res['LocA'] = np.maximum(1e-10, loca_weighted_sum) / np.maximum(1e-10, res['HOTA_TP'])
res = self._compute_final_fields(res)
return res
@staticmethod
def _compute_final_fields(res):
"""Calculate sub-metric ('field') values which only depend on other sub-metric values.
This function is used both for both per-sequence calculation, and in combining values across sequences.
"""
res['DetRe'] = res['HOTA_TP'] / np.maximum(1, res['HOTA_TP'] + res['HOTA_FN'])
res['DetPr'] = res['HOTA_TP'] / np.maximum(1, res['HOTA_TP'] + res['HOTA_FP'])
res['DetA'] = res['HOTA_TP'] / np.maximum(1, res['HOTA_TP'] + res['HOTA_FN'] + res['HOTA_FP'])
res['HOTA'] = np.sqrt(res['DetA'] * res['AssA'])
res['OWTA'] = np.sqrt(res['DetRe'] * res['AssA'])
res['HOTA(0)'] = res['HOTA'][0]
res['LocA(0)'] = res['LocA'][0]
res['HOTALocA(0)'] = res['HOTA(0)']*res['LocA(0)']
return res
def plot_single_tracker_results(self, table_res, tracker, cls, output_folder):
"""Create plot of results"""
# Only loaded when run to reduce minimum requirements
from matplotlib import pyplot as plt
res = table_res['COMBINED_SEQ']
styles_to_plot = ['r', 'b', 'g', 'b--', 'b:', 'g--', 'g:', 'm']
for name, style in zip(self.float_array_fields, styles_to_plot):
plt.plot(self.array_labels, res[name], style)
plt.xlabel('alpha')
plt.ylabel('score')
plt.title(tracker + ' - ' + cls)
plt.axis([0, 1, 0, 1])
legend = []
for name in self.float_array_fields:
legend += [name + ' (' + str(np.round(np.mean(res[name]), 2)) + ')']
plt.legend(legend, loc='lower left')
out_file = os.path.join(output_folder, cls + '_plot.pdf')
os.makedirs(os.path.dirname(out_file), exist_ok=True)
plt.savefig(out_file)
plt.savefig(out_file.replace('.pdf', '.png'))
plt.clf()
|