Spaces:
Build error
Build error
File size: 37,794 Bytes
f07f089 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 |
from __future__ import absolute_import
import copy
from . import (ExprNodes, PyrexTypes, MemoryView,
ParseTreeTransforms, StringEncoding, Errors)
from .ExprNodes import CloneNode, ProxyNode, TupleNode
from .Nodes import FuncDefNode, CFuncDefNode, StatListNode, DefNode
from ..Utils import OrderedSet
class FusedCFuncDefNode(StatListNode):
"""
This node replaces a function with fused arguments. It deep-copies the
function for every permutation of fused types, and allocates a new local
scope for it. It keeps track of the original function in self.node, and
the entry of the original function in the symbol table is given the
'fused_cfunction' attribute which points back to us.
Then when a function lookup occurs (to e.g. call it), the call can be
dispatched to the right function.
node FuncDefNode the original function
nodes [FuncDefNode] list of copies of node with different specific types
py_func DefNode the fused python function subscriptable from
Python space
__signatures__ A DictNode mapping signature specialization strings
to PyCFunction nodes
resulting_fused_function PyCFunction for the fused DefNode that delegates
to specializations
fused_func_assignment Assignment of the fused function to the function name
defaults_tuple TupleNode of defaults (letting PyCFunctionNode build
defaults would result in many different tuples)
specialized_pycfuncs List of synthesized pycfunction nodes for the
specializations
code_object CodeObjectNode shared by all specializations and the
fused function
fused_compound_types All fused (compound) types (e.g. floating[:])
"""
__signatures__ = None
resulting_fused_function = None
fused_func_assignment = None
defaults_tuple = None
decorators = None
child_attrs = StatListNode.child_attrs + [
'__signatures__', 'resulting_fused_function', 'fused_func_assignment']
def __init__(self, node, env):
super(FusedCFuncDefNode, self).__init__(node.pos)
self.nodes = []
self.node = node
is_def = isinstance(self.node, DefNode)
if is_def:
# self.node.decorators = []
self.copy_def(env)
else:
self.copy_cdef(env)
# Perform some sanity checks. If anything fails, it's a bug
for n in self.nodes:
assert not n.entry.type.is_fused
assert not n.local_scope.return_type.is_fused
if node.return_type.is_fused:
assert not n.return_type.is_fused
if not is_def and n.cfunc_declarator.optional_arg_count:
assert n.type.op_arg_struct
node.entry.fused_cfunction = self
# Copy the nodes as AnalyseDeclarationsTransform will prepend
# self.py_func to self.stats, as we only want specialized
# CFuncDefNodes in self.nodes
self.stats = self.nodes[:]
def copy_def(self, env):
"""
Create a copy of the original def or lambda function for specialized
versions.
"""
fused_compound_types = PyrexTypes.unique(
[arg.type for arg in self.node.args if arg.type.is_fused])
fused_types = self._get_fused_base_types(fused_compound_types)
permutations = PyrexTypes.get_all_specialized_permutations(fused_types)
self.fused_compound_types = fused_compound_types
if self.node.entry in env.pyfunc_entries:
env.pyfunc_entries.remove(self.node.entry)
for cname, fused_to_specific in permutations:
copied_node = copy.deepcopy(self.node)
# keep signature object identity for special casing in DefNode.analyse_declarations()
copied_node.entry.signature = self.node.entry.signature
self._specialize_function_args(copied_node.args, fused_to_specific)
copied_node.return_type = self.node.return_type.specialize(
fused_to_specific)
copied_node.analyse_declarations(env)
# copied_node.is_staticmethod = self.node.is_staticmethod
# copied_node.is_classmethod = self.node.is_classmethod
self.create_new_local_scope(copied_node, env, fused_to_specific)
self.specialize_copied_def(copied_node, cname, self.node.entry,
fused_to_specific, fused_compound_types)
PyrexTypes.specialize_entry(copied_node.entry, cname)
copied_node.entry.used = True
env.entries[copied_node.entry.name] = copied_node.entry
if not self.replace_fused_typechecks(copied_node):
break
self.orig_py_func = self.node
self.py_func = self.make_fused_cpdef(self.node, env, is_def=True)
def copy_cdef(self, env):
"""
Create a copy of the original c(p)def function for all specialized
versions.
"""
permutations = self.node.type.get_all_specialized_permutations()
# print 'Node %s has %d specializations:' % (self.node.entry.name,
# len(permutations))
# import pprint; pprint.pprint([d for cname, d in permutations])
# Prevent copying of the python function
self.orig_py_func = orig_py_func = self.node.py_func
self.node.py_func = None
if orig_py_func:
env.pyfunc_entries.remove(orig_py_func.entry)
fused_types = self.node.type.get_fused_types()
self.fused_compound_types = fused_types
new_cfunc_entries = []
for cname, fused_to_specific in permutations:
copied_node = copy.deepcopy(self.node)
# Make the types in our CFuncType specific.
type = copied_node.type.specialize(fused_to_specific)
entry = copied_node.entry
type.specialize_entry(entry, cname)
# Reuse existing Entries (e.g. from .pxd files).
for i, orig_entry in enumerate(env.cfunc_entries):
if entry.cname == orig_entry.cname and type.same_as_resolved_type(orig_entry.type):
copied_node.entry = env.cfunc_entries[i]
if not copied_node.entry.func_cname:
copied_node.entry.func_cname = entry.func_cname
entry = copied_node.entry
type = entry.type
break
else:
new_cfunc_entries.append(entry)
copied_node.type = type
entry.type, type.entry = type, entry
entry.used = (entry.used or
self.node.entry.defined_in_pxd or
env.is_c_class_scope or
entry.is_cmethod)
if self.node.cfunc_declarator.optional_arg_count:
self.node.cfunc_declarator.declare_optional_arg_struct(
type, env, fused_cname=cname)
copied_node.return_type = type.return_type
self.create_new_local_scope(copied_node, env, fused_to_specific)
# Make the argument types in the CFuncDeclarator specific
self._specialize_function_args(copied_node.cfunc_declarator.args,
fused_to_specific)
# If a cpdef, declare all specialized cpdefs (this
# also calls analyse_declarations)
copied_node.declare_cpdef_wrapper(env)
if copied_node.py_func:
env.pyfunc_entries.remove(copied_node.py_func.entry)
self.specialize_copied_def(
copied_node.py_func, cname, self.node.entry.as_variable,
fused_to_specific, fused_types)
if not self.replace_fused_typechecks(copied_node):
break
# replace old entry with new entries
try:
cindex = env.cfunc_entries.index(self.node.entry)
except ValueError:
env.cfunc_entries.extend(new_cfunc_entries)
else:
env.cfunc_entries[cindex:cindex+1] = new_cfunc_entries
if orig_py_func:
self.py_func = self.make_fused_cpdef(orig_py_func, env,
is_def=False)
else:
self.py_func = orig_py_func
def _get_fused_base_types(self, fused_compound_types):
"""
Get a list of unique basic fused types, from a list of
(possibly) compound fused types.
"""
base_types = []
seen = set()
for fused_type in fused_compound_types:
fused_type.get_fused_types(result=base_types, seen=seen)
return base_types
def _specialize_function_args(self, args, fused_to_specific):
for arg in args:
if arg.type.is_fused:
arg.type = arg.type.specialize(fused_to_specific)
if arg.type.is_memoryviewslice:
arg.type.validate_memslice_dtype(arg.pos)
def create_new_local_scope(self, node, env, f2s):
"""
Create a new local scope for the copied node and append it to
self.nodes. A new local scope is needed because the arguments with the
fused types are already in the local scope, and we need the specialized
entries created after analyse_declarations on each specialized version
of the (CFunc)DefNode.
f2s is a dict mapping each fused type to its specialized version
"""
node.create_local_scope(env)
node.local_scope.fused_to_specific = f2s
# This is copied from the original function, set it to false to
# stop recursion
node.has_fused_arguments = False
self.nodes.append(node)
def specialize_copied_def(self, node, cname, py_entry, f2s, fused_compound_types):
"""Specialize the copy of a DefNode given the copied node,
the specialization cname and the original DefNode entry"""
fused_types = self._get_fused_base_types(fused_compound_types)
type_strings = [
PyrexTypes.specialization_signature_string(fused_type, f2s)
for fused_type in fused_types
]
node.specialized_signature_string = '|'.join(type_strings)
node.entry.pymethdef_cname = PyrexTypes.get_fused_cname(
cname, node.entry.pymethdef_cname)
node.entry.doc = py_entry.doc
node.entry.doc_cname = py_entry.doc_cname
def replace_fused_typechecks(self, copied_node):
"""
Branch-prune fused type checks like
if fused_t is int:
...
Returns whether an error was issued and whether we should stop in
in order to prevent a flood of errors.
"""
num_errors = Errors.num_errors
transform = ParseTreeTransforms.ReplaceFusedTypeChecks(
copied_node.local_scope)
transform(copied_node)
if Errors.num_errors > num_errors:
return False
return True
def _fused_instance_checks(self, normal_types, pyx_code, env):
"""
Generate Cython code for instance checks, matching an object to
specialized types.
"""
for specialized_type in normal_types:
# all_numeric = all_numeric and specialized_type.is_numeric
pyx_code.context.update(
py_type_name=specialized_type.py_type_name(),
specialized_type_name=specialized_type.specialization_string,
)
pyx_code.put_chunk(
u"""
if isinstance(arg, {{py_type_name}}):
dest_sig[{{dest_sig_idx}}] = '{{specialized_type_name}}'; break
""")
def _dtype_name(self, dtype):
if dtype.is_typedef:
return '___pyx_%s' % dtype
return str(dtype).replace(' ', '_')
def _dtype_type(self, dtype):
if dtype.is_typedef:
return self._dtype_name(dtype)
return str(dtype)
def _sizeof_dtype(self, dtype):
if dtype.is_pyobject:
return 'sizeof(void *)'
else:
return "sizeof(%s)" % self._dtype_type(dtype)
def _buffer_check_numpy_dtype_setup_cases(self, pyx_code):
"Setup some common cases to match dtypes against specializations"
if pyx_code.indenter("if kind in b'iu':"):
pyx_code.putln("pass")
pyx_code.named_insertion_point("dtype_int")
pyx_code.dedent()
if pyx_code.indenter("elif kind == b'f':"):
pyx_code.putln("pass")
pyx_code.named_insertion_point("dtype_float")
pyx_code.dedent()
if pyx_code.indenter("elif kind == b'c':"):
pyx_code.putln("pass")
pyx_code.named_insertion_point("dtype_complex")
pyx_code.dedent()
if pyx_code.indenter("elif kind == b'O':"):
pyx_code.putln("pass")
pyx_code.named_insertion_point("dtype_object")
pyx_code.dedent()
match = "dest_sig[{{dest_sig_idx}}] = '{{specialized_type_name}}'"
no_match = "dest_sig[{{dest_sig_idx}}] = None"
def _buffer_check_numpy_dtype(self, pyx_code, specialized_buffer_types, pythran_types):
"""
Match a numpy dtype object to the individual specializations.
"""
self._buffer_check_numpy_dtype_setup_cases(pyx_code)
for specialized_type in pythran_types+specialized_buffer_types:
final_type = specialized_type
if specialized_type.is_pythran_expr:
specialized_type = specialized_type.org_buffer
dtype = specialized_type.dtype
pyx_code.context.update(
itemsize_match=self._sizeof_dtype(dtype) + " == itemsize",
signed_match="not (%s_is_signed ^ dtype_signed)" % self._dtype_name(dtype),
dtype=dtype,
specialized_type_name=final_type.specialization_string)
dtypes = [
(dtype.is_int, pyx_code.dtype_int),
(dtype.is_float, pyx_code.dtype_float),
(dtype.is_complex, pyx_code.dtype_complex)
]
for dtype_category, codewriter in dtypes:
if dtype_category:
cond = '{{itemsize_match}} and (<Py_ssize_t>arg.ndim) == %d' % (
specialized_type.ndim,)
if dtype.is_int:
cond += ' and {{signed_match}}'
if final_type.is_pythran_expr:
cond += ' and arg_is_pythran_compatible'
if codewriter.indenter("if %s:" % cond):
#codewriter.putln("print 'buffer match found based on numpy dtype'")
codewriter.putln(self.match)
codewriter.putln("break")
codewriter.dedent()
def _buffer_parse_format_string_check(self, pyx_code, decl_code,
specialized_type, env):
"""
For each specialized type, try to coerce the object to a memoryview
slice of that type. This means obtaining a buffer and parsing the
format string.
TODO: separate buffer acquisition from format parsing
"""
dtype = specialized_type.dtype
if specialized_type.is_buffer:
axes = [('direct', 'strided')] * specialized_type.ndim
else:
axes = specialized_type.axes
memslice_type = PyrexTypes.MemoryViewSliceType(dtype, axes)
memslice_type.create_from_py_utility_code(env)
pyx_code.context.update(
coerce_from_py_func=memslice_type.from_py_function,
dtype=dtype)
decl_code.putln(
"{{memviewslice_cname}} {{coerce_from_py_func}}(object, int)")
pyx_code.context.update(
specialized_type_name=specialized_type.specialization_string,
sizeof_dtype=self._sizeof_dtype(dtype))
pyx_code.put_chunk(
u"""
# try {{dtype}}
if itemsize == -1 or itemsize == {{sizeof_dtype}}:
memslice = {{coerce_from_py_func}}(arg, 0)
if memslice.memview:
__PYX_XDEC_MEMVIEW(&memslice, 1)
# print 'found a match for the buffer through format parsing'
%s
break
else:
__pyx_PyErr_Clear()
""" % self.match)
def _buffer_checks(self, buffer_types, pythran_types, pyx_code, decl_code, env):
"""
Generate Cython code to match objects to buffer specializations.
First try to get a numpy dtype object and match it against the individual
specializations. If that fails, try naively to coerce the object
to each specialization, which obtains the buffer each time and tries
to match the format string.
"""
# The first thing to find a match in this loop breaks out of the loop
pyx_code.put_chunk(
u"""
""" + (u"arg_is_pythran_compatible = False" if pythran_types else u"") + u"""
if ndarray is not None:
if isinstance(arg, ndarray):
dtype = arg.dtype
""" + (u"arg_is_pythran_compatible = True" if pythran_types else u"") + u"""
elif __pyx_memoryview_check(arg):
arg_base = arg.base
if isinstance(arg_base, ndarray):
dtype = arg_base.dtype
else:
dtype = None
else:
dtype = None
itemsize = -1
if dtype is not None:
itemsize = dtype.itemsize
kind = ord(dtype.kind)
dtype_signed = kind == 'i'
""")
pyx_code.indent(2)
if pythran_types:
pyx_code.put_chunk(
u"""
# Pythran only supports the endianness of the current compiler
byteorder = dtype.byteorder
if byteorder == "<" and not __Pyx_Is_Little_Endian():
arg_is_pythran_compatible = False
elif byteorder == ">" and __Pyx_Is_Little_Endian():
arg_is_pythran_compatible = False
if arg_is_pythran_compatible:
cur_stride = itemsize
shape = arg.shape
strides = arg.strides
for i in range(arg.ndim-1, -1, -1):
if (<Py_ssize_t>strides[i]) != cur_stride:
arg_is_pythran_compatible = False
break
cur_stride *= <Py_ssize_t> shape[i]
else:
arg_is_pythran_compatible = not (arg.flags.f_contiguous and (<Py_ssize_t>arg.ndim) > 1)
""")
pyx_code.named_insertion_point("numpy_dtype_checks")
self._buffer_check_numpy_dtype(pyx_code, buffer_types, pythran_types)
pyx_code.dedent(2)
for specialized_type in buffer_types:
self._buffer_parse_format_string_check(
pyx_code, decl_code, specialized_type, env)
def _buffer_declarations(self, pyx_code, decl_code, all_buffer_types, pythran_types):
"""
If we have any buffer specializations, write out some variable
declarations and imports.
"""
decl_code.put_chunk(
u"""
ctypedef struct {{memviewslice_cname}}:
void *memview
void __PYX_XDEC_MEMVIEW({{memviewslice_cname}} *, int have_gil)
bint __pyx_memoryview_check(object)
""")
pyx_code.local_variable_declarations.put_chunk(
u"""
cdef {{memviewslice_cname}} memslice
cdef Py_ssize_t itemsize
cdef bint dtype_signed
cdef char kind
itemsize = -1
""")
if pythran_types:
pyx_code.local_variable_declarations.put_chunk(u"""
cdef bint arg_is_pythran_compatible
cdef Py_ssize_t cur_stride
""")
pyx_code.imports.put_chunk(
u"""
cdef type ndarray
ndarray = __Pyx_ImportNumPyArrayTypeIfAvailable()
""")
seen_typedefs = set()
seen_int_dtypes = set()
for buffer_type in all_buffer_types:
dtype = buffer_type.dtype
dtype_name = self._dtype_name(dtype)
if dtype.is_typedef:
if dtype_name not in seen_typedefs:
seen_typedefs.add(dtype_name)
decl_code.putln(
'ctypedef %s %s "%s"' % (dtype.resolve(), dtype_name,
dtype.empty_declaration_code()))
if buffer_type.dtype.is_int:
if str(dtype) not in seen_int_dtypes:
seen_int_dtypes.add(str(dtype))
pyx_code.context.update(dtype_name=dtype_name,
dtype_type=self._dtype_type(dtype))
pyx_code.local_variable_declarations.put_chunk(
u"""
cdef bint {{dtype_name}}_is_signed
{{dtype_name}}_is_signed = not (<{{dtype_type}}> -1 > 0)
""")
def _split_fused_types(self, arg):
"""
Specialize fused types and split into normal types and buffer types.
"""
specialized_types = PyrexTypes.get_specialized_types(arg.type)
# Prefer long over int, etc by sorting (see type classes in PyrexTypes.py)
specialized_types.sort()
seen_py_type_names = set()
normal_types, buffer_types, pythran_types = [], [], []
has_object_fallback = False
for specialized_type in specialized_types:
py_type_name = specialized_type.py_type_name()
if py_type_name:
if py_type_name in seen_py_type_names:
continue
seen_py_type_names.add(py_type_name)
if py_type_name == 'object':
has_object_fallback = True
else:
normal_types.append(specialized_type)
elif specialized_type.is_pythran_expr:
pythran_types.append(specialized_type)
elif specialized_type.is_buffer or specialized_type.is_memoryviewslice:
buffer_types.append(specialized_type)
return normal_types, buffer_types, pythran_types, has_object_fallback
def _unpack_argument(self, pyx_code):
pyx_code.put_chunk(
u"""
# PROCESSING ARGUMENT {{arg_tuple_idx}}
if {{arg_tuple_idx}} < len(<tuple>args):
arg = (<tuple>args)[{{arg_tuple_idx}}]
elif kwargs is not None and '{{arg.name}}' in <dict>kwargs:
arg = (<dict>kwargs)['{{arg.name}}']
else:
{{if arg.default}}
arg = (<tuple>defaults)[{{default_idx}}]
{{else}}
{{if arg_tuple_idx < min_positional_args}}
raise TypeError("Expected at least %d argument%s, got %d" % (
{{min_positional_args}}, {{'"s"' if min_positional_args != 1 else '""'}}, len(<tuple>args)))
{{else}}
raise TypeError("Missing keyword-only argument: '%s'" % "{{arg.default}}")
{{endif}}
{{endif}}
""")
def make_fused_cpdef(self, orig_py_func, env, is_def):
"""
This creates the function that is indexable from Python and does
runtime dispatch based on the argument types. The function gets the
arg tuple and kwargs dict (or None) and the defaults tuple
as arguments from the Binding Fused Function's tp_call.
"""
from . import TreeFragment, Code, UtilityCode
fused_types = self._get_fused_base_types([
arg.type for arg in self.node.args if arg.type.is_fused])
context = {
'memviewslice_cname': MemoryView.memviewslice_cname,
'func_args': self.node.args,
'n_fused': len(fused_types),
'min_positional_args':
self.node.num_required_args - self.node.num_required_kw_args
if is_def else
sum(1 for arg in self.node.args if arg.default is None),
'name': orig_py_func.entry.name,
}
pyx_code = Code.PyxCodeWriter(context=context)
decl_code = Code.PyxCodeWriter(context=context)
decl_code.put_chunk(
u"""
cdef extern from *:
void __pyx_PyErr_Clear "PyErr_Clear" ()
type __Pyx_ImportNumPyArrayTypeIfAvailable()
int __Pyx_Is_Little_Endian()
""")
decl_code.indent()
pyx_code.put_chunk(
u"""
def __pyx_fused_cpdef(signatures, args, kwargs, defaults):
# FIXME: use a typed signature - currently fails badly because
# default arguments inherit the types we specify here!
dest_sig = [None] * {{n_fused}}
if kwargs is not None and not kwargs:
kwargs = None
cdef Py_ssize_t i
# instance check body
""")
pyx_code.indent() # indent following code to function body
pyx_code.named_insertion_point("imports")
pyx_code.named_insertion_point("func_defs")
pyx_code.named_insertion_point("local_variable_declarations")
fused_index = 0
default_idx = 0
all_buffer_types = OrderedSet()
seen_fused_types = set()
for i, arg in enumerate(self.node.args):
if arg.type.is_fused:
arg_fused_types = arg.type.get_fused_types()
if len(arg_fused_types) > 1:
raise NotImplementedError("Determination of more than one fused base "
"type per argument is not implemented.")
fused_type = arg_fused_types[0]
if arg.type.is_fused and fused_type not in seen_fused_types:
seen_fused_types.add(fused_type)
context.update(
arg_tuple_idx=i,
arg=arg,
dest_sig_idx=fused_index,
default_idx=default_idx,
)
normal_types, buffer_types, pythran_types, has_object_fallback = self._split_fused_types(arg)
self._unpack_argument(pyx_code)
# 'unrolled' loop, first match breaks out of it
if pyx_code.indenter("while 1:"):
if normal_types:
self._fused_instance_checks(normal_types, pyx_code, env)
if buffer_types or pythran_types:
env.use_utility_code(Code.UtilityCode.load_cached("IsLittleEndian", "ModuleSetupCode.c"))
self._buffer_checks(buffer_types, pythran_types, pyx_code, decl_code, env)
if has_object_fallback:
pyx_code.context.update(specialized_type_name='object')
pyx_code.putln(self.match)
else:
pyx_code.putln(self.no_match)
pyx_code.putln("break")
pyx_code.dedent()
fused_index += 1
all_buffer_types.update(buffer_types)
all_buffer_types.update(ty.org_buffer for ty in pythran_types)
if arg.default:
default_idx += 1
if all_buffer_types:
self._buffer_declarations(pyx_code, decl_code, all_buffer_types, pythran_types)
env.use_utility_code(Code.UtilityCode.load_cached("Import", "ImportExport.c"))
env.use_utility_code(Code.UtilityCode.load_cached("ImportNumPyArray", "ImportExport.c"))
pyx_code.put_chunk(
u"""
candidates = []
for sig in <dict>signatures:
match_found = False
src_sig = sig.strip('()').split('|')
for i in range(len(dest_sig)):
dst_type = dest_sig[i]
if dst_type is not None:
if src_sig[i] == dst_type:
match_found = True
else:
match_found = False
break
if match_found:
candidates.append(sig)
if not candidates:
raise TypeError("No matching signature found")
elif len(candidates) > 1:
raise TypeError("Function call with ambiguous argument types")
else:
return (<dict>signatures)[candidates[0]]
""")
fragment_code = pyx_code.getvalue()
# print decl_code.getvalue()
# print fragment_code
from .Optimize import ConstantFolding
fragment = TreeFragment.TreeFragment(
fragment_code, level='module', pipeline=[ConstantFolding()])
ast = TreeFragment.SetPosTransform(self.node.pos)(fragment.root)
UtilityCode.declare_declarations_in_scope(
decl_code.getvalue(), env.global_scope())
ast.scope = env
# FIXME: for static methods of cdef classes, we build the wrong signature here: first arg becomes 'self'
ast.analyse_declarations(env)
py_func = ast.stats[-1] # the DefNode
self.fragment_scope = ast.scope
if isinstance(self.node, DefNode):
py_func.specialized_cpdefs = self.nodes[:]
else:
py_func.specialized_cpdefs = [n.py_func for n in self.nodes]
return py_func
def update_fused_defnode_entry(self, env):
copy_attributes = (
'name', 'pos', 'cname', 'func_cname', 'pyfunc_cname',
'pymethdef_cname', 'doc', 'doc_cname', 'is_member',
'scope'
)
entry = self.py_func.entry
for attr in copy_attributes:
setattr(entry, attr,
getattr(self.orig_py_func.entry, attr))
self.py_func.name = self.orig_py_func.name
self.py_func.doc = self.orig_py_func.doc
env.entries.pop('__pyx_fused_cpdef', None)
if isinstance(self.node, DefNode):
env.entries[entry.name] = entry
else:
env.entries[entry.name].as_variable = entry
env.pyfunc_entries.append(entry)
self.py_func.entry.fused_cfunction = self
for node in self.nodes:
if isinstance(self.node, DefNode):
node.fused_py_func = self.py_func
else:
node.py_func.fused_py_func = self.py_func
node.entry.as_variable = entry
self.synthesize_defnodes()
self.stats.append(self.__signatures__)
def analyse_expressions(self, env):
"""
Analyse the expressions. Take care to only evaluate default arguments
once and clone the result for all specializations
"""
for fused_compound_type in self.fused_compound_types:
for fused_type in fused_compound_type.get_fused_types():
for specialization_type in fused_type.types:
if specialization_type.is_complex:
specialization_type.create_declaration_utility_code(env)
if self.py_func:
self.__signatures__ = self.__signatures__.analyse_expressions(env)
self.py_func = self.py_func.analyse_expressions(env)
self.resulting_fused_function = self.resulting_fused_function.analyse_expressions(env)
self.fused_func_assignment = self.fused_func_assignment.analyse_expressions(env)
self.defaults = defaults = []
for arg in self.node.args:
if arg.default:
arg.default = arg.default.analyse_expressions(env)
defaults.append(ProxyNode(arg.default))
else:
defaults.append(None)
for i, stat in enumerate(self.stats):
stat = self.stats[i] = stat.analyse_expressions(env)
if isinstance(stat, FuncDefNode):
for arg, default in zip(stat.args, defaults):
if default is not None:
arg.default = CloneNode(default).coerce_to(arg.type, env)
if self.py_func:
args = [CloneNode(default) for default in defaults if default]
self.defaults_tuple = TupleNode(self.pos, args=args)
self.defaults_tuple = self.defaults_tuple.analyse_types(env, skip_children=True).coerce_to_pyobject(env)
self.defaults_tuple = ProxyNode(self.defaults_tuple)
self.code_object = ProxyNode(self.specialized_pycfuncs[0].code_object)
fused_func = self.resulting_fused_function.arg
fused_func.defaults_tuple = CloneNode(self.defaults_tuple)
fused_func.code_object = CloneNode(self.code_object)
for i, pycfunc in enumerate(self.specialized_pycfuncs):
pycfunc.code_object = CloneNode(self.code_object)
pycfunc = self.specialized_pycfuncs[i] = pycfunc.analyse_types(env)
pycfunc.defaults_tuple = CloneNode(self.defaults_tuple)
return self
def synthesize_defnodes(self):
"""
Create the __signatures__ dict of PyCFunctionNode specializations.
"""
if isinstance(self.nodes[0], CFuncDefNode):
nodes = [node.py_func for node in self.nodes]
else:
nodes = self.nodes
signatures = [StringEncoding.EncodedString(node.specialized_signature_string)
for node in nodes]
keys = [ExprNodes.StringNode(node.pos, value=sig)
for node, sig in zip(nodes, signatures)]
values = [ExprNodes.PyCFunctionNode.from_defnode(node, binding=True)
for node in nodes]
self.__signatures__ = ExprNodes.DictNode.from_pairs(self.pos, zip(keys, values))
self.specialized_pycfuncs = values
for pycfuncnode in values:
pycfuncnode.is_specialization = True
def generate_function_definitions(self, env, code):
if self.py_func:
self.py_func.pymethdef_required = True
self.fused_func_assignment.generate_function_definitions(env, code)
for stat in self.stats:
if isinstance(stat, FuncDefNode) and stat.entry.used:
code.mark_pos(stat.pos)
stat.generate_function_definitions(env, code)
def generate_execution_code(self, code):
# Note: all def function specialization are wrapped in PyCFunction
# nodes in the self.__signatures__ dictnode.
for default in self.defaults:
if default is not None:
default.generate_evaluation_code(code)
if self.py_func:
self.defaults_tuple.generate_evaluation_code(code)
self.code_object.generate_evaluation_code(code)
for stat in self.stats:
code.mark_pos(stat.pos)
if isinstance(stat, ExprNodes.ExprNode):
stat.generate_evaluation_code(code)
else:
stat.generate_execution_code(code)
if self.__signatures__:
self.resulting_fused_function.generate_evaluation_code(code)
code.putln(
"((__pyx_FusedFunctionObject *) %s)->__signatures__ = %s;" %
(self.resulting_fused_function.result(),
self.__signatures__.result()))
code.put_giveref(self.__signatures__.result())
self.__signatures__.generate_post_assignment_code(code)
self.__signatures__.free_temps(code)
self.fused_func_assignment.generate_execution_code(code)
# Dispose of results
self.resulting_fused_function.generate_disposal_code(code)
self.resulting_fused_function.free_temps(code)
self.defaults_tuple.generate_disposal_code(code)
self.defaults_tuple.free_temps(code)
self.code_object.generate_disposal_code(code)
self.code_object.free_temps(code)
for default in self.defaults:
if default is not None:
default.generate_disposal_code(code)
default.free_temps(code)
def annotate(self, code):
for stat in self.stats:
stat.annotate(code)
|